Flux pinning property of REBCO thick films with artificial pinning centers

Byeongwon Kang

Department of Physics Chungbuk National University

오래 써도 열나지 않는 휴대폰

전기제품에서 열이 나는 이유 : 금속 내에서의 전기 저항: 자유전자가 격자진동, 물질내부 결함, 불순물등과 충돌하여 생김

이러한 충돌 시 전자의 운동에너지 일부는 빛이나 열로 방출되는데 그 열의 양은 저항에 비례한다. 열 = (전류)² x (저항)

1911년 네덜란드의 온네스가 <mark>수은(Hg)</mark> 에서 발견 전기 저항이 0 이 됨 -> 전기전도도가 <mark>무한대</mark>가 됨

초전도현상(Superconductivity): 어떤 물질이 적절한 조건 하에서 물질
 의 전기저항이 완전히 사라지는 특성을 갖게 되는 현상

- 초전도체: 도체 중 통전전류에 대한 전기저항이 전혀 없는 '완전도체'
- 도체: 열 또는 전기의 전도율이 비교적 큰 물질. 예: 구리, 철 등의 금속
- 부도체: 열, 전기의 전도율이 작은 물질. 예: 나무, 돌, 세라믹 산화물

전기적 특성

자기적 특성

터널효과

1972년 미국의 노벨물리학상 수상자인 바딘 쿠퍼 슈리퍼

BCS 이론: 1957년 "J. Bardeen", "L.P. Cooper", "J.R. Schrieffer" (미국 일리노이 주립대학) 라는 3명의 물리학자들에 의해 이루어짐.

초전도 상태에서는 포논이 중간역할을 하여 전자 들이 <mark>쌍(쿠퍼쌍)을</mark> 이룬다는 이론.

쿠퍼쌍을 이루는 원리

 $T_c \sim M^{-\alpha}$: 동위원소 효과

포논이 초전도 현상에 중요한 역할을 한다는 증거

1<mark>종 초전도체</mark> *B* > *B*_c 의 조건에서 초전도 현상이 사라짐

1종	Ti	ΑΙ	Hg	Sn	Pb
B _c (mT)	10	10.5	41.2	30.9	80.3

2종 초전도체 $B_{c1} < B < B_{c2}$ 인 구간에서 자기장의 일부가 <mark>자기</mark> 소용돌이 형태로 초전도체 내부를 통과하는 혼합 상태가 존재함

Nb(2종)	B _{c1}	B _{c2}	
B _c (mT)	~170	~240	

1종 초전도체

- 임계자기장 1개
- 낮은 임계온도
- 좁은 범위의 임계자기장
- 간단한 구조
- 금속원소, 이원자 화합물

2종 초전도체

- 임계자기장 2개
- 원소의 결함에 민감
- 복잡한 구조
- 구조의 이방성
- 혼합상태의 존재로 균일하지 못한 초 전도성

Cu

자기 소용돌이 (magnetic vortex)

고온초전도 전선이 필요하다

벽돌집을 지으려면

깨끗하고, 보다 효율적이고, 안전하고, 가볍고, 믿을 수 있고, 환경친화적이다.

	NbTi	Nb₃Sn	MgB ₂	Bscco	YBCO
Wire type					Cross-sectional view of Y-Coated Conductor
Т _с (К)	9 K	18 K	39 K	108 K	90 K
В _{с2} (Т)	10 T	28 T	<70 T	>100 T	>100 T
Operation in LN ₂	NO	NO	NO	< 1T	<2T
Ductile compound	YES	NO	NO	NO	NO
Flexible wires	YES	NO	YES	YES	YES
Superconducting splices	YES	YES	YES	NO	NO
Low cost	YES	≈YES	YES	NO	Not yet
	LTS		MTS	HTS	

-

Power application of REBa₂Cu₃O₇₋₈

Matsumoto et al, Supercond. Sci. Technol. 23 (2010) 014001

Choi et al, Supercond. Sci. Technol. 25 (2012) 105001

Superconductivity applications by using coated conductor (CC) technology

A schematic illustration of GdBCO CC tape manufactured by SuNAM Corp.

Power applications of CC require them to carry high critical current (I_c) in high magnetic field (H)

CBNU

Issues need to be solved

Field dependence of J_c

а Kinoshita et al, Physica C, 463 (2007) Matsumoto et al, Supercond. Sci. Technol. 23 (2010) 7.0 10 6.0 APC-Introduced YBCO film (77 K, B//c) (2008) Critical Current Density (MA/cm²) NbTi(4.2 K) Nb₃Sn(4.2 K) 5.0 1 I_e (MA/cm²) 1 /AAA 4.0 GdBCO 0.1 Latest YBCO tape Nanotechnology 3.0 (77 K, B//c) (2008) YBCO Epi YBCO film 0.01 2.0 (77 K, B//c) (1992) 1.0 0.001 Initial YBCO tape (77 K, B//c) (1992) 0.0 0.00.20.4 1.2 1.6 1.0 1.4 0.0001 Thickness (µm) 0 2 6 8 10 4 Magnetic Field (T) "As the film is grown thicker current-blocking d efects such as misoriented crystallites, cracks o r voids become more prevalent". Foltyn et al, Nature Materials (2007)

> Thickness dependence of J_c

Flux-pinning in HTS

Importance of flux-pinning

Problem

As current flowing

- Lorentz forces act on vortices F_L = J_{tr} x B
- Vortices move and generate resistance

Solution

- Pinning of vortices by defect structures
- Need $F_P > F_L$

Flux pinning by natural defects

В

\blacktriangleright Additions of artificial defects \Rightarrow Enhancements of J_c

Experimental techniques

pulsed laser deposition system

- GdBCO film with and without addition of BSO
- GdBCO films with varying thickness up to 1.5 µm

\blacktriangleright Ar⁺ ion-milling on μ m-thick GdBCO

- Surface SEM of GdBCO films with residual film thickness
- Microstructural evolution inside the GdBCO films

J_c of GdBCO films

- In-field J_c decreases with film thickness
- An inversion of J_c occurred at $t \sim 0.6 \ \mu m$
- A peak is observed in the J_c-t behavior at $t \sim 0.6 \ \mu m$

Microstructural evolution in GdBCO films

Surface morphology after ion-milling

Thicker GdBCO films \Rightarrow lower surface temperature \Rightarrow Development of *a*-axis oriented grains

- a-axis grains start to grow
- Pores with size < 40 nm form at intersections of perpendicularly connected grains

Qualitative analysis

Increasing the residual film thickness t

- Lower surface temperatures
- Remarkable development of the *a*-axis grains
- Increase in the formation of nanopores

Intrinsic pinning property of GdBCO

- F_p at $t \sim 0.6 \ \mu m > F_p$ at $t \sim 0.4 \ \mu m$
- Shifts of F_{pmax} to lower/higher h \Rightarrow Less/more effective pinning
- Nanopores: effective pinning centers
- Strong current blocking by a-axis grains at thick films

Artificial Pinning Centers in HTS

• 1D-APCs:

nanorods, columnar defects

• 2D-APCs:

grain boundaries, surfaces of large precipitates

• 3D-APCs:

nanoparticles, second phases of $\boldsymbol{\xi}$ scale

Growth of BaSnO₃ defects

CHUNGBUK NATIONAL UNIVERSITY

Comparison of 1D and 3D defects

J_c of BSO-added GdBCO films

Field dependence of J_c

- J_c increases in BSO-added GdBCO film up to 1.5 μm-thick
- An inversion of J_c occurred again at t ~
 0.6 μm

Thickness dependence of in-field J_c

- Strong pinning via BSO nanorods ⇒ invalidation of the collective pinning theory
- A peak at t ~ 0.6 µm might be related to evolution of BSO defects

Evolution of BSO defects

Surface morphology after ion-milling

- New types of nanostructures : Pore & meandering grain boundary
- Distribution of meandering grain boundary does not depend on film thickness

a-axis grains are significantly reduced in thick films

Qualitative analysis of BSO defects

TEM image of 0.6 µm-thick BSO-added GdBCO films

- Segments of BSO nanorods/nanopores
- Meandering grain boundaries are extended to the surface of film

- 45 5 Pore density (x 10⁸ cm⁻² 40 Δ Pore 35 3 30 Ne 25 2 nm 20 15 0.2 0.5 0.6 0.3 0.7 0.8 0.4 t (μm)
- Size of nanopores increases with thickness
- Nanopores open and close at certain t

 \Rightarrow variation of the pore density versus t

Correlation of defects & in-field J_-t

Summary

Pure GdBCO

- Uncorrelated pinning in thin & thick film regions
- Correlated pinning in 0.6 μm-thick film

BSO-added GdBCO

- Two types of nanostructure formed: nanorod & meandering grain boundary
- Both field dependence and thickness dependence of $\rm J_c~$ are reduced by BSO addition
- Strongly correlated pinning through whole thickness range due to the formation of meandering grain boundary

