Toggle menu
288
405
15
3.9K
QCLab
Toggle preferences menu
Toggle personal menu
Not logged in
Your IP address will be publicly visible if you make any edits.

Jo, William: Difference between revisions

From QCLab
S-K.Bac (talk | contribs)
Created page with "* Speaker: William Jo (Ewha Womans University) * Date: Thursday, March, 31, 2016, at 17:00 * Place: Jeongho Seminar Room Organic-inorganic halide CH3NH3Pb(I,..."
 
No edit summary
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
* Speaker: [[Jo, William|William Jo]] (Ewha Womans University)
[[Category:Speakers]]
* Date: Thursday, March, 31, 2016, at 17:00
[[Category:Condensed Matter Speakers]]
* Place: Jeongho Seminar Room
* Professor at Ewha Womans University
* PhD from Seoul National University in August, 1995
* 이화여대 신재생에너지연구센터장
* [http://www.ewha.ac.kr/mbs/ewhakr/jsp/sprofile/sprofile_View.jsp?id=ewhakr_030103020300&cateId=79&sabun=MTUwODA2&sosokCode=A01050305&categoryName=organization&list=list1 His Homepage at Ewha Womans University]




Organic-inorganic halide CH3NH3Pb(I,Br)3 perovskites is one of the most promising photovoltaic materials [1]. Perovskite solar cells have many advantageous for solar cell such as a large absorption coefficient, high carrier mobility, high carrier diffusion length, and direct band gap. We explored electrical properties of CH3NH3(Pb,Sn)(I,Br)3 with the thickness of perovskite ~150 nm since it is interesting that the bandgap can be tuned by Pb/Sn and I/Br. Our best cell of perovskite has achieved ~14% conversion efficiency. A concern of environmental hazard of Pb draws attention of Sn but the chemical stability of Sn is very low. The fabricated perovskite solar cells have a glass/FTO/blocking-TiO2/mesoporous-TiO2/perovskite/HTM(Spiro-MeOTAD)/Ag. We investigated the grain boundary properties in perovskite solar cells with different Pb/Sn and I/Br ratio by Kelvin probe force microscopy, conductive atomic force and pieozoresponse force microscopy measurements. The electrical grain boundary properties (positively charged grain boundaries) are similar to the polycrystalline CIGS and CZTSSe thin-film solar cells. Especially, positively charged GBs grain boundaries is obtained. These positively charged grain boundaries could be enhanced electron-hole separation and suppressing recombination near grain boundaries for high efficiency in the perovskite solar cells.
조윌렴 교수는 물리학전공 소속 교수로 응용물리학과 나노물리학 분야 연구의 권위자이다. 서울대학교에서 박사학위를 받았으며 태양전지 분야, 유전체 및 초전도체 박막에서 많은 연구성과를 내고 있다. 한국물리학회 총무이사를 역임하였으며, 현재까지 <Nature>를 비롯한 총 120여편의 SCI 급 국제학술지에 발표하였다. 특허도 20여건 출원등록하였다.


참고문헌<br />[1] G. Y. Kim et al., Journal of Physical Chemistry Letters 6, 2355 (2015).


[[Category:Condensed Matter Seminars]]
==Contributions==
[[Category:Seminars]]
* [[Passivation of grain boundaries and chemical stability in organic-inorganic lead halide perovskite solar cells]]

Latest revision as of 06:36, 6 April 2016


조윌렴 교수는 물리학전공 소속 교수로 응용물리학과 나노물리학 분야 연구의 권위자이다. 서울대학교에서 박사학위를 받았으며 태양전지 분야, 유전체 및 초전도체 박막에서 많은 연구성과를 내고 있다. 한국물리학회 총무이사를 역임하였으며, 현재까지 <Nature>를 비롯한 총 120여편의 SCI 급 국제학술지에 발표하였다. 특허도 20여건 출원등록하였다.


Contributions