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|. Introduction to Entanglement
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Local Realism

* Reality
— All objects must objectively have a pre-existing value
for any possible measurement before the
measurement is made.

* Locality

— If the objects A and B are space-like separated, any
external influence on A cannot directly influence the
object B.

* Introduces local hidden-variable theory, which is
rejected by the Bell inequality test.
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Locality hierarchy

Local realistic

Non-steerable

Seperable




Why entanglement is important?

* Resources for quantum information processing

— Quantum computation, quantum teleportation,
quantum cryptography, ...

» Explains why the classical models fail in many-
body physics.
— Mean field theory, spin frustration, ...

e Can be used to detect special behaviors of
many-body systems.

— Quantum phase transitions, non-equilibrium phases,
topological order, ...
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Cluster state quantum computation*

Cluster State
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* Projection measure on one qubit is equivalent to
applying unitary gate to the next qubit.
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*: H. J. Breigel and R. Raussendorf, Phys. Rev. Lett. 56, 910 (2001);
M. A. Neilson, Rep. Math. Phys. 57, 147 (2006) CMQC L
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Entanglement and many-body systems

Make entangled states using Using entanglement to study
many-body systems many-body physics

Quantum Phase Transition

Matrix Product states
(W) =3 T[ATVATY AR s1sg . s),
{s}

Topological Entanglement Entropy

d
S(p) =E{Tlug2} = al —log(D/d,)
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Bipartite Entanglement

« How to measure the size of entanglement?

—————————————

Qw ’Q

S(pa) = Trlpalogpa]

« |t is difficult to make appropriate measure for
general mixed states.

* And even more unclear for multipartite case.
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Entanglement Area Law

« Consider the infinite system with local interacting

Hamiltonian H.

— Ex. transverse Ising mode: H = Yololt! + Yo}

* For the ground state [y), the entanglement
entropy of the subsystem of block of area A:

———————————

V)

pa = Trp[|¥) (4]

S(pa) = Trlpalogpal ~ 0A
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Matrix Product States

* From the entanglement area law, entanglement
entropy of any block in 1D is bounded by a
constant (non-critical).

 Efficient description of quantum states can be

possible.

) = Z Vo1,00,....0n 01,092,...,0N) 2N parameters
01,02,..., ON

W) = Z ACTA%2... A°N \01, 02y, 0N> DN parameters

A is matrices smaller than D x D

e The bond dimension D is related to the
entanglement entropy.
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Multipartite Entanglement

* A widely accepted measure does not exist.
« Geometric Entanglement

E;(w))=-log, SUP, | <¢sep 12, |2

* The properties are not much known.

« Large geometric entanglement means it is hard
to use for measurement based quantum
computation.”

*Phys. Rev. Lett. 102, 190502 (2009). CMQC 4
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ll. Macroscopic Quantumness
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Macroscopic Realism*

 Two postulates

— Macrorealism per se: "A macroscopic object, which
has available to it two or more macroscopically
distinct states, is at any given time in a definite one of
those states.”

— Noninvasive measurabillity: "It is possible in principle
to determine which of these states the system is in
without any effect on the state itself, or on the
subsequent system dynamics."

*: A. J. Leggett and A. Garg, PRL 54 857 (1985).
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Leggett-Garg inequality

For successive times t; < t, < t3,
K:C12+C23_C13 Sl

C;; is the temporal correlation function for t; and ¢;.

The inequality is always violated in microscopic scale.
¢ EX:
— Qubit rotating with x axis: H = %an.

— We measure g,, the violation can be seen.
— The initial state does not matter.
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Coarse grained measurement*

 |If we can resolve the all eigenvalues of the
projection measurement, the violation of Leggett-
Garg inequality is general.

« Why we cannot see the violation of macroscopic
realism in everyday life?

» Classical measurement
— The eigenvalues of the measurement operator have
direct physical meaning.
— Cannot distinguish the neighboring eigenvalues.
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Coarse grained measurement (cont.)

The spin coherent state in z direction

S 3.3y =313, 3) -
If we measure the state in x direction, the distribution of
measurement outcomes is a Gaussian shape inj > 1.
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The dispersion of the measurement outcomes is a~\/].
If the resolution of our measurement operator is
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Am > ./j, the outcomes can be treated as a single value.
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Coarse grained measurement (cont.)

« Any pure state a~ﬁ give a single measurement

outcome and is not disturbed by the coarse-grained
measurement.

« If a pure quantum state give o~j, the state can be
considered as a superposition between macroscopically
distinct states (in terms of eigenstate of J,).

« Macroscopic realism is not violated unless the
Hamiltonian generate a macroscopic quantum
superposition from the classical-like state*.

*: J. Kofler and C. Brucker, PRL 101 090403 (2008).
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lll. Application to the thermalization
of a closed system*
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Thermalization of a Closed System

* |n classical mechanics, ergodicity makes the time
average of the observable would be the same to the
ensemble average.

* A non-equilibrium systems evolve into equilibrated
thermal state.
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Eigenstate Thermalization Hypothesis

Is a closed quantum system equilibrate?

When {|y,,)} are eigenstates of the Hamiltonian with
energy E,,, the expectation value of the observable A for
initial state YnCnly) is

Z cnl® (¥l Altpn) + Z THEn Bty (Y] Altn)

Equal to the expectation value using the diagonal
ensemble after dephasing when (y,,,|A|y,,) is small.

P = Z |Cn|2 Un) (¥nl

This value is equal to microcanonical ensemble average
if (y,,|Aly,,) does not vary much (as a function of n).
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Many-body localization*

* Many closed systems thermalize in the sense that an
expectation value of a local observable approaches to
thermal equilibrium value.

* There are some systems which does not thermalize
— Anderson localization (non-interacting, presence of disorder)
— Integrable system (many conservative laws)

* ltis usually believed that the interacting non-integrable
system thermalize.

 However, it is recently known that there are some
Interacting systems do not thermalize.

S Many-body localization

*. D. M. Basko et al., Ann. Phys. 321, 1126 (2006); ’A«
R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter Phys. 6 15(20@5&/IQC iy
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Entanglement Entropy*

 |If a system thermalize, the entropy of a subsystem
follows volume law as it is extensive quantity.

* |tis the same for the closed system case. The
entanglement entropy of the subsystem of typical
eigenstates of the Hamiltonian obeys
— Volume law for thermalization case.

— Area law for localization case.

« Large entanglement between the subsystem and
the remaining system needed for thermalization.

*. B. Bauer and C. Nayak, J. Stat. Mech. (2013) P09005
CMQC
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Thermalization and macroscopic quantumness

 If macroscopically distinct states evolve into the similar
thermalized states, the superposition between two may
not be a macroscopic superposition.

* In thermal system, the relative fluctuation of macroscopic
observables to the system size is suppressed.

« For N spin-1/2 system, (4%) —(A)> x N for A€ S in
thermal case®*.

*. A. Shimizu and T. Miyadera, PRL 89 270403 (2002).
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Disordered Heisenberg Model

 We use disordered Heisenberg model to test this

conjecture.
N N
H = JZ[J:(CQU?H) + ool 4 oNglitl] 4 Z hiolV
=1 i=1

h; sampled randomly in [—h, h]. The Hamiltonian
thermalize for small h but enters to many-body
localization phase for h = 3.6".

* A. Pal and D. Huse, PRB 82, 174411 (2010).
D. Luitz, N. Laflorencie, and F. Alet, PRB 91 081103(R) (2015). CMQC /L
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Time evolution

 Forv = 0.6, we averaged M/N for all realization
of disorder and initial states.

The dynamics of the averaged value of M/N.
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