

Spectroscopic Interpretation of Transparent Oxide Films for Various Applications

Kwun-Bum Chung

Division of Physics and Semiconductor Science, Dongguk University E-mail : **kbchung@dongguk.edu**

Introduction of CV

Career

BS, Physics, Korea University (1996~2000) MS/PhD, Physics, Yonsei University (2000~2006) Post-Doc., KRISS (2006~2007) Post-Doc., NC state University (2007~2009) Assistant Prof., Physics, Dankook University (2009~2014) Associate Prof., Physics, Dongguk University (2014~

Research Interests

Research topics

Research topics

dongguk

Contents

Introduction

Electronic structure

Experimental results

- Transparent Conducting Oxides (TCO)
- Transparent Oxide Semiconductors (TOS)
- Transparent Oxide Thin Film Transistor (TTFT)

Applications

Diverse Applications of Oxide Films

Diverse Applications of Transparent Oxide Films

Transparency?

Transparency?

- ➔ Reflection, Absorption, Transmission
- → Transmission of incident light ↑ (Visible light, 300nm ~800nm)
- → Absorption of incident light ↓ (Bandgap < 3.5eV)</p>

Semiconducting? Conducting?

- Semiconducting

Region between conductor and insulator, Change of conductivity depending on conditions, Bandgap

- Conducting

➔ High conductivity, Free electrons, No bandgap

Transparent Conducting Oxides (TCO)

High transparency High mobility & High concentration (High conductivity)

Low cost & Low Temp. & Large area

1. CdO (1907)

3. Impurity-doped binary compound SnO_2 doped In_2O_3 : ITO (1968, van boort and groth) F-doped SnO₂ :FTO Sb₂O₅ doped SnO₂:ATO

4. 1990~2000: TCO films for specialized applications Multicomponents oxide: combination of binary compound such as Al-ZnO, Ga-ZnO, B-ZnO, CdO, Ga₃O₂, SnO₂, In₂O₃ Zn_2SnO_4 , MgIn₂O₄, CdSb₂O₆:Y, ZnSnO, GalnO₃, Zn₂In₂O₅, In₄Sn₃O₁₂

5. 2000~: New transparent conducting materials PEDOT:PSS, CNT based electrode, Graphene, Grid, Indium free TCO

- Sheet resistance < $10^3 \Omega/sq$
- Transmittance > 80% (380nm~780nm visible range)
- Key components for FPD, Photovoltaic, Touch panels and Electronics
- Cost-efficient materials

Issues

AMOLED

- Resistivity: 10⁻⁴ Ω·cm
- Sheet resistance: 1 Ω/sq
- Optical Transmittance: > 85%
- Work function: > 4.8 eV
- RMS roughness: 2nm
- Chemical stability
- Stability against humidity: 85°C, 85%
- Good wet etching
- Low cost element

Touch Panel

- High Transparency: >85%
- Sheet resistance: 400~500 Ω/sq
- Uniformity
- Reliability against temperature and moisture
- Haze properties
- Chemical and mechanical stability
- Continuous process

Solar Cell

 $\eta_{EQE} = \eta_A \eta_{IQE} = \eta_A \eta_{ED} \eta_{CT} \eta_{cc}$ $\eta_A : Photon absorption$

- η_{cc} : Collection of Carrier
- High Transparency: >85%
- Very low resistivity: ~ 10⁻⁴ Ω·cm
- Smooth morphology
- Low cost (indium free-TCO)
- Superior flexibility
- Low temperature process
- Chemical stability against acid solution
- R2R based Large area coating technique
- Reliability

Candidates of TCO

Indium free

Indium reducing

Multicomponents TCO to reduce in composition

• Al-ZnO, Ga-ZnO, B-ZnO, F-SnO2, Zn-SnO₂,

Sb-SnO₂, Nb-TiO₂(NTO), Ta-TiO₂, Nb-Ta₂O₅

 InZnSnO (IZTO), InAlZnO, InAlSnZnO, InGaSnO, InGaZnO, TilnSnO (TITO)

ZnO, TiO, SnO₂ based TCO

Glass

Multi-layered

- Oxide/Metal/Oxide
- ITO/Ag/ITO, IZO/Ag/IZO, IZTO/Ag/IZTO, GZO/Ag/GZO, AZO/Ag/AZO, NTO/Ag/NTO, BZO/Aq/BZO, TiO₂/Aq/TiO₂

a-Si

출처: 2011 Displaybank 교육자료

тсо

Metal electrode Plastic film substrate Protective film

Transparent Oxide Semiconductor

High transparency High mobility & High concentration High quality & controllability (Density of State)

Channel layer for TFTs

	a-Si TFT	poly-Si TFT	Oxide TFT	
Semiconductor	Amorphous Si	Polycrystalline Si	Amorphous oxide	
Transparency	No	No	Yes	
TFT uniformity	Good	Poor	Good	
Channel mobility	1 cm²/Vs	~100 cm²/Vs	10~100 cm²/Vs	
Pixel circuit	Simple (1T+1C)	Complex (5T+2C)	T+2C) Simple (2T+1C)	
Cost/Yield	Low/High	High/Low	Low/High	
Process Temp.	~250°C	>250°C	RT~250°C	
ΔVth (@I _{DS} =3µA)	>30V	<0.5V	~1.7V	

History

The Advantages

- High Mobility (compared to a-Si)
- Room Temperature Deposition (Sputtering)
- Amorphous (no G.B. : Large Area Uniformity)

Conduction Mechanism

- No Directionality
- > Oxygen Deficiency Carrier Generation
- Overlap of Vacant s Orbitals
- Ga-In-Zn-O (GIZO) is Best Known

H. Hosono, J. Non-Cryst. Solids 352 (2006) gguk

Oxygen vacancy

Conduction Mechanism

- No Directionality \succ
- Oxygen Deficiency Carrier Generation \geq
- Overlap of Vacant s Orbitals \geq
- Ga-In-Zn-O (GIZO) is Best Known \geq

ionic oxide semicon. M:(n-1)d¹⁰ns⁰ (n≥5)

amorphous H. Hosono, J. Non-Cryst. Solids 352 (2006)

Issues

Bias Instability

Ilumination Instability

Environment Instability

ed s pomaterial atory

- 16 -

Candidates of TOS

		Channel	Deposition	Mobility	Subthreshold	Process
Material	Dopant or Compound	Materials Meth	Method	(cm ² /V · s)	Swing (V/decade)	Temperature (°C)
SnO	Sh E As Nh Ta	a-ZnON	Reactive sputter	10	0.8	350
		p-ZnON	ALD	6.7	0.67	150
In ₂ O ₃	Sn, Ge, Mo, F, TI, Zr, Hf, Nb, Ta, W, Te	MgZnO	MOCVD	40	0.25	450
ZnO	Al, Ga, B, In, Y, Sc, F, V, Si, Ge, Ti, Zr, Hf	a-InZnO	Sputter	20	1.2	R.T.
CdO	In, Sn	a-InZnO	Sputter	4.5	0.87	40
ZnO-SnO ₂	Zn_2SnO_4 , $ZnSnO_3$	a-InZnO	Sputter	27 (19)	ND	600 (200)
ZnO-In ₂ O ₃	$Zn_2ln_2O_5$, $Zn_3ln_2O_6$	a-InGaZnO	PLD	9	ND	R.T.
$\ln_{0}\Omega_{2}$ -Sn Ω_{2}	$\ln_4 \text{Sn}_2 \text{O}_{42}$	a-InGaZnO	Sputter	12	0.2	R.T.
	$d_{4} = 0.0$	a-InGaZnO	Sputter	35.9	0.59	350
		ZrInZnO	Sputter	3.9	0.98	350
CdO-In ₂ O ₃	Cdln ₂ O ₄	a-HflnZnO	Sputter	10	0.23	200
MgIn ₂ O ₄		a-SnInZnO	Sputter	24.6	0.12	300
GalnO ₃ , (Ga,In) ₂ O ₃	Sn, Ge	a-AlSnInZnO	Sputter	31.4	0.14	250
CdSb ₂ O ₆	Y	SilnZnO	Sputter	21.6	1.52	150
$7n\Omega_{n}\Omega_{n}\Omega_{n}Sn\Omega_{n}$	ZnolnoOcelnoSnoOce	a-ZnSnO	Sputter	5-15 (20-50)	ND	300 (600)
		a-ZnSnO	PLD	10	1.4	450
$CdO-In_2O_3-SnO_2$	$Cdin_2O_4$ - Cd_2SnO_4	ZnSnO	Sputter	14	1.6	250
ZnO-CdO-In ₂ O ₃ -SnO ₂		a-AlZnSnO	Sputter	10.1	0.6	180
		GaZnSnO	Sputter	24.6	0.38	300
		ZrZnSnO	Sputter	8.9	0.7	350

Characterization Issues

Importance of understanding for electronic structure

Importance of electronic structure

 $1s_2^2 2s_4^2 2p_{10}^6 3s_{12}^2 3p_{18}^6 4s_{20}^2 3d_{30}^{10} 4p_{36}^6 5s_{38}^2 4d_{48}^{10} 5p_{54}^6 6s_{56}^2 4f_{70}^{14} 5d_{80}^{10} 6p_{86}^6 7s_{88}^2 5f_{102}^{14} 6d_{112}^{10} 7p_{118}^6 3d_{110}^{10} 3d_{1$

Answers how the electrons behave in matter. → Intrinsic material property, conducting & transport mechanism, reliability

Electronic Structures of Solid

Importance of understanding for Electronic Structure!!

Analysis of Electronic Structure

Spectroscopic analysis by SE, XAS, XPS, XES in PAL, SSRL, PF

UNIVERS

Contents

Introduction

Electronic structure

Experimental results

- Transparent Conducting Oxides (TCO)
- Transparent Oxide Semiconductors (TOS)
- Transparent Oxide Thin Film Transistor (TTFT)

Applications

AlZnO

→ Relation between electrical property and electronic structure (conduction band & bandgap & band offset) Chung et. al. Cl 41, 1641 (2015)

aongguk

UNIVERSITY

GaZnSnO

→ Relation between electrical property and electronic structure (band edge & electronic structural boundary) Chung et. al. APL 104, 182106 (2014)

dongguk

UNIVE

Contents

Introduction

Electronic structure

Experimental results

- Transparent Conducting Oxides (TCO)
- Transparent Oxide Semiconductors (TOS)
- Transparent Oxide Thin Film Transistor (TTFT)

Applications

ZnO by thermal treatments

Changes of electrical properties by thermal treatments

Chung et. al. ESL 15, H133 (2012) dongguk

ZnO by thermal treatments

→ Deep level : mobility

→ Shallow level : carrier concentration

Chung et. al. ESL 15, H133 (2012)

dongguk

UNIVE

TiO_{2-x} TFT

 $\mathbf{I}_{\mathrm{D}}(\mathbf{A})$

- → Device operation of TiO_{2-x} annealed above 450°C
- Anatase structure
- → Changes in molecular orbital ordering
- → Decrease of conduction band offset

Chung et. al. APL 99, 142104 (2011)

20

30

50

2θ (degrees)

40

60

70

80

TiO_{2-x} reliability

Relation between device reliability and band edge state

Chung et. al. JVST-B 31, 021204 (2013) dongguk

Nb or Ta-doped TiO_{2-x} TFT

→ Device operation at lower temperature (300°C)

 \rightarrow Ordering of MO structure of Ta doped TiO_{2-x}

Chung et. al. APL 103, 213501 (2013)

dongguk

UNIVERSI

InGaZnO TFT

Relation between device performance and band alignment

> Chung et. al. JPD 45, 415307 (2012) dongguk

10

20

30

-20

-10

0

Vg (V)

10⁻¹⁴

- 31 -

TalnZnO TFT (Process pressure)

Relation between device performance, stability and vacancies, band edge states, band alignment

Chung et.al. APL 102, 102102 (2013)

dongguk

JNIVF

WInZnO TFT (W concentration)

UNIVF

WInZnO TFT (active layer thickness)

WInZnO TFT (Homojunction structure)

Homojunction structure is a method that can improve the device performance and Stability

Transparency

Conducting

Semiconducting

Analysis of Electronic Structure

Conduction band, Band edge states, Band alignment, Binding states, Molecular orbital ordering

Thank you for your attention!!

