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We investigate ballistic spin transport through a two-dimensional mesoscopic metal/semiconductor/metal
double junction in the presence of spin-orbit interactions. It is shown that finite transverse and/or longitudinal
spin currents can flow in the presence of the Rashba and Dresselhaus terms.
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I. INTRODUCTION

Since the advent of “spintronics” to utilize an electron’s
spin, rather than its charge, for information processing and
storage,1 there has been growing interest in generating spin
currents.2–14 Though injecting spin-polarized carriers electri-
cally still remains a challenge,2 there have been proposed
various all-semiconductor devices based on ferromagnetic
semiconductors3 or spin-orbitsSOd interactions.4 In particu-
lar, the latter enables us to manipulate the spin by controlling
the orbital motion of electric carriers, say, by applying an
electric field. Moreover, it has been suggested that the SO
coupling gives rise to dissipationless spin currents perpen-
dicular to the external electric field, which is known as the
intrinsic-spin Hall effect.4–7

Theoretically, the existence of the spin Hall current has
been highly controversial. Sinovaet al.5 predicted a finite-
spin Hall current and universal-spin Hall conductivity in a
clean, infinite two-dimensional electron systems2DESd.6
Different groups have provided mutually contradicting argu-
ments on the effect of impurity scattering in an infinite
2DES.7,8 Recently, it was claimed that vanishing bulk-spin
conductivity is an intrinsic property of clean 2DES.9 The
spin Hall effect inssemidfinite-size systems was also studied:
It was argued that a finite-spin Hall current flows in the vi-
cinity of the contacts, while the spin current vanishes in an
infinite system.10 Numerical studies have also reported finite-
spin conductances in four-terminal samples.11 Another im-
portant issue has been raised regarding how the predicted
nonequilibrium-spin current is related tosor is distinguished
fromd the background-spin current, which exists even in
equilibrium.12,13

A recent experiment14 reports a finite-spin accumulation,
possibly due to the spin current, in the very clean samples. It
implies that the spin current, while it may vanish in the bulk
limit, can be nonzero in finite or semifinite systems.

In this paper we study ballistic spin transport through
a clean, mesoscopicdouble-junction system consisting
of a semiconductor stripe sandwiched by two normal-metal
leads ssee Fig. 1d. We use coherent scattering theory
and show that in the presence of SO couplings, both
longitudinal and transverse spin currents can flow in a
semiconductor.

II. MODEL AND SCATTERING THEORY

We consider a two-dimensional electron system of a semi-
conductor sSd between two normalsNd-metal leads. We

choose such a coordinate system that thex axis sy axisd is
perpendicularsparalleld to the N/S interfaces, and thez axis
is perpendicular to the two-dimensionals2Dd planesFig. 1d.
The lengthswidthd of the semiconductor isLsWd; we will
consider the limit W→`. Within the effective-mass
approximation,15 the Hamiltonian reads as

H = −
"2

2
= ·

1

msxd
= + Vsx,yd + HRsxd + HDsxd. s1d

The position-dependent effective massmsxd has values
of me andme

* ;emme in the normal metals and in the semi-
conductors−L /2,x,L /2d, respectively. The confinement
potential has a potential barrier of heightV0 inside the
semiconductor,

Vsx,yd = V0fQsx + L/2d − Qsx − L/2dg + Vsyd, s2d

whereQsxd is the Heaviside step function andVsyd accounts
for the finite width W. The potential barrier heightV0 is
lower than the Fermi energyEF in the normal metals, so that
EF

* ;EF−V0.0. The Rashba16 and Dresselhaus17 SO cou-
pling terms are given by

HR =
a

"
ssxpy − sypxd and HD =

b

"
ssypy − sxpxd, s3d

respectively, inside the semiconductors, while they vanish in
the normal-metal sides. In Eq.s3d, s=ssx,sy,szd are the
Pauli matrices.

The Rashba termHR arises when the confining potential
of the quantum well lacks inversion symmetry, while
the Dresselhaus termHD is due to the bulk-inversion

FIG. 1. A schematic of the system.
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asymmetry. In some semiconductor heterostructures
se.g., InAs quantum wellsd HR dominates,18 and in others
se.g., GaAsd HD is comparable toHR.19 The coupling
constants may range arounda,0.1 eV Å and
b,0.09 eV Å, respectively.

Inside the semiconductor, the electrons feel a fictitious,
in-plane magnetic field in the directionn̂k = x̂ coswk
+ ŷ sinwk, wherewk =argfsbkx−akyd+ isakx−bkydg. Accord-
ingly, the eigenstates with spins parallelsm= +d and antipar-
allel sm=−d to n̂k for a given wave vectork =ksx̂ cosf
+ ŷ sinfd are written in the spinor form,

Ck
msr d =

eik·r

Î2
Fme−iwk/2

e+iwk/2 G . s4d

The eigenenergies areEmskd=s"2/2me
*dfk2−2mksosfdkg,

whereksosfd;sme
* /"2dÎa2+b2−2ab sin 2f. From the con-

tinuity equation for the charge density, one can get the ex-
pression for the charge-current density associated with a
given wave functionCsr d,20

j c = eRefC†sr dvCsr dg, s5d

wherev is the velocity operator defined by

v =
p

me
* −

a

"
ssyx̂ − sxŷd −

b

"
ssxx̂ − syŷd. s6d

In the same manner, we define the spin-current density,13

j ssn̂d =
"

2
C†sr d

vsn̂ · sd + sn̂ · sdv
2

Csr d, s7d

according to the continuity equation,

]tQs + = · j s = Ss, s8d

for the spin densityswith respect to the spin directionn̂d,

Qssn̂d ;
"

2
fC†sr dsn̂ · sdCsr dg, s9d

and the spin source,

Sssn̂d =
"

2
ReFC†sr d

i

"
fH,n̂ · sgCsr dG . s10d

The spin-source term arises in Eq.s8d because the spin-orbit
couplings break the spin conservation.

Before going further, it will be useful to understand the
origin of the spin current in physical terms. As illustrated in
Fig. 2, for a ,bÞ0 the Fermi contours,

kF
msfd = mksosfd + Îkso

2 sfd + kF
*2 , s11d

with kF
* ;Î2m*EF

* /", are no longer isotropic,26 and the group
velocitiesvmskd=Ck

m†vCk
m of the eigenstates in Eq.s4d are

not parallel to the wave vectork.20–22Nevertheless, Eq.s11d
reveals an important symmetry property of the group veloci-
ties, uv+skF

+du= uv−skF
−du. It means that the two eigenstates with

opposite spin orientations make the same contributions to the

charge transport along thek̂ direction sand opposite contri-
butions along the perpendicular directiond. The spin transport
with n̂= n̂k̂ is to the contrary: two eigenstates contribute the

opposite ssamed spin currents alongsperpendicular tod k̂.
This implies that the net-spin current is perpendicular to the
charge current. Particularly interesting are the cases of
a= ±b, where all the spin orientations ±n̂k for the different
wave vectors are parallel or antiparallel to each other
swk =p /4d fsee Fig. 2sbdg. It results from the conservation of
ssx±syd /Î2, and the spin state becomes independent of the
wave vector.22,23

Now we study charge and spin transport in N/S/N junc-
tions. A coherent scattering theory at the N/S interfaces was
already developed in the previous studies,20,21 considering
the Rashba SO effect and appropriate boundary conditions. It
is straightforward to extend the scattering theory to incorpo-
rate the Dresselhaus effect. We use the transfer-matrix for-
malism to calculate the conductance through the semicon-
ductor ssee Refs. 20 and 24d.

We consider the electrons incident from the left lead. The
wave vector of the incident electron is at angleu with the
normal to the interfacessee Fig. 1d. Contrary to the Rashba
effect, the Dresselhaus effect is not invariant under rotations,
causing anisotropic transport.22 Hence the relative orienta-
tion, j, of the crystal symmetry axes and the interfacesFig.
1d strongly affects the spin current. Below we will calculate
the charge conductanceGn

scdsud; In
scdsud /V sn=x,yd in the n

direction for a definite incident angleu as well as the angle-
averaged quantityGn

scd=e−p/2
p/2 duGn

scdsud, whereV is the volt-
age difference between two contacts andIn

scd is the corre-
sponding charge-current density in Eq.s5d. Also calculated
are the analogously defined spin conductancesGn

ss,n̂dsud and
Gn

ss,n̂d, polarized in the directionn̂.27

The typical values for the parameters used below are
EF=4.2 eV, em=0.063, b=0.1 eV Å, L=200 nm, and
W=1 mm. a ranges from −2b to +2b, andEF

* ranges from
0 to 20 meV. We assume sufficiently low temperatures
skBT!EF

* d.

FIG. 2. sColor onlined Relative configurations of group
velocities and spin quantization axes on Fermi contours forsad
2a=b=0.25"vF

* andsbd a=b=0.25"vF
* with vF

* ="kF
* /m* . Legend:

thin solid-dashed curve: Fermi contour form=±; thick solid-dashed
tall sblued arrows: group velocities form=±; thick solid-dashed
short sredd arrows: spin quantization axes form=±. The configura-
tion is symmetric under inversion.
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III. NORMAL INCIDENCE

Owing to the symmetryuv+skF
+du= uv−skF

−du fsee the discus-
sion below Eq.s10dg for normal incidencesu=0d, the charge
current is purely longitudinal; i.e.,Gy

scdsu=0d=0. For a single
transverse mode, we obtain the longitudinal charge conduc-
tance,

Gx
scdsu = 0d =

e2

h

32k2

us1 + kd2 − s1 − kd2e2iDkLu2
, s12d

where Dk;Îkso
2 s−jd+kF

*2, k;Dk/emkF, and
kF;Î2meEF /". On the other hand, the spin current has
only a transverse component and is polarized entirely in the
xy plane; i.e.,Gx

ss,n̂dsu=0d=0 for any n̂ and Gy
ss,ẑdsu=0d=0.

The n̂x̂-polarized spin conductanceGy
ss,n̂x̂dsu=0d is given by

Gy
ss,n̂x̂dsu = 0d =

e

4p

L

W

32sme
*2/"4dab cos 2j

emkFksos− jd

3

s1 + k2d − s1 − k2d
sin 2DkL

2DkL

us1 + kd2 − s1 − kd2e2iDkLu2
. s13d

Gx
scdsu=0d andGy

ss,n̂x̂dsu=0d are plotted in Fig. 3 as functions
of EF

* anda /b for different crystal orientationsj. The peaks
in Gx

scdsu=0d andGy
ss,n̂x̂dsu=0d as a function ofEF

* come from
the Fabry-Perot interference, which gives rise to resonances
for DkL=np sn=0,1,2, . . .d. Unlike the slongitudinald
charge current, the spin current is very sensitive toa, b, and

j, as seen from the factorab cos 2j in Eq. s13d. Note that
Gy

ss,n̂x̂d has no contribution from background-spin currents;
within our scattering formalism, we count only the contribu-
tions from electrons between the two Fermi levels of the two
metal leads.13

IV. ANGLE-AVERAGED CONDUCTANCES

For true one-dimensionals1Dd leads skFW!1d, where
only a single transverse mode is allowed, one has only to
consider normal incidencesu=0d or at a certain fixedu.25 In
the opposite limitskFW→`d, where many transverse modes
contribute to the transport, we should add up all the contri-
butions fromu in the ranges−p /2 ,p /2d. It is tedious to find
the scattering states for nonzero incidence angleu and more
convenient to work numerically.

Apparently, the main contribution to the longitudinal
charge current comes from the normal incidence. Conse-
quently, as shown in Fig. 4, theu-averaged longitudinal con-
ductanceGx

scd is rather similar to the normal incidence case
Gx

scdsu=0d.
This is not the case for the spin transport. Figure 5 shows

the u dependence of the spin conductances polarized in the
n̂x̂ and ẑ, respectively. Again, the peaks correspond to the
Fabry-Perot-type resonances. When summing up, the contri-
butions to then̂x̂-polarized spin current from different angles
are mostly canceled with each other, and hence the angle-
averaged spin conductanceGy

ss,n̂x̂d becomes small compared
with the charge conductanceGx

scd. On the other hand, the
ẑ-polarized spin current is not subject to such cancellations,
and remains relatively largesstill smaller than the longitudi-
nal charge currentd especially forj=0 fsee Fig. 6sadg. This is
reminiscent of the intrinsic-spin Hall effect.6 However, in our

FIG. 3. sColor onlined The charge conductanceGx
scdsu=0d fsad

andsbdg and the spin conductanceGy
ss,n̂x̂dsu=0d fscd andsddg for the

normal incidence as functions ofEF
* fsad andscdg anda /b fsbd and

sddg. In sad three curves overlap almost completely.

FIG. 4. sColor onlined Angle-averaged charge conductanceGx
scd

as a function ofsad EF
* and sbd a /b with j=0.

FIG. 5. Angle dependences of the spin conductancesGy
ss,n̂x̂dsud

andGy
ss,ẑdsud for EF

* =14 meV,a /b=0.5, andj=0.

FIG. 6. sColor onlined sad Transverse spin conductanceGy
ss,ẑd as

a function ofa /b. sbd Spatial dependence of the spin current den-
sity Iy

ss,ẑd with a=0.1 eV Å andb=0.
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caseGy
ss,ẑd depends ona, b, j, the potential barrier, and the

channel length, showing no universal characteristics; for in-
stance,Gy

ss,ẑd increases almost monotonically withEF
* . Our

result is different from that of Mishchenkoet al.10 as well:
The spin current is finite through the semiconductor region
and oscillates with position, even alternating its signfFig.
6sbdg. This feature is due to contributions from the coherent
standing waves. In the presence of impurity scattering the
coherent oscillation inside the sample should die away and
the spin current will be manifested only near the contacts.10

Finally we remark that in the presence of both SO couplings
the angle-averaged longitudinal spin conductanceGx

ss,n̂d is
finite, even if much smaller thanGx

scd. It reflects that spin is
not conserved for an oblique incidence, because the spin-
quantization directions are not consistent with the boundary
conditions.

V. CONCLUSION

Ballistic spin currents with different spin polarizations
through mesoscopic metal/2DES/metal junctions have been
investigated in the presence of spin-orbit interactions. Using
the coherent scattering theory we showed that longitudinal
and/or transverse spin currents can flow through a clean
2DES. The spin coherence can induce spin current and po-
larization, with properties that are different from the ones in
the diffusive limit.
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