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We investigate the Majorana physics and its effect on the electron transport in the nontopological
superconductor (NS)–topological superconductor (TS) double junctions of a loop geometry. We find that,
depending on the ratio between the lengths of two topologically different regions and the localization lengths
of the Majorana fermions formed between them, two completely different transport mechanisms are working:
perfect crossed Andreev reflection (CAR) for the short NS segment and perfect normal Andreev reflection for the
short TS segment. The difference is explained in terms of the topologically distinct properties of subgap states
in two regions, which have not been revealed so far. The exotic dependence of the CAR process on the magnetic
flux threading the loop is uncovered and can be used to detect the Majorana fermions.
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I. INTRODUCTION

Solution to the Dirac equation [1,2], the first quantum
theory compatible with special relativity, is complex in general,
implying that to each particle there should exist an antiparticle
with same mass but opposite charge. Theoretically, the Dirac
equation can also have a real solution [3]. The associated
particle, the so-called a Majorana fermion, must then be its
own antiparticle and its charge neutral. Furthermore, Majo-
rana fermion modes in two dimensions satisfy non-Abelian
statistics, which can be explored for topologically protected
quantum computation [4–6].

Whereas the Majorana fermion as an elementary parti-
cle still remains elusive with its direct observation facing
formidable technical challenges, it appears to be far more
abundant and experimentally accessible as an emergent quasi-
particle in condensed-matter systems [7,8]. Earlier, it was
shown that unpaired Majorana fermions can exist localized at
the ends of p-wave superconductor wires with certain specific
conditions [9], and recently several proposals have been
put forward for realistic devices based on a semiconducting
nanowire with strong spin-orbit coupling and in proximity
to a superconductor [10–14]. Also proposed are schemes
to manipulate and braid the Majorana fermions to perform
quantum gates [14–16].

The zero-bias peak observed in recent experiments on
InSb [17,18] and InAs [19] nanowires strongly suggests the
existence of Majorana fermions. This may not be decisive
evidence [20–22], though, and other evidence is worthwhile.
One promising direction is to investigate the supercurrent
characteristics through a Josephson junction with Majorana
fermions localized at it [9,23–25].

A semiconductor nanowire with strong spin-orbit coupling
and in close proximity to a superconductor turns to either
a topologically nontrivial superconductor (hereafter called
“topological superconductor” or TS) or a topologically trivial
conventional superconductor (to be called “nontopological
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superconductor” or NS). With two topologically distinct
superconductors at hand, one can consider three kinds of single
Josephson junctions: NS-NS, TS-TS, and NS-TS junctions.
The NS-NS junction is the ordinary Josephson junction in
which a Cooper pair tunnels through an intermediate insulating
or conducting medium [see Fig. 1(a)]. The supercurrent I in
the tunneling limit is then a sinusoidal function of the phase
difference δϕ ≡ ϕL − ϕR , being periodic with a period 2π :
I = I0 sin δϕ. On the other hand, the TS-TS junction hosts
a single fermionic excitation localized at the junction [see
Fig. 1(b)]. Upon the 2π change in δϕ, a fermionic quasiparticle
is transported to the junction region and the fermion parities
of the two TS regions are reversed. Another 2π change in δϕ

restores the fermion parities. Thus the Josephson current ex-
hibits 4π periodicity, unless there is a fermion-parity-breaking
process [9,26]. For a hybrid NS-TS junction [see Fig. 1(c)],
since both sides have a gap and are topologically different,
a single gapless state should exist at the boundary [9,14,27].
The junction thus has a single Majorana state which is pinned
at the Fermi level, irrespective of the phase difference. The
supercurrent, proportional to the derivative of the Andreev
bound state with respect to the phase difference [see Eq. (23)],
should then be zero. The vanishing supercurrent can be argued
in another way: In the Majorana state which is its own antiparti-
cle, the particle and hole excitations have the same amplitudes.
Further, since the particle and hole are at the same (Fermi)
energy level, their group velocities have the same magnitude.
Hence, their contributions to the current should cancel out each
other exactly, and no current flows through the hybrid NS-TS
junction.

Recently, Jiang et al. [23] proposed a way to induce a
supercurrent through the hybrid NS-TS junction by making a
TS-NS-TS double junction. In their setup, the middle NS is
short enough that the overlap between the two Majorana states
localized at both ends of the NS segment is finite. The overlap
couples the two Majorana states so that their energies are
lifted from the Fermi level and the vanishing current condition
used above is no longer valid. They predicted two different
mechanisms of electron tunneling [see Fig. 2(a)]: First, a single
electron can tunnel from one TS to the other TS like in the
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FIG. 1. (Color online) (a) NS-NS junction, with ordinary
Cooper-pair (double dot in ellipse) tunneling. (b) TS-TS junction,
hosting a Dirac fermion (dot in ellipse) excitation at the junction. (c)
NS-TS junction, hosting a single Majorana (cross) localized at the
junction. ϕL and ϕR are the superconducting phases in the left and
the right superconductors.

TS-TS junction. Second, a Cooper pair in the middle NS is
split, and each of the two electrons from the Cooper pair
tunnels into either left or right TS. The Josephson junction
energies from the two tunneling mechanisms have different
dependence on the superconducting phases: the Josephson
energy from the former process follows that of the TS-TS
junction

EM cos
ϕL − ϕR

2
, (1)

and the energy due to the Cooper pair splitting is given by

EZ cos

(
ϕL + ϕR

2
− ϕM

)
. (2)

It was proposed to measure unusual Shapiro steps in a nonlocal
ac current in order to detect the latter tunneling mechanism.

What about a NS-TS-NS double junction [see Fig. 2(b)]
with a short TS segment in the middle? Interestingly, even
though it is seemingly a counterpart of the TS-NS-TS double
junction discussed in Ref. [23], its Majorana physics and
associated supercurrent characteristics are quite different. As
we will show in detail with numerically exact calculations
(see Sec. III) and perturbation theory (see Appendix A), the
main difference is that the energy splitting due to the overlap
over the TS segment of the two Majorana states is almost
independent of the phase difference and carries very little
supercurrent. Putting this another way, NS-TS-NS and TS-NS-
TS double junctions have topologically different characteris-
tics: Since NS preserves the fermion parity, it cannot accept a
single electron, and the two transport mechanisms working in
the TS-NS-TS double junction cannot take place. In principle,
the overlap between the Majorana fermions opens a fermionic
channel through the short TS segment so that the Cooper pair
in the NS regions can tunnel through it via virtual processes

TS NS TS

ϕL ϕM ϕR

(a)

NS TS NS

ϕL ϕM ϕR

(b)

FIG. 2. (Color online) (a) TS-NS-TS double junction and (b) NS-
TS-NS double junction. ϕL, ϕM , and ϕR are the superconducting
phases in the left, middle, and the right superconductors.
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FIG. 3. (Color online) Illustration of a ring made of a semicon-
ducting quantum wire in proximity to two s-wave superconductors.
The attached superconductors are interrupted by insulators so that
no current can flow directly between bulk superconductors. Different
gate voltages on two segments of the quantum wire define two topo-
logically different parts whose lengths are LT and LN , respectively.
The external magnetic field B pierces the ring inducing the Zeeman
splitting on the nanowire and the magnetic flux in the wire.

as depicted in Fig. 2(b). Hence, the Josephson energy in the
NS-TS-NS double junction will behave like

EC [cos(ϕL − ϕM ) + cos(ϕM − ϕR)] (3)

in a symmetric double junction. Since the Cooper pair
tunneling demands the cotunneling processes, the magnitude
of EC would be significantly smaller than those of EM and EZ

in the counterpart setup.
In this paper we investigate the Majorana physics and

the corresponding electron transport in the TS-NS double
junctions of a closed loop geometry as shown in Figs. 3
and 9. This setup contains both TS-NS-TS and NS-TS-NS
double junction, allowing us to study them on an equal footing.
The Aharonov-Bohm phase from the threading magnetic flux
and the phase difference between bulk superconductors that
induce the p-wave superconductivity in the nanowire control
the relative phases across the junctions between NS and TS.
We find that the supercurrent characteristics through the loop
strongly depends on the relative ratio between the segment
lengths and the localization lengths of the Majorana states.
For short (compared with the localization lengths of the
Majorana states) NS and long TS segments (see Section III A),
the supercurrent originates solely from the crossed Andreev
reflection (CAR), exhibiting an unusual dependence on the
magnetic flux: the acquired magnetic phase is that by a
single electron, not a Cooper pair. For short TS and long
NS segments (see Section III B), on the contrary, the normal
Andreev reflection (NAR) determines the supercurrent. The
difference in the supercurrent features of the two extreme
cases is explained in terms of topological properties in the
subgap states (see Section II C). For small loops, the two
mechanisms can occur simultaneously and we show that in
this case the CAR process can be robust against possible
fermion-parity breaking perturbations (see III C). Finally, we
propose a realistic experimental setup to implement our design
to detect the exotic CAR via the Majorana fermions.

The paper is organized as follows: In Section II we describe
our system of p-wave superconductor double junctions of the
ring geometry and the method to obtain the subgap states and
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the corresponding supercurrent. In this section, we also discuss
the elementary features of the subgap states and associated
supercurrent of topological origin, which will provide the
physical interpretations for the results to be presented in
Section III. Section III presents and discusses the numerical
results leaving the perturbative calculations in Section A. In
Sec. IV we propose and discuss a realistic setup of our system
which facilitates our predictions. Section V concludes the
paper.

II. MODEL AND METHOD

A. p-wave superconductor junctions

We consider a narrow semiconductor ring in proximity
to two spatially separated s-wave superconductors as shown
in Fig. 3. The semiconductor wire forms a ring geometry
with radius R and circumference L = 2πR. Here we choose
a circular ring for computational convenience. However, it
need not be a perfect circle as long as the nanowire forms
a closed loop. Essential physics does not depend on the
specific geometry. Experimental realization may prefer a
closed loop with straight semiconductor segments (instead of
curved segments) in favor of easier layering of nanowires and
superconductors, which will be proposed in Sec. IV in details.

The attached bulk superconductors are connected to su-
perconducting electrodes so that the supercurrent through the
loop can be measured. In the loop part, two (lower and upper)
junctions at x = xa = 0 and x = xb = LN are introduced by
inserting insulating regions between superconductors. Here x

denotes the position coordinate along the circumference (see
Fig. 3). Here we assume that the insulators are thick enough

so that no current can flow directly between superconductors.
However, since the supercurrent can still flow between two
superconductors through the nanowire, the relative phase
of the superconducting order parameter, ϕ(x), between two
superconductors can be defined. First, a bias current applied
across the loop induces a phase difference as

ϕ0(x) =
{
ϕN (xa < x < xb),
ϕT (xb < x < L). (4)

In addition, in the presence of the magnetic flux � threading
the loop, the superconducting phase depends on the position
and in a proper gauge is given by ϕ(x) = 4πf x/L [from
the vanishing-current condition inside the superconductors,
0 = �∂xϕ(x) − 2eAx with the azimuthal component Ax of
the vector potential], where f ≡ �/�0 is the dimensionless
magnetic flux and �0 ≡ h/e is the flux quantum for a single
electron. Putting them all together, the superconducting phase
takes the form

ϕ(x) = ϕ0(x) + 4πf
x

L
, (5)

resulting in finite phase differences at two junctions:

δϕ|x=xa
= 4πf − δϕ, δϕ|x=xb

= δϕ (6)

with δϕ ≡ ϕT − ϕN . Via the proximity effect, the bulk
superconductors induce an s-wave superconductivity on the
semiconducting nanowire, on which the order parameter is
given by �(x) = �0e

iϕ(x).
Assuming that the semiconducting nanowire is narrow

enough that only the lowest transverse mode is involved, the
Hamiltonian of the superconductivity-induced wire then reads

H =
∮

dx

{
[ψ†

↑(x) ψ
†
↓(x)]

(
	2

x

2m
− μF (x) + VZ

2
σz + α

�

{σ · u(x),	x}
2

) [
ψ↑(x)
ψ↓(x)

]
+ �(x)ψ†

↑(x)ψ†
↓(x) + (H.c.)

}
(7)

with 	x = px − 2π�f/L. The field operator ψs(x) describes
the electronic degrees of freedom in the lowest transverse mode
with spin s = ↑,↓ and effective mass m (m ≈ 0.015me for
InSb [17,18] and m ≈ 0.03me for InAs [19]).

One of the key ingredient for effective p-wave supercon-
ductivity is the strong Rashba spin-orbit coupling, which is
specified by the parameter α (α ≈ 0.2 eV Å for InSb [17,18]
and InAs [19]) or equivalently by the spin-orbit length �so ≡
�

2/mα (�so ≈ 200 nm for InSb [17,18] and �so ≈ 127 nm
for InAs [19]). The Rashba-induced effective magnetic field,
assumed to lie in the ring plane, is perpendicular to the
wire direction and hence varies along the wire, and u(x) =
x̂1 cos φ(x) + x̂2 sin φ(x) is the unit vector parallel to the
Rashba field at the position x (here x̂1 and x̂2 are the unit
vectors in the ring plane of the laboratory frame). The inner
curly brackets denote the anticommutator, and guarantee the
hermiticity of H in the presence of position-dependent Rashba
field u(x).

The other ingredient is the Zeeman field VZ perpendicular to
the Rashba field, which is assumed to be applied perpendicular
to the ring plane. The applied magnetic field should induce a
finite spin splitting but be still weak enough not to break the
superconductivity (B ∼ 100 mT [17,18]). The shielding of the

perpendicular magnetic field by the underlying superconduc-
tors can be avoided by letting the superconductor cover the
nanowire only partially as done in a recent experiment [17].
We will discuss this matter in more detail in Sec. IV.

Finally, μF (x) is the position-dependent chemical potential,
with μF (x) = μN for xa < x < xb and μT for xb < x < L. As
will be discussed below, the topological state of each region is
controlled by locally tuning the chemical potential.

The model Eq. (7) for a uniform wire (closed or open)
is exactly solvable via the Bogoliubov–de Gennes (BdG)
transformation in the chiral basis diagonalizing the single-
particle part of the Hamiltonian [27]. The two channels with
chirality ζ = ± (representing two spin directions with respect
to the momentum direction) are completely decoupled and a
finite p-wave pairing potential between electrons with same
spin in each channel is induced, whose order parameter is
proportional to α�0/VZ in the small momentum limit. It
illustrates that the Rashba spin-orbit coupling, the Zeeman
splitting, and the s-wave superconductivity combines together
to form three indispensable ingredients to implement the
p-wave superconductor. Even though both channels exhibit the
p-wave superconductivity, the excitation gap between particle
and hole bands in one of them (say ζ = +) remains finite at
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any value of momentum k, irrespective of the strength of the
system parameters. On the other hand, the gap for the other
channel (ζ = −) can close when the parameters are properly
tuned. Hence, near the quantum phase transition point, only
the ζ = − channel is relevant and one can project out the other
channel by focusing on the low-energy physics. The projection
onto the ζ = − channel then gives rise to an effective p-wave
superconducting wire of spinless fermions:

Heff =
∮

dx

[
ψ†(x)

(
	2

x

2meff
− μeff(x)

)
ψ(x)

+ �eff(x)

2
ψ†(x)∂xψ

†(x) + (H.c.)

]
(8)

with the effective mass meff = (1/m − α2/�
2VZ)−1 and the ef-

fective chemical potential μeff(x) = μF (x) + VZ − �2
0/2VZ .

The induced p-wave order parameter

�eff(x) = α�0

�VZ

iei[ϕ(x)+φ(x)] (9)

has two contributions to its phase: ϕ(x) inherited from the
phase of the order parameter of the bulk superconductors, and
φ(x) from the position-dependent direction u(x) of the Rashba
field. The corresponding BdG equation has the form

i�
∂

∂t

[
ψ(x)
ψ†(x)

]
= H BdG

eff

[
ψ(x)
ψ†(x)

]
(10)

with

H BdG
eff =

[ (px−2π�f/L)2

2meff
− μeff(x) 1

2 {�eff(x),px}
1
2 {�∗

eff(x),px} − (px+2π�f/L)2

2meff
+ μeff(x)

]
.

(11)

Below we solve the effective model, Eqs. (8), (10), and (11),
by first seeking the solution for each uniform wire segment and
then matching the solutions across the junctions.

B. Bulk states in a uniform segment

For a uniform wire segment with μeff and �eff constant,
the bulk spectrum for a particle-like (E+) and hole-like (E−)
excitation are given by

E±(k̃) = ER(k̃ ±
√

(k̃2 − μ̃)2 + �̃2k̃2), (12)

with

k̃ ≡ kR , ER ≡ �
2

2meffR2
,

(13)

μ̃ ≡ μeff

ER

− 1

4
, �̃ ≡ �|�eff|

ERR
= 2�0

VZ

R

�so

.

The spectrum becomes gapless for μ̃ = 0, at which occurs the
topological phase transition between a topological phase (T)
with μ̃ > 0 and a nontopological phase (N) with μ̃ < 0.

The spectrum is asymmetric with respect to k̃ → −k̃; see
Fig. 4. The variation of the Rashba field direction along the
curved wire invokes the precession of electron spin, and the
resulting Berry phase leads to a finite z component in the spin
polarization axis which is exactly opposite for clockwise (k̃ <

0) and counterclockwise (k̃ > 0) movers. Adding the Zeeman

�2 �1 0 1 2

�6
�4
�2
0
2
4
6

k
�

E
�E
R

�b � �
�
� 1

�2 �1 0 1 2

�4
�2

0
2
4

k
�

E
�E
R

�a� �
�
	 1

FIG. 4. (Color online) Bulk spectrum for the uniform chemical
potential and superconducting phase, Eq. (12), for p-wave supercon-
ducting wire of ring geometry for (a) �̃ < 1 and (b) �̃ > 1. The case
(a) is achievable only for very small rings and we focus on the case
(b) in this work. In (b), the solid and dashed lines correspond to the
bulk spectrum in the topological phase with μ̃ < D ≡ (�̃2 − 1)/4
and μ̃ > D, respectively.

field, therefore, makes the magnitude of the z component
different for two opposite movers, introducing asymmetry
between them [28]. As a result, the gap between the particle
and hole bands is indirect. In particular, for small �̃ < 1, the
system is metallic over the whole range of energy; see Fig. 4(a).
However, such an asymmetry effect is pronounced only for a
very small loop (R 	 �soVZ/2�0 ≈ 200 nm). In our study,
we therefore focus on the case with �̃ > 1, where the gap
Egap is finite and almost direct [see Fig. 4(b)].

The bulk eigenstates corresponding to the spectrum,
Eq. (12), are

χk,+(x) = eikx

[
e+i(ϕ/2+(f +1/2)x/R) cos ϑk

2

e−i(ϕ/2+(f +1/2)x/R) sin ϑk

2

]
, (14a)

χk,−(x) = eikx

[−e+i(ϕ/2+(f +1/2)x/R) sin ϑk

2
e−i(ϕ/2+(f +1/2)x/R) cos ϑk

2

]
, (14b)

with the angle ϑk defined by tan ϑk = �̃k̃/(k̃2 − μ̃). The phase
±x/2R in the exponents originates from the variation of the
Rashba field direction, φ(x), resulting in the Berry phase π for
one cycle along the loop. As can be seen from Eq. (14), this
Rashba phase always appears together with the magnetic flux
f in the form of f + 1/2. In other words, the actual effect of
the Rashba phase is to apply an additional half flux quantum
�0/2 through the loop.

C. Topological property of subgap states at junctions

By applying a nonuniform chemical potential along the
loop as given by

μ̃eff(x) =
{
μ̃N < 0 (xa < x < xb),
μ̃T > 0 (xb < x < L), (15)

the two segments become topologically different supercon-
ductors, and a localized Majorana state is formed at each
interface x = xa,b [9,14]. Before obtaining exact subgap states
in the nonuniform configuration (see Sec. II D), we examine
the topological structure of the Majorana states localized at
the junctions. Here we focus on the case of isolated Majorana
states and disregard the interaction between them. For further
simplicity, we turn off the magnetic flux (f = 0). Without the
interaction, the energy of the Majorana state is zero, and by
seeking zero-energy solution in Eqs. (12) and (14) for μ̃T < D,
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we obtain four purely imaginary wave vectors

k�
ην = ηi/λ�ν (16)

and the corresponding wave functions

χ�
η,ν(x) = eik�

ηνx

[
e+i(ϕ�/2+x/2R)e+iγ �

ην/2

e−i(ϕ�/2+x/2R)e−iγ �
ην/2

]
(17)

for each region � = T ,N . Here D ≡ (�̃2 − 1)/4, ν = 1,2
distinguishes different Majorana modes with different local-
ization lengths (λ�1 � λ�2), and the index η = ± denotes the
decay direction of the wave function tail: η = +(−) state
decays in the positive (negative) direction. Note that while the
wave vectors kN

ημ in the NS region are always purely imaginary
no matter what values μ̃N < 0 has, the wave vectors kT

ημ in
the TS region can have real parts if it is in deep topological
phase (μ̃T > D) [see Fig. 4(b)]. However, since the finite real
parts do not affect the topological features which are our main
concern, we focus on the μ̃T < D case, and the μ̃T > D case
will be separately discussed in Appendix C.

The imaginary parts of the wave vectors k�
ην determine the

localization length of the Majorana states. In the NS region
(μ̃N < 0) and the TS region (0 < μ̃T < D), the localization
lengths are given by

λNν = R√
D + |μ̃N | + (−1)ν

√
D

, (18a)

λT ν = R√
D + (−1)ν

√
D − μ̃T

, (18b)

respectively. The relative phase difference γ N
ην = η(−1)νγ in

the NS region depends on both η and ν, where the angle γ has
been defined by

eiγ ≡ − 1

�̃
+ i

√
1 − 1

�̃2
, (19)

but γ T
ην = ηγ in the TS region does not depend on ν. This dif-

ference leads to intriguing topological properties as we discuss
below. The wave functions �i(x) for Majorana states localized
at x = xi (i = a,b) are then given by linear superpositions of
the eigenstates, Eq. (17); refer their explicit forms to Eq. (A1).
The coefficients for eigenstates are determined by the matching
condition at each junction:

�i(x
+
i ) = �i(x

−
i ) , vx�i(x

+
i ) = vx�i(x

−
i ), (20)

where vx is the velocity operator along the wire

vx =
[

−iR∂x − f �̃
2 e+i[ϕ(x)+(2f +1) x

R
]

�̃
2 e−i[ϕ(x)+(2f +1) x

R
] iR∂x − f

]
. (21)

Note that x−
a = L.

In order to clarify the topological difference between the
wave functions, Eq. (17), of the NS and TS regions, we regard
the wave functions as spinors in the pseudospin up (↑) and
down (↓) basis in the particle-hole (or so-called Nambu) space,
and examine their pseudospin polarization directions. Figure 5
shows the pseudospin polarization of the eigenstates localized
at the TS-NS and NS-TS junctions for δϕ = 0. We see the
clear difference between relative pseudospin polarizations in

ν = 1
ν = 2

ν = 1

ν = 2

Ψa

Ψb

NSTS TS

xa xb

FIG. 5. (Color online) A schematic representation of the subgap
states, �a and �b, at the TS-NS (xa) and NS-TS (xb) junction
interface, respectively. The curves depict the spatial distributions of
the wave functions, and the arrows in circles the pseudospin polar-
izations in the particle-hole basis. The solid and dotted curves/arrows
correspond to ν = 1 and 2 Majorana mode, respectively. Here no
superconducting phase difference (δϕ = 0) is applied for simplicity.
Note that for finite length of the NS segment, the wave function �a

should be matched with �b properly at x = xb, and �b with �a at
x = xa . When matching, the ν = 1 mode undergoes a pseudospin
rotation by angle 2γ , while the ν = 2 mode does not.

two topologically different regions. In the NS region, the two
evanescent modes (ν = 1,2) localized at the same end form an
angle 2γ (π/2 < γ < π ), while they are parallel to each other
in the TS region: For an infinite-curvature ring (�̃ � 1), γ ≈
π/2 so the two modes are polarized in the opposite direction.
The phase difference δϕ = ϕN − ϕT leads to the misalignment
between the polarization axes for the two regions [31].

This topological difference leads to two important conse-
quences which are experimentally detectable. First, the overlap
between Majorana fermions has different nature according to
whether they are coupled through the NS or the TS regions.
For example, in the TS region, the pseudospins of two modes
are always aligned and rotate in the same way so they are
always in phase, which is the main reason why the overlap
of Majorana states through the TS region is almost a constant
independent of phases. On the other hand, the two modes
in the NS region are not aligned so that their amplitudes
depend on the superconducting phases and the magnetic flux.
In Sec. III, we will see a stark contrast in the properties of the
supercurrents in the two cases.

Second, the two modes acquire different phases while they
travel through the NS region; see Fig. 5. While the ν = 1
mode in the left TS region tunnels to the NS region without a
rotation, it has to rotate by 2γ to match with the ν = 1 mode
in the right TS region. This rotation should be reflected in
the overlap matrix element between �a and �b. However, the
ν = 2 mode rotates in the left TS-NS junction, while it is then
already aligned with the ν = 2 mode in the right TS region. The
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pseudospin rotation at the left junction just contributes to an
overall phase of �a so that it does not affect the �a-�b overlap
matrix element. Hence, the phase difference 2γ between two
modes arises. Note that this additional phase does not take
place in the case of the crossed Andreev reflection (Cooper
pair splitting) where two electrons in the middle NS region go
in the opposite directions. In this case the pseudospin rotates in
the opposite directions for opposite-moving electrons so that
the phases are canceled out. Hence, this pseudospin rotation
in the particle-hole space severely affects the relative ampli-
tudes of currents due to the single-electron tunneling and the
crossed Andreev reflection through the TS-NS-TS junctions,
which will be discussed in Sec. III A.

D. Subgap states and supercurrent in a closed ring

Now we examine the effects of the finite size of the
segments between the junctions and the closed-loop geometry
(periodic boundary condition); see Fig. 3. For finite-size
segments between two junctions, the wave functions of two
localized Majorana modes have a finite overlap, which gives
rise to finite energies ±EA of subgap eigenstates with |EA| �
Egap = min(ET

gap,E
N
gap) where E�

gap is the gap in each region
(� = T ,N ). The overlap EA depends exponentially on the
ratio of the segment length L� (� = N,T ) to the localization
lengths λ�ν of the Majorana states. The effective low-energy
Hamiltonian can be then written as

HM = EA(2d†d − 1), (22)

where d = (γa + iγb)/
√

2 is the fermionic operator from
the Majorana fermion operators γa,b. The subgap eigenstates
are then labeled as |0〉 and |1〉 ≡ d† |0〉. The supercurrent
corresponding to the eigenstate is then calculated by taking
the derivative of the energy [32]:

I = 2e

�

∂HM

∂δϕ
. (23)

We determine the exact subgap energy EA by solving
the BdG equation, Eq. (10) in each region and matching
the solutions across the interfaces at x = xa and xb impos-
ing the boundary conditions analogous to Eq. (20). Explicitly,
one has to solve self-consistently EA = E+(k̃) [EA = E−(k̃)
gives identical results due to the particle-hole symmetry] and
the boundary condition

�(x+
i ) = �(x−

i ) , vx�(x+
i ) = vx�(x−

i ) (24)

for i = a,b and

�(x) =
∑
ην

{
cN
ηνχ

N
kN
ην ,+(x) (xa < x < xb),

cT
ηνχ

T
kT
ην ,+(x) (xb < x < L).

(25)

Here k�
ην are four solutions of EA = E+(k̃) with μ̃ = μ̃� and

c�
ην the coefficient for each mode. In the following section, the

self-consistent equations are numerically solved to obtain and
examine the energy EA as a function of the magnetic flux f

and the phase difference δϕ for given parameters.

III. RESULTS AND DISCUSSIONS

In this section we present the subgap eigenenergy EA and
the supercurrent I by using the method described in Sec. II.
First, we consider two extreme cases where either the NS
(Sec. III A) or TS (Sec. III B) segment is short compared with
the localization lengths of the Majorana states, and show that
the two cases exhibit distinct behaviors in subgap energy and
supercurrent. Next, we study the small-loop case (Sec. III C)
where both the behaviors are expected to arise simultaneously.

Throughout the section, we choose R ≈ 300 nm, m ≈
0.015me (me is the bare electron mass), α ≈ 2 × 10−11 eV m,
and �0 ≈ VZ ≈ 300 μeV, which are suitable for realistic
samples. They correspond to ER ≈ 20 μeV and �̃ ≈ 3 in the
effective model. The value of μ̃� can be varied by the gate
voltage.

A. Short NS segment (LN ∼ λN1, LT � λT1)

First, we consider the case in which the NS segment is short
and the TS segment is very long: LN ∼ λN1 and LT � λT 1.
Figures 6(a)–6(c) present our numerical results for the subgap
eigenenergy EA as a function of δϕ and f . We find that these
results fit well to the expression

EA ≈ EM cos(2πf +γM ) + EZ cos(δϕ−2πf +γZ). (26)

Figures 6(b) and 6(c) show that for LN � λN1, the coefficients
(EM and EZ) and the phase shifts (γM ≈ π − 2γ and γZ ≈ 0;
refer detailed analysis to Appendix B) are in a good agree-
ment with the perturbative results (dashed line) calculated
in Appendix A. For a large loop (�̃ � 1) with a short
NS segment (LN ∼ λN1), the perturbation theory suggests a
simpler expression of the coefficients and the phase shifts:
γM ≈ γZ ≈ 0 and

EM ≈ ER

ε1

N0
(e−LN /λN1 + e−LN /λN2 ), (27a)

EZ ≈ ER

ε1

N0
(e−LN /λN1 − e−LN /λN2 ). (27b)

Refer the definitions of ε1 and N0 to Eqs. (A13) and (A17).
The subgap expression Eq. (26) is consistent with that of

Jiang et al. [23] [see Eqs. (1) and (2)]. To see this, substitute
the superconducting phases as follows:

ϕL → ϕT , ϕM → ϕN, ϕR → ϕT + 4π (f + 1/2). (28)

Note that the phase shift 4π (f + 1/2) in ϕR is the phase
acquired by a Cooper pair circling around the loop in the
presence of the magnetic flux and the Rashba field. Then, the
single-electron tunneling term becomes

E
Jiang
M cos

ϕL − ϕR

2
→ −E

Jiang
M cos 2πf (29)

corresponding to the EM term in Eq. (26), and the Cooper pair
splitting term becomes

E
Jiang
Z cos

(
ϕL + ϕR

2
− ϕM

)
→ −E

Jiang
Z cos(δϕ − 2πf )

(30)
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FIG. 6. (Color online) Subgap energy for the state |1〉 as a function of [(a), (d)] δϕ and f , [(b), (e)] f for fixed values of δϕ, and [(c), (f)]
δϕ for fixed values of f for [(a), (b), (c)] a loop with short NS and long TS segments, LN/λN1 ≈ 1.55 and LT /λT 1 ≈ 7.11, and [(d), (e), (f)]
a loop with long NS and short TS segments, LN/λN1 ≈ 6.35 and LT /λT 1 ≈ 1.60. Solid and dashed lines in (b), (c), (e), and (f) correspond to
the exact and perturbative energies, respectively. Here we have used �̃ = 3, μ̃N = −5, μ̃T = 3, and Egap ≈ 53 μeV.

corresponding to the EZ term in Eq. (26). The sign change is
ascribed to the Rashba phase which adds additional phase π

upon circling around the loop.
The EM term comes from the circulation of a single electron

around the loop. In fact, the phase 2πf is exactly the magnetic
phase acquired by a single electron enclosing the magnetic flux
f . The additional phase γM arises due to the finite curvature
of the loop, as discussed in Sec. II B and Appendix B. The
contributions from ν = 1,2 modes to the EM term are simply
additive. As discussed in Sec. II C, the ν = 1 mode acquires the
phase 2γ ≈ π with respect to the ν = 2 mode, which leads to a
sign difference between them. On the other hand, the diagonal
component of the velocity operator in Eq. (21) suggests that
the supercurrent measures the pseudospin current. Since the
pseudospins of the two modes in the NS segment are nearly
opposite to each other (since γ ≈ π/2), their contribution to
the supercurrent is opposite in sign. Hence, gathering two
sign changes, there is no sign difference between the two
modes.

The EZ term is due to the Cooper pair tunneling between TS
and NS segments, accompanying the splitting of the Cooper
pair. Each of two electrons in a Cooper pair tunnels between
two segments through either of two TS-NS boundaries,
respectively. In other words, the crossed Andreev reflection
takes place with no normal Andreev reflection accompanied.
This perfect CAR is due to the interesting characteristic of
the TS-NS junction as discussed in Sec. I: no Cooper pair can
tunnel directly across a single TS-NS junction.

Here three remarks are worthwhile concerning the CAR
process involved in the EZ term. (i) As seen in Eqs. (26)
and (30), the CAR process acquires the phase δϕ − 2πf . The
phase δϕ is obviously due to the tunneling of a Cooper pair

between two different superconductors. The appearance of the
phase 2πf is interesting because it is identical to that by the
circulation of a single electron. It indicates that the splitting and
the recombination of the Cooper pair should take place at the
same TS-NS boundary so that only one of two electrons split
moves around the loop before the recombination, resulting in
the phase 2πf . The recombined Cooper pair at one of the
boundaries then flows into the bulk superconductor, not being
affected by the magnetic flux any more. This is consistent
with the fact that the Majorana fermions are localized at
the boundaries. This dependence on the magnetic flux is
the evidence that the CAR is realized via the Majorana
fermions.

(ii) Unlike in the EM term above, no extra pseudospin
rotation between two modes (see Sec. II C) accompanying
tunneling across NS-TS junctions takes place, while the
pseudospin currents of the two modes are opposite in sign.
Hence, Eq. (27b) exhibits the negative combination between
two modes.

(iii) As a consequence of the effect (ii), the EZ term depends
nonmonotonically on the length LN of the NS segment, while
the EM term exhibits monotonic behavior, as shown in Fig. 7.
The exponential factors e−LN /λNν in both the EM and EZ terms
imply that the finite overlap between Majorana fermions is
indispensable to observe these processes. It is also known that
the CAR process can happen substantially only over lengths
shorter than the size of the Cooper pair (i.e., the supercon-
ducting coherence length). Based on both, one may naively
expect that the CAR process (and hence EZ) gets stronger with
decreasing LN . However, the tunneling processes through two
modes ν = 1,2 give opposite contributions as shown in the
above (ii), due to the topological characteristic of the subgap
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Λ

Λ

FIG. 7. (Color online) The coefficients EM , EZ , E0, and EC as
functions of LN or LT = L − LN with L = LN + LT fixed. The
arrows indicate the segment lengths LN and LT with which the short-
NS-segment case [Figs. 6(a)–6(c)] and the short-TS-segment case
[Figs. 6(d)–6(f)] are studied. Here we have used �̃ = 3, μ̃N = −5,
and μ̃T = 3.

states. Therefore the CAR process becomes weaker if the NS
segment is too small: EZ increases as LN decreases until
LN � λN2, but decreases with decreasing LN smaller than
λN2 (� λN1). On the other hand, the EM term, due to the
circulation of a single electron, increases monotonically with
decreasing LN , approaching the energy gap Egap as LN → 0.
In this limit, the Majorana fermions are strongly bound so that
they become completely fermionic.

Since in both the EM and EZ terms it is a single electron, not
a Cooper pair, that circulates around the loop, the periodicity of
the subgap energy EA with respect to the magnetic flux f is 1,
not 1/2 as in the normal superconductor loop, which is clearly
revealed in Fig. 6(b). The f = 1 periodicity is protected as long
as no fermion-parity breaking mechanism is introduced into
the system; if the parity breaking were present, the periodicity
would be reduced to 1/2.

Now we compute the corresponding supercurrent through
the loop by combining Eqs. (22), (23), and (26). The
supercurrent is obtained as [33]

I ≈ (2d†d − 1)
2e

�
EZ sin(δϕ − 2πf ). (31)

As a matter of fact, only the EZ term contributes to the
supercurrent: the EM term does not involve the transport of the
Cooper pair. The current also exhibits the f = 1 periodicity,
which is the fingerprint of the Majorana fermions. If one
introduces parity-breaking mechanisms into our system, the
f = 1 periodicity may fade away. While the finite gap in
the normal superconductor protects the fermion parity at
sufficiently low energies, the fermion parity in the topological
superconductor can be changed via Majorana fermions. For
example, the electron leakage from the TS region to a gapless
metal can lead to the coupling between |0〉 and |1〉 states,
resulting in the anticrossing between them and restoring f =
1/2 periodicity. However, one can still detect the existence

of the Majorana fermion by examining the response of the
supercurrent with respect to the variation of both δϕ and f .
In the following section, we will compare the supercurrents
due to the crossed and normal Andreev reflections and discuss
how to distinguish between them. One thing to be noted here
is that in the CAR process the role of the magnetic flux f is
shifting the current by 2πf without modulating the amplitude
of the current.

Finally, we would like to note that all the properties of the
subgap energy and the supercurrent are independent of the
length of the TS segment as long as it is sufficiently larger
than the size of the Majorana fermions. This is in contrast
to the high dependence of the EZ term on the relative length
between the NS segment length and the Cooper pair size. This
indicates that the Majorana fermion state in the TS region is
highly nonlocal. In other words, this LT independence reflects
that the correlation length and the size of the Cooper pair in the
TS are almost infinite as long as the coherence is preserved.

B. Short TS region (LN � λN1, LT ∼ λT1)

Now we consider the opposite case in which the TS segment
is short and the NS segment long: LT ∼ λT 1 and LN � λN1.
Interestingly, in this case the physics of the Majorana fermions
is completely different compared to the former case, as shown
in Figs. 6(d)–6(f). In this regime, we obtain the following
empirical expression for the subgap energy:

EA ≈ E0 + EC [cos δϕ + cos(4πf − δϕ)] . (32)

Figures 6(e) and 6(f) show that our exact and perturbative
results match well with each other. The simpler expressions
for the coefficients E0 and EC are at hand in the large-loop
limit and for LT /λT 1 � 1:

E0 ≈ ER

N0
[(ε1 + ε2)e−LT /λT 1 + (ε1 − ε2)e−LT /λT 2 ], (33a)

EC ≈
√

D

2μ̃NN0
E0. (33b)

See Eqs. (A13) and (A17) for the definition of ε1,2 and N0.
The overlap between the Majorana fermions through the

TS region gives rise to a finite constant level splitting, the
E0 term, which is independent of f and δϕ. Note that such
a constant term is missing in the former case where the
overlap happens in the NS region. This is attributed to the
topological difference between subgap states in TS and NS
regions: The pseudospin directions of the two subgap states
(ν = 1,2) in the TS region are parallel to each other (see Fig. 5).
Technically, the coefficients in Eqs. (A3) and (A4) in the TS
region do not depend on the phases f and δϕ. The constant
splitting E0 increases as the TS segment length decreases,
eventually reaching the band gap Egap at LT → 0. Because of
this constant splitting, no crossing between the subgap states
at the Fermi level takes place.

The phase-dependent term, the EC term, is identical to that
of a SQUID made of two normal Josephson junctions threaded
by a magnetic flux f , in which the phase differences in the two
junctions are δϕ and 4πf − δϕ, respectively. The EC term can
be directly inferred by substituting the superconducting phases
in Eq. (3) according to the same rule, Eq. (28), as used in the
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short-NS-segment case:

EC [cos(ϕL − ϕM) + cos(ϕM − ϕR)]

→ EC [cos δϕ + cos(4πf − δϕ)] .
(34)

This dependence on δϕ and f confirms our prediction
discussed in Sec. I that it is a Cooper pair that tunnels
through the NS-TS junctions if the Majorana fermions are
coupled via the NS region [see Fig. 2(b)]. The overlap between
Majorana fermions opens a channel at EA = 0. The Cooper
pair then circulates around the loop via the successive Andreev
reflection in each junction. Hence the periodicity of the subgap
energy EA with respect to the magnetic flux f is 1/2 as can be
seen in Fig. 6(e). Note that the Rashba phase does not affect
the EC term since it gives rise to a phase 4π × 1/2 = 2π .
Namely, the Rashba phase acquired by a Cooper pair is twice
larger than that by a single electron.

By using Eqs. (22), (23), and (32), the corresponding
supercurrent is obtained as [34]

I ≈ (1 − 2d†d)
2e

�
EC [sin δϕ + sin(δϕ − 4πf )]

= (1 − 2d†d)
4e

�
EC cos 2πf sin(δϕ − 2πf ).

(35)

The above expression clearly shows the f =1/2 periodicity.
By comparing Eq. (31) and (35), one can notice that while
in both CAR and NAR processes the magnetic flux f shifts
the current by 2πf , it also modulates clearly the amplitude
of the current in the NAR process with the weighting factor
cos 2πf . Hence, apart from the periodicity with respect to f ,
the modulation of the current can be used to distinguish the
CAR process due to the Majorana fermions from the ordinary
NAR process. Also, the current due to the NAR, proportional
to EC , is usually smaller than that from the CAR since the
Cooper pair tunneling, via the NAR, is a higher order process:
Note that the EM and EZ terms originate from a single electron
circulation around the loop.

C. Small loops (LN ∼ λN1, LT ∼ λT1)

Up to now, we have considered the cases in which the
loop is large enough that only one of CAR and NAR
processes is operative. However, if the loop is small or the
localization length of the Majorana fermion is comparable to
the circumference of the loop, both processes can coexist. The
general form of the subgap energy is then given by

EA ≈ E0 + EC [cos δϕ + cos(4πf − δϕ)]

+EM cos(2πf + γM ) + EZ cos(δϕ − 2πf + γZ).

(36)

In Fig. 8 we present the subgap energy in the case where
both LN and LT are comparable to the Majorana fermion size,
LN/λN1 ∼ LT /λT 1 ∼ 2. In this case we have obtained

E0

Egap
≈ 0.30,

EC

Egap
≈ −0.02,

EM

Egap
≈ 0.13,
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Egap
≈ 0.12, γM ≈ −0.23, γZ ≈ 0.

0 0.2 0.4 0.6 0.8 1
f

0.5

0

0.5

E A
E g
ap

(b)

0

1
0

0 0.2 0.4 0.6 0.8 1
f

(c)

1

0

(a)

FIG. 8. (Color online) (a) Subgap energy for the state |1〉 as a
function of δϕ and f for a loop with short NS and short TS segments:
LN/λN1 ≈ 1.84 and LT /λT 1 ≈ 1.81. (b) Subgap energies for states
|1〉 and |0〉 as functions of f at fixed values of δϕ. Here we have used
�̃ = 3, μ̃N = −2, μ̃T = 1.3, and Egap ≈ 25 μeV.

While the EC term is still small due to its nature of high-
order processes, the other terms are comparable. Since the
EC term is negligible, the supercurrent through the loop is
almost due to the CAR process. The most intriguing point
here is that the f = 1 periodicity is protected even if there
is fermion parity breaking such as coupling to gapless metal
or finite-temperature inelastic processes. Figure 8(b) and 8(c)
show that there is no crossing between |0〉 and |1〉 states. The
constant E0 term, larger than the other terms, makes a big
energy separation between |0〉 and |1〉 states so that they are
not coupled even if there is fermion parity breaking. This kind
of protection of f = 1 periodicity was also noticed in Ref. [25].
In our system, this protection not only guarantees observing the
f = 1 periodicity but also provides us with a way to observe
the perfect CAR process without other deterioration.

IV. POSSIBLE EXPERIMENT

In Sec. II and Fig. 3, we have assumed an idealistic setup of
a circular ring in close proximity to bulk superconductors with
external magnetic field perpendicular to the plane of the ring
and with locally tunable gates. In realistic experiments, the
setup can be modified without changing the essential, qual-
itative features of our findings concerning the topologically
nontrivial roles of the localized Majorana fermions. Here we
briefly discuss possible modifications.

First of all, the ring need not be a perfect circle as long as
the nanowire forms a closed loop. While some semiconducting
materials grow in a ring shape [29], there is no report of grow-
ing InSb or InAs nanowires in a ring. Experimental realization
may prefer, for example, a rectangular shape (see Fig. 9) with
straight semiconductor segments (instead of curved segments)
in favor of easier layering of nanowires and superconductors.
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FIG. 9. (Color online) A modified setup for more realistic ex-
perimental realization. The nanowire forms a rectangular loop with
straight segments (instead of curved ones). The uniform magnetic
field in plane, avoiding the shielding by the superconductors, has
everywhere a finite component locally perpendicular to the effective
Rashba field. The bulk superconductors cover only half of the
nanowire hence allowing us to tune locally the chemical potential
of the nanowire.

Second, usually the Meissner effect of the bulk super-
conductors makes it difficult to apply magnetic field on the
nanowire perpendicular to the plane. However, the recent
experiment [17] demonstrates that by letting the supercon-
ductor cover only half of the nanowire, it is possible to apply
magnetic field in any direction. Further, the magnetic field
can also be applied in-plane as long as it has everywhere a
finite component locally perpendicular to the effective Rashba
field (which is perpendicular to the nanowire and parallel to
the plane). One possible way is to apply a circularly rotating
magnetic field generated by an external current along a straight
line threading through the plane. When the nanowire has a
rectangular shape, it is sufficient to apply a uniform magnetic
field in the diagonal direction as depicted in Fig. 9.

Third, the electrical screening by bulk superconductors
makes it hard to tune locally the chemical potential of the
nanowire. This was overcome by again covering only half
of the nanowire with the superconductor in Ref. [17] and
by suspending the nanowire segment in question over the
conducting silicon substrate in Ref. [19].

Finally, in order to prove our claim that the rectangular
loop depicted in Fig. 9 exhibits qualitatively the same
transport features as the circular loop does, we have built up a
tight-binding model and numerically obtained the subgap state
energy for the rectangular loop under the in-plane Zeeman
field: refer the detailed description of the tight-binding model
to Appendix D. Figure 10 demonstrates that the dependence
of the subgap state energy on f and δϕ in two extreme cases—
short NS [Fig. 10(a)] and short TS cases [Fig. 10(b)]—for the
rectangular loop is qualitatively identical to that for the circular
loop under the out-of-plane Zeeman field [see Figs. 6(a) and
6(d)]: First of all, the periodicity on f is 1 and 1/2 for the
short NS and short TS cases, respectively, identical to the
circular loop, which proves the appearance of the anomalous
CAR in the short NS case. A finite constant level splitting is
also observed in the short TS case. Small deformations of the
curves, which are not essential, are attributed to the partial
reflection of the propagating modes at the sharp corners and
the resultant modification of interference between the modes.
The only nontrivial difference between the effects by the

FIG. 10. (Color online) Subgap energy for the state |1〉 as a
function of δϕ and f , obtained from the tight-binding model (see
Appendix D) for the setup depicted in Fig. 9. Panels (a) and (b)
correspond to a loop with short NS and long TS segments (NN = 20
and NT = 180) and a loop with long NS and short TS segments
(NN = 90 and NT = 10), respectively. Here we have used t = 1,
tR = 0.1, μN = 0.05, μT = 0, VZ = 0.08, and � = 0.03. Refer the
definition of tight-binding model parameters to Appendix D.

out-of-plane and in-plane Zeeman splittings is that the sign
of EC is negative in the former case while it is positive in
the latter case: Compare Fig. 6(d) and Fig. 10(b). The sign
change is attributed to the additional spin rotation by the
in-plane Zeeman splitting: Note that an electron, as it goes
around the loop, feels the effective rotation of the in-plane
Zeeman field, which adds an additional phase π to δϕ in
the short TS case. This additional phase does not appear in
the anomalous CAR since the two electrons rotate in the
opposite directions so that the phase by the spin rotation is
canceled out.

V. CONCLUSION

We have considered a system of TS-NS double junctions in
loop geometry to investigate its supercurrent characteristics
associated with the underlying topological properties and
Majorana subgap states localized at the junctions. The system
allows us to study on an equal footing TS-NS-TS and NS-
TS-NS double junctions, which turn out to have topologically
distinct supercurrent characteristics. In this setup, the relative
phases across the junctions are controlled by the Aharonov-
Bohm phase from the threading magnetic flux as well as the
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phase difference between bulk the superconductors that induce
the p-wave superconductivity in the nanowire.

We have found that TS-NS-TS and NS-TS-NS double junc-
tions, seemingly counterparts of each other, have substantially
different supercurrent characteristics due to the topological
properties of their subgap states. In our ring geometry con-
taining both types of double junction, the supercurrent char-
acteristics depend strongly on the ratios of the wire segment
lengths and the localization lengths of the Majorana states. For
short (compared with the localization lengths of the Majorana
states) NS and long TS segment (Sec. III A), the supercur-
rent originates solely from the crossed Andreev reflection,
exhibiting an unusual dependence on the magnetic flux. For
short TS and long NS segment (Sec. III B), on the contrary, the
normal Andreev reflection (NAR) determines the supercurrent,
whose sign can be oscillatory with the TS segment length.
The difference in the supercurrent features of the two extreme
cases is explained in terms of topological properties in the
subgap states (Sec. II C). The representative characteristics in
the above two extreme cases compete with each other and
show rich effects, which we study by varying the lengths of
NS and TS segment (Sec. III C). Finally, the anomalous CAR
effect is found to manifest itself in (i) f = 1 periodicity of
the supercurrent and (ii) the immunity of the supercurrent
amplitude to the magnetic flux f . The f = 1 periodicity can
be robust against, if any, the fermion-parity breaking processes
as long as the loop is small enough that the Majorana fermions
are coupled through both the NS and TS segments.
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APPENDIX A: PERTURBATIVE APPROACH

In order to obtain an analytical expression for the subgap
energy EA as a function of δϕ and f , we take a perturbative
approach, performing a similar calculation used in Refs. [23]
and [25]. First we neglect the interaction between two
Majorana states, each of which is localized at the interface,
through the TS and NS regions. In our ring geometry, it is
done by applying the boundary conditions only at one of
the boundaries; see Eq. (20). Suppose that �a(x) and �b(x)
are the unperturbed Majorana wave functions localized at
x = xa and x = b, respectively. Then, �b(x) is the zero-energy
eigenstate of the Hamiltonian, Eq. (11) in the region 0 < x <

L including the boundary x = xb, but not x = xa . Therefore,
�b(x) satisfies the boundary condition at x = b only. Similarly,
�a(x) is defined in the region LN < x < L + LN and satisfies
the boundary conditions at x = xa only. The wave functions
are then given by linear combinations of the zero-energy
eigenstates in Eq. (17), whose coefficients are determined via
the boundary conditions, Eq. (20). Explicitly, the normalized
wave functions for �i(x) (i = a,b) are

�i(x) =
{
�iN (x), xa < x < xb,

�iT (x), xb < x < L,
(A1)

with

�aN (x) =
∑

ν

caNν√
Na

χN
+,ν(x), (A2a)

�aT (x) =
∑

ν

caT ν√
Na

e(iνkr−1/λNν )LχT
−,ν(x), (A2b)

�bN (x) =
∑

ν

cbNν√
Nb

e−LN /λNν χN
−,ν(x), (A2c)

�bT (x) =
∑

ν

cbT ν√
Nb

e−(iνkr−1/λNν )LN χT
+,ν(x). (A2d)

Note here that the additional exponential factors have been
inserted to make the coefficients of order 1 at the localization
center. The coefficients are

caN1 = sin[γ − 2π (f + 1/2) + δϕ/2]

sin γ
, (A3a)

caN2 = eiγ sin[2π (f + 1/2) − δϕ/2]

sin γ
, (A3b)

caT 1 = 1

2

(
1 +

√
D − μ̃N

D − μ̃T

)
, (A3c)

caT 2 = 1

2

(
1 −

√
D − μ̃N

D − μ̃T

)
, (A3d)

and

cbN1 = sin(γ − δϕ/2)

sin γ
, (A4a)

cbN2 = e−iγ sin(δϕ/2)

sin γ
, (A4b)

cbT 1 = 1

2

(
1 +

√
D − μ̃N

D − μ̃T

)
, (A4c)

cbT 2 = 1

2

(
1 −

√
D − μ̃N

D − μ̃T

)
. (A4d)

The normalization constants are given by

Ni = 1

R

∑
ν

[
|ciNν |2
λ−1

Nν

+ 2 cos γ
|ciNνciNν̄ |
λ−1

N1 + λ−1
N2

+ |ciT ν |2
λ−1

T ν

+ 2c∗
iT νciT ν̄

2(−1)νikr + λ−1
T 1 + λ−1

T 2

]
. (A5)

Here the normalization constants are obtained up to the leading
order in the small factor e−L/λ�ν , which is consistent with our
perturbation. Note that the Rashba phase appears explicitly in
the coefficients caNν in the form of f + 1/2, as discussed in
Sec. II B.

The effective Hamiltonian projected to the Majorana
subspace is then represented as

HM =
[〈�a|H BdG

eff |�a〉 〈�a|H BdG
eff |�b〉

〈�b|H BdG
eff |�a〉 〈�b|H BdG

eff |�b〉

]
. (A6)
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Since �i(x) are not the eigenstates of the full Hamiltonian
H BdG

eff , the diagonal terms does not vanish. However, we ignore
them since they are proportional to the square of the expo-
nential factor e−L/λ�ν and much smaller than the off-diagonal
terms. The formal expression for the off-diagonal terms are

HM,ab = i{�†
a(xa)[vφ�b(x−

a ) − vφ�b(x+
a )]

+ [vφ�a(xa)]†[�b(x−
a ) − �b(x+

a )]}, (A7a)

HM,ba = −i{�†
b(xb)[vφ�a(x+

b ) − vφ�a(x−
b )]

+ [vφ�b(xb)]†[�a(x+
b ) − �a(x−

b )]}. (A7b)

Since �a(x) and �b(x) are not orthogonal to each other, the
effective Hamiltonian is not necessarily Hermitian, HM,ab =
H ∗

M,ba . The subgap energy is then obtained as

EA = ±√
HM,abHM,ba. (A8)

Explicit and tedious calculations lead to

HM,ab = +iER

e−iγ

√
NaNb

∑
�ν

e−L�/λ�ν h−
�ν, (A9a)

HM,ba = −iER

e+iγ

√
NaNb

∑
�ν

e−L�/λ�ν h+
�ν, (A9b)

with

h±
Nν = (−1)νε1

sin γ
[cos(2πf +γ ′−ζν) − cos(δϕ−2πf ±γ ′)]

(A10)
with ζ1 = 2γ and ζ2 = 0 and

h±
T ν = ε1 sin(γ − γ ′) − (−1)ν(ε2 sin γ − ε3 cos γ ) (A11)

for 0 < μ̃T < D and∑
ν

h±
T ν = 2ε1 sin(γ − γ ′) cos krLT

+ 2 (ε2 sin γ − ε3 cos γ ) sin krLT (A12)

for D < μ̃T . Here we have defined

ε1 ≡
√

�̃2 − 4μ̃N , (A13a)

ε2 ≡ 2D − μ̃N − μ̃T√|D − μ̃T | , (A13b)

ε3 ≡
√

D − μ̃N√|D − μ̃T | , (A13c)

and

cos γ ′ ≡
√

1 − 1/ε2
1 , sin γ ′ ≡ 1/ε1. (A14)

In the large-curvature limit (R → ∞) where γ → π/2 and
γ ′ → 0, the coefficients are simplified to

h±
Nν = ε1[cos 2πf − (−1)ν cos(δϕ − 2πf )], (A15a)

h±
T ν = ε1 − (−1)νε2 (μ̃T < D), (A15b)∑

ν

h±
T ν = 2ε1 cos krLT + 2ε2 sin krLT (μ̃T > D),

(A15c)

and

Na = N0 +
√

D

−μ̃N

cos(4πf − δϕ), (A16a)

Nb = N0 +
√

D

−μ̃N

cos δϕ, (A16b)

with

N0 ≡
√

D − μ̃N

−μ̃N

+
√

D + √
D − μ̃N

μ̃T

+ μ̃T − μ̃N

2μ̃T

√
D

, (A17)

where N0 is the value of the normalization constants Na,b

averaged over the phases.

APPENDIX B: FINITE-CURVATURE EFFECT
ON PHASE SHIFTS

In our main calculation, we have used the ring geometry
for simplicity. Due to the finite curvature of the ring, the
clockwise and counterclockwise movers experience opposite
spin rotation along the z direction, introducing asymmetry
between them. The asymmetry enters into the subgap energy,
Eq. (26), in terms of the phase shifts, γM and γZ , in the EM

and EZ terms, respectively.
Our numerical calculations find that the phase γZ is found

to be almost zero, irrespective of the segment length, as can
be seen in Fig. 11. This implies that the curvature of the loop
does not affect the transport due to the CAR process.

In contrast, the phase γM is finite; see Fig. 11. In the case of
LN > λN1 and LT > λT 1, where the perturbation is valid, the
phase is given by π − 2γ which is the phase shift for the ν = 1
mode for γ ′ ≈ 0 [see Eq. (A10)]. For LN < λN1, both ν = 1,2
modes are contributing so that the phase γM becomes length
dependent. The phase γM becomes negligible only when the
size of the loop is sufficiently large: in this case �̃ � 1 and
γ ≈ π/2 [see Eq. (19)]. The phase shift γM comes from the
finite curvature of the ring and the resultant phase shift of the

λ

γ

λ

γ

γ

FIG. 11. (Color online) The phase shifts γM and γZ as functions
of LN or LT = L − LN with L = LN + LT fixed. The same values
of parameters as in Fig. 7 are used. The dotted line refers to the
perturbative result, π − 2γ .
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Majorana states. Our results show that this phase appears only
in the EM term, not in the EZ term and, more importantly, not
in EC term, either. Hence, the existence of the finite phase shift
γM can be used for the evidence of the Majorana fermions as
well.

APPENDIX C: OSCILLATORY BEHAVIOR IN SUBGAP
ENERGY COEFFICIENTS E0 AND EC IN DEEP

TOPOLOGICAL PHASE

In the main text, we have focused on the μ̃T < D case such
that the zero-energy solutions kT

ημ of Eq. (12) in the TS region
are purely imaginary. However, when the TS region is in the
deep topological phase (μ̃T > D), the wave vectors kT

ημ have
real parts:

kT
ην = η[(−1)νkr + i/λT ν] (C1)

with the real and imaginary parts are given by

kr =
√

μ̃T − D

R
, λT ν = R√

D
. (C2)

The finite real part adds the oscillatory nature to the Majorana
wave function in the TS region. Hence, it can become effective
if the overlap between Majorana states in the TS region is
nontrivial. So, we consider the case in which the TS segment
is short and the NS segment long as in Sec. III B. The empirical
expression for the subgap energy is the same as Eq. (32) except
that the coefficients are now approximated by

E0 ≈ ER

N0
2e−LT /λT 1 (ε1 cos krLT + ε2 sin krLT ) , (C3a)

EC ≈
√

D

2μ̃NN0
E0. (C3b)

While the E0 and EC terms [see Eqs. (33a) and (33b)]
in the weak topological phase (μ̃T < D) are monotonically
decreasing with increasing LT , the coefficients in the deep
topological phase are, apart from the exponentially decreasing
envelop part, oscillatory with krLT . This is surely owing to the
oscillatory behavior of the Majorana wave function in the deep
topological phase due to the finite real part of the wave vectors,
kr [see Eq. (C2)]. Figure 12 demonstrates the sign-changing
oscillatory behavior of the coefficients E0 and EC . In the deep
topological regime (marked by A and B), E0 and EC exhibit
oscillations whose period is identified by 2π/kr as expected
from the sinusoidal dependence in Eq. (C3a). In the weak
topological regime (marked by C), no oscillation is observed
and the monotonic dependence of the coefficients E0 and EC

on LT is observed. Note that the sign of the supercurrent can
be controlled not only by tuning the TS segment length LT but
also by changing the period 2π/kr . The latter control can be
done by tuning the chemical potential μ̃T [see Eq. (C2)]. This
oscillatory feature is peculiar in that it cannot be observed in
the usual normal superconductor SQUID hosting no Majorana
fermions. Majorana-based SQUID then provides an electronic
way to change the sign of the supercurrent.

Λ

Λ

FIG. 12. (Color online) The coefficients E0 and EC (inset) as
functions of LN or LT = L − LN with L = LN + LT fixed. The
parameters used are �̃ = 3, μ̃N = −5, and μ̃T = 10 (deeper topo-
logical phase) [marked by A], 5 (deep topological phase) [marked
by B], and 2.5 (weak topological phase) [marked by C]. The arrows
indicate the oscillation periods, 2π/kr for the cases A and B.

APPENDIX D: TIGHT-BINDING MODEL FOR
RECTANGULAR LOOP

In Sec. IV, we have introduced a more realistic experimental
realization which forms a rectangular loop as seen in Fig. 9.
The continuous model used in Sec. II for the ring-shaped loop
is rather inadequate for the rectangular loop due to the difficulty
to treat its sharp corners properly. This is the reason why we
have chosen the idealistic circular loop for our main target: the
simple wave-function-matching method is applicable and the
(perturbative) analytical expression is at hands. For the study
of the rectangular loop, instead, we use a numerical method
based on a tight-binding model; see Fig. 13. Following the
standard procedure to build up a tight-binding model [30], the

B
ΜNΜT NNNT

(a)

a1

a2

b1

b2

B
ΜTΜN NTNN

(b)

FIG. 13. (Color online) Illustration of a tight-binding model for
the cases of (a) short NS and long TS segments and (b) long NS
and short TS segments. Each segment consists of NN (NS, blue)
and NT (TS, red) sites and is under the chemical potential μN and
μT . Uniform in-plane magnetic field B is applied in the direction
indicated by the arrow in order to induce p-wave superconductivity.
Small perpendicular magnetic field, which is smaller than the critical
field for superconductor, gives rise to the magnetic flux � = f �0

enclosed by the loop.
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Schrödinger equation is given by

E�i =
∑

j

Hij�j , (D1)

where

�i =

⎡
⎢⎣

ui↑
ui↓
vi↓
vi↑

⎤
⎥⎦ (D2)

is the wave function at site i in the Nambu space. The
Hamiltonian element in the absence of the magnetic flux
(f = 0) and the superconducting phase difference (δϕ = 0)
is obtained as

Hij = δi,j

[
(2t − μi)τz + VZ

2

σx + σy√
2

τz − �τxσz

]
+ δi+1,j [−tτz − itRσ · uij ] + δi−1.j [−tτz + itRσ · uij ].

(D3)

Here τx,y,z are the Pauli matrices in the Nambu space, t

the hopping amplitude, μi the position-dependent chemical
potential, VZ the Zeeman splitting due to the in-plane magnetic

field, � the superconducting gap, tR the Rashba spin-orbit
coupling strength, and uij the unit vector parallel to the Rashba
field at the link connecting sites i and j . As shown in Fig. 13,
the numbers of the sites of NS and TS segments are NN and
NT , respectively. Two segments are distinguished by imposing
different chemical potentials, μN and μT , respectively. In the
presence of the magnetic flux and the phase difference, the off-
diagonal elements Hi =j acquire additional phases. Applying
a proper gauge transformation, one can make the finite phases
appear only at the junctions between two segments:

Hij = e−iτzαj,i Hij (f = 0,δϕ = 0) (D4)

with

αj,i = −αi,j =

⎧⎪⎨
⎪⎩

δϕ

2 , (i,j ) = (a1,a2),

2πf − δϕ

2 , (i,j ) = (b1,b2),
0, otherwise.

(D5)

See Fig. 13(a) for the location of sites a1,2 and b1,2. Numerical
diagonalization of the Schrödinger equation, Eq. (D1), directly
gives rise to the energy of the subgap states localized at the
junctions.
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