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 This state yields the violation of 

local realism 
Contradiction to macroscopic 

realism? 



I. Introduction to Entanglement 



Local Realism 

• Reality 

– All objects must objectively have a pre-existing value 

for any possible measurement before the 

measurement is made. 

• Locality 

– If the objects A and B are space-like separated, any 

external influence on A cannot directly influence the 

object B. 

• Introduces local hidden-variable theory, which is 

rejected by the Bell inequality test. 



Locality hierarchy 

Local realistic 

Non-steerable 

Seperable 



Why entanglement is important? 

• Resources for quantum information processing 

– Quantum computation, quantum teleportation, 

quantum cryptography, … 

• Explains why the classical models fail in many-

body physics. 

– Mean field theory, spin frustration, … 

• Can be used to detect special behaviors of 

many-body systems. 

– Quantum phase transitions, non-equilibrium phases, 

topological order, … 

 



Cluster state quantum computation* 

• Cluster State 

 

 

• Projection measure on one qubit is equivalent to 

applying unitary gate to the next qubit. 

*: H. J. Breigel and R. Raussendorf, Phys. Rev. Lett. 56, 910 (2001); 
   M. A. Neilson, Rep. Math. Phys. 57, 147 (2006) 



Entanglement and many-body systems 

Make entangled states using 
many-body systems 

Using entanglement to study 
many-body physics 

Circuit QED 

Optical lattice 

Quantum Phase Transition 

Matrix Product states 

Topological Entanglement Entropy 



Bipartite Entanglement 

• How to measure the size of entanglement? 

 

 

 

 

 

 

 

• It is difficult to make appropriate measure for 
general mixed states. 

• And even more unclear for multipartite case. 

 



Entanglement Area Law 

• Consider the infinite system with local interacting 

Hamiltonian 𝐻. 

– Ex. transverse Ising mode: 𝐻 = ∑𝜎𝑥
𝑖 𝜎𝑥

𝑖+1 + 𝐽∑𝜎𝑧
𝑖 

• For the ground state 𝜓 , the entanglement 

entropy of the subsystem of block of area 𝐴: 

A 



Matrix Product States 

• From the entanglement area law, entanglement 
entropy of any block in 1D is bounded by a 
constant (non-critical). 

• Efficient description of quantum states can be 
possible. 

 

 

 

 

• The bond dimension 𝐷 is related to the 
entanglement entropy. 

 

 

2𝑁 parameters 

𝐷𝑁 parameters 

𝐴 is matrices smaller than 𝐷 × 𝐷 



Multipartite Entanglement 

• A widely accepted measure does not exist. 

• Geometric Entanglement 

 

 

• The properties are not much known. 

• Large geometric entanglement means it is hard 

to use for measurement based quantum 

computation.* 
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*Phys. Rev. Lett. 102, 190502 (2009). 



II. Macroscopic Quantumness 



Macroscopic Realism* 

• Two postulates 

– Macrorealism per se: "A macroscopic object, which 

has available to it two or more macroscopically 

distinct states, is at any given time in a definite one of 

those states.“ 

– Noninvasive measurability: "It is possible in principle 

to determine which of these states the system is in 

without any effect on the state itself, or on the 

subsequent system dynamics." 

*: A. J. Leggett and A. Garg, PRL 54 857 (1985). 



Leggett-Garg inequality 

• For successive times 𝑡1 < 𝑡2 < 𝑡3, 

𝐾 = 𝐶12 + 𝐶23 − 𝐶13 ≤ 1. 

• 𝐶𝑖𝑗 is the temporal correlation function for 𝑡𝑖 and 𝑡𝑗. 

• The inequality is always violated in microscopic scale. 

• Ex:  

– Qubit rotating with 𝑥 axis: 𝐻 =
1

2
Ω𝜎𝑥. 

– We measure 𝜎𝑧, the violation can be seen. 

– The initial state does not matter. 

 

*: Rep. Prog. Phys. 77, 016001 (2014) 



Coarse grained measurement* 

• If we can resolve the all eigenvalues of the 

projection measurement, the violation of Leggett-

Garg inequality is general. 

• Why we cannot see the violation of macroscopic 

realism in everyday life? 

• Classical measurement 

– The eigenvalues of the measurement operator have 

direct physical meaning. 

– Cannot distinguish the neighboring eigenvalues. 

 

 

 

 

*: J. Kofler and C. Brukner, PRL 99 180403 (2007). 



Coarse grained measurement (cont.) 

• Suppose we measure 𝐽𝑧 of spin-𝑗 system. 

 

 

 

 

 

 

 

• For large 𝑗 system, we cannot identify each 

eigenvalue. 

J=2 J=25 

-2 2 -25 25 



Coarse grained measurement (cont.) 

• The spin coherent state in 𝑧 direction 

 

• If we measure the state in 𝑥 direction, the distribution of 

measurement outcomes is a Gaussian shape in 𝑗 ≫ 1. 

 

 

 

 

• The dispersion of the measurement outcomes is 𝜎~ 𝑗. 

• If the resolution of our measurement operator is  

    Δ𝑚 ≫ 𝑗, the outcomes can be treated as a single value. 

𝑗 −𝑗 



Coarse grained measurement (cont.) 

• Any pure state 𝜎~ 𝑗  give a single measurement 

outcome and is not disturbed by the coarse-grained 

measurement. 

 

• If a pure quantum state give 𝜎~𝑗 , the state can be 

considered as a superposition between macroscopically 

distinct states (in terms of eigenstate of 𝐽𝑧). 

 

• Macroscopic realism is not violated unless the 

Hamiltonian generate a macroscopic quantum 

superposition from the classical-like state*. 

*: J. Kofler and C. Brucker, PRL 101 090403 (2008). 



−𝑗 𝑗 

−𝑗 𝑗 

𝑗 → ∞ 

−𝑗 𝑗 

−𝑗 𝑗 

𝜎~ 𝑗 𝜎~𝑗 



III. Application to the thermalization 

 of a closed system* 



Thermalization of a Closed System 

• In classical mechanics, ergodicity makes the time 

average of the observable would be the same to the 

ensemble average. 

• A non-equilibrium systems evolve into equilibrated 

thermal state. 



Eigenstate Thermalization Hypothesis 

• Is a closed quantum system equilibrate? 

• When {|𝜓𝑛〉} are eigenstates of the Hamiltonian with 

energy 𝐸𝑛, the expectation value of the observable 𝐴 for 

initial state ∑ 𝑐𝑛|𝜓𝑛〉𝑛  is 

 

• Equal to the expectation value using the diagonal 

ensemble after dephasing when 〈𝜓𝑚 𝐴 𝜓𝑛〉 is small.  

 

• This value is equal to microcanonical ensemble average 

if 〈𝜓𝑛 𝐴 𝜓𝑛〉 does not vary much (as a function of 𝑛).  



Many-body localization* 

• Many closed systems thermalize in the sense that an 

expectation value of a local observable approaches to 

thermal equilibrium value. 

• There are some systems which does not thermalize 

– Anderson localization (non-interacting, presence of disorder) 

– Integrable system (many conservative laws) 

• It is usually believed that the interacting non-integrable 

system thermalize. 

• However, it is recently known that there are some 

interacting systems do not thermalize. 

 Many-body localization 

*: D. M. Basko et al., Ann. Phys. 321, 1126 (2006); 
   R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter Phys. 6 15(2015). 



Entanglement Entropy* 

• If a system thermalize, the entropy of a subsystem 

follows volume law as it is extensive quantity. 

• It is the same for the closed system case. The 

entanglement entropy of the subsystem of typical 

eigenstates of the Hamiltonian obeys  

– Volume law for thermalization case. 

– Area law for localization case. 

• Large entanglement between the subsystem and 

the remaining system needed for thermalization. 

*: B. Bauer and C. Nayak, J. Stat. Mech. (2013) P09005 



Thermalization and macroscopic quantumness 

• If macroscopically distinct states evolve into the similar 

thermalized states, the superposition between two may 

not be a macroscopic superposition. 

 

• In thermal system, the relative fluctuation of macroscopic 

observables to the system size is suppressed. 

 

• For 𝑁  spin-1/2  system, 𝐴2 − 𝐴 2 ∝ 𝑁  for 𝐴 ∈ 𝑆  in 

thermal case*. 

*: A. Shimizu and T. Miyadera, PRL 89 270403 (2002). 



Disordered Heisenberg Model 

• We use disordered Heisenberg model to test this 

conjecture. 

 

 

 

• ℎ𝑖 sampled randomly in [−ℎ, ℎ]. The Hamiltonian 

thermalize for small ℎ but enters to many-body 

localization phase for ℎ ≳ 3.6*. 

 

*: A. Pal and D. Huse, PRB 82, 174411 (2010). 
   D. Luitz, N. Laflorencie, and F. Alet, PRB 91 081103(R) (2015).  



Time evolution 

• For 𝑣 = 0.6, we averaged           for all realization 

of disorder and initial states. 

• The dynamics of the averaged value of          . 


