Condensed Matter Seminar, Korea University

2018.10.17.

Contents

- ✓ A brief introduction; 2D materials and properties
- ✓ 2D and TMD materials transistor technologies
 - Interface engineering for MoS₂ FET
 - MGr-embedded memory devices
 - SnS₂/hBN TFT with broadband photoresponse
 - A new conceptual device, CARRISTOR

✓ Summary

Advantages of 2D materials for transistor

General formula: MX₂

• hBN tunnel barrier

Hexagonal Boron Nitride (Side View 3-D)

- Band gap: 5 eV
- Dielectric constant: 3-4
- Breakdown strength: 8 MV/cm hBN is a perfect substrate without pinholes, ideal for tunnel barrier construction.

For example, MoS₂

Band gap: 1.2 eV (bulk, indirect); 1.8 eV (monolayer, direct) Carrier mobility: 10-500 cm²/Vs Current on/off ratio: see below Young's Modules: 200-300 Gpa Strain limit: 23% (experiment)

- It is accessible on plastic substrate
- No dangling surface bonds
- Abundant material library

WS₂ Channel material

- Band gap: 1.3 eV (bulk, indirect)

- Electron affinity: 4.0-4.4 eV

It is theoretically predicted to have the lightest effective mass, a high thermal stability and a high chemical stability.

Demonstration of various functional devices

Graphene/MoS₂ optoelectronic switches

Roy et al. Nat. Nanotechnol. 8, 826 (2013)

WS₂ vertical tunneling transistor

Georgiou et al. Nat. Nanotechnol. 8, 100 (2013)

Graphene/hBN/graphene resonant tunneling transistor

Floating-gate for memory cells

Various type of charge-confining layers

M. Chen et. al, ACS nano, 8, 4023-4032 (2014)

Few-layer graphene

S. Bertolazzi et. al, ACS nano, 7, 3246-3252 (2013)

D. Li et. al, Adv. Funct. Mater. 25, 7360 (2015)

Metal nanoparticles

Wang et al. Small, 11, 208-213 (2014)

- By applying plasma treatment, the charge-trapping sites can be intentionally introduced.
 - \rightarrow then, the configuration of the device does not have floating-gate.
- The charge-confining layer could be graphene, MoS₂ itself, metallic nanoparticles and hafnium oxide etc.

TMDs transistor technologies

I. Interface engineering for MoS₂ FET

- (1) Bridge channel MoS₂ FET, *Nanoscale* 7, 17556-17562 (2015)
- (2) Graphene/MoS₂ heterostructured FET, *Scientific Reports* 5, 13743 (2015)
- II. MGr-embedded memory devices, Nano Research 9, 2319-2326 (2016)
- III. Locally gated SnS₂/hBN TFT, Scientific Reports 8, 10585 (2018)
- IV. A new conceptual device; CARRISTOR, Science Advances 3, e1602726 (2017)

Tremendous opportunities for layer-by-layer stacking of electronic devices...

I. Interface engineering for MoS₂ FETs

(1) Bridge channel MoS₂ FET

Cross-section view of bridge-channel FET

The configurations of common top-down device

하양

HANYANG UNIVERSITY

Free standing MoS₂ channel

Using the parallel-plate capacitor model the oxide capacitance per unit area is given by $C_{OX} = \epsilon_r \epsilon_0 / d_{OX}$, and $\epsilon_0 = 8.854 \times 10^{14} \text{ F/m}, \epsilon_r = 3.9, d_{OX} = 280 \text{ nm}. \rightarrow 1.23 \times 10^{-8} \text{ F/cm}^2$

And the vacuum capacitance is extracted to be $C_{VA}=1.48 \times 10^{-8}$ F/cm² by calculation with bending profile of MoS₂ bridge.

→ Then the exact total capacitance is $C_{TOT}=7.92\times10^{-9}$ F/cm², since oxide capacitor and vacuum capacitor are in series connection.

D. Qiu, D. U. Lee, C.-S. Park, K. S. Lee, and E. K. Kim, Nanoscale, 7, 17556 (2015)

Electrical characteristics of bridge-channel MoS₂ devices

HANYANG UNIVERSITY

Electrical characteristics

The drain voltage V_{DS} is swept from 100 to 500 mV in 100 mV steps. Typically, the transistors reveal n-type behavior with an average on/off ratio exceeding ~2×10⁶ and subthreshold swing of 112.9 mV/decade.

Ref.
$$SS = \ln(10)(k_B T/e)(1 + \eta), \quad \eta = (C_D + C_{1T})/C_{TOT}$$

The intrinsic effective mobility of bridge-channel MoS_2 is about 65 cm²/V·s under low drain bias $(V_{DS}=100 \text{ mV})$ to make FET operating at linear regime. $(V_{th} = -3.2 \text{ V})$ (cf. μ ~12.2 cm²/Vs on SiO₂)

Interface characterization

Suspended device

Unsuspended device

By activation transport model, the conductance $g_{\rm D} = g_0 \exp(-E_{\rm A}/k_{\rm B}T)$ $D_{\rm TT}(E) = (C_{\rm OX}/e)(dE_{\rm A}/dV_{\rm BG})^{-1}$ $E_A \approx E_c - E_F$ $dE_{E}/dV_{BG} = -dE_{A}/dV_{BG} = 0.563e$, $dE_F/dV_{BG} = eC_{TOT}/(C_{TOT}+C_{TT})$ $C_{IT} = e^2 D_{IT}$ $C_{TOT} = C_{OX}C_{VAC} / (C_{OX} + C_{VAC}) = 7.92 \text{x} 10^{-9} \text{ F/cm}^2$ $D_{rr} \rightarrow 3.84 \times 10^{10} \text{ states/eV cm}^2$

Interface characterization

The surface trap DOS of D_{IT} = 3.84 x 10¹⁰ states/eVcm² for bridge-channel FET is two orders of magnitude lower than 1.43 x 10¹² states/eVcm² in the conventional device structure.

Effective mobile charge density is $Q_F \approx C_{OX}(V_{BG} - V_T) \exp(-E_A/k_BT)$.

The ratio of effective density mobile charge to total accumulated charge density Q_N at room temperature Q_P/Q_N is only about 0.13% with E_A = 172 meV at V_{BG} = 4V for SiO₂-supported transistors.

For bridge-channel devices, it can be roughly estimated to be 85.8% of injected charge for free with $E_A = 3.95$ meV at $V_{BG} = 0$ V.

(2) Graphene/MoS₂ Heterostructured FET

Control of Schottky barrier at metal/MoS₂ contact by inserting of multi-layered graphene

Optical microscope image

3D AFM topographic image

Temp.-dependent I_{DS} - V_{DS} characteristics for an Au/MoS₂ FET (left) and an MGr/MoS₂ FET (right). Temp. ranges from 330 to 370 K. The inset shows the corresponding device configurations

 \rightarrow multi-layer graphene could significantly affect the temp. dependent I-V output curves.

D. Qiu and E. K. Kim, Scientific Reports 5, 13743 (2015)

Height (nm)

Electrical transport behavior

Normalized *I-V* transfer characteristics of a typical back-gated MGr/MoS₂ device at a fixed drain voltage. \rightarrow current on/off ratio of 10⁶ and transconductance $g_M \sim 30$ nS/µm.

Inset: I_{DS} - V_{DS} curve at a low drain bias (V=±50 mV). The linearity was maintained under various gate voltages.

(Ref.
$$g_M = \partial I_{DS} / \partial V_{BG}$$
)

Ο

HANYANG UNIVERSITY

Output characteristics at various gate voltages

Field-effect mobility of bi-layer MoS₂

 $\mu_{\rm FE}$ ~ 17.9 cm²/V·s

 \rightarrow comparable to those of mono- or bi-layer MoS₂ in high-*K* gate dielectric capping devices.

$$\mu_{FE} = g_M \left(\frac{L}{W}\right) C_{ox} V_{DS}$$
$$C_{ox} = \varepsilon_r \varepsilon_o / d_{ox}$$

Extraction of Schottky barrier height

 MoS_2 contact with gold electrode displays strong temperature dependence, but MoS_2 with MGr contact displays weak temperature dependence.

For MGr/MoS₂ devices, slope of the linear fit curve in Arrhenius plot is negative near the off-state ($V_{BG} \sim -5$ V) and becomes more positive with the formation of a highly conductive MoS₂ channel at $V_{BG} = -1.6$ V.

Negative Schottky barrier behavior

Gate bias dependence of Schottky barrier height.

Φ_{SB} : from 300 to -45.5 meV for MGr/MoS₂

cf) from 765.9 to 111.8 meV for Au/MoS_2

Top: Schematic band diagram for a depletion-type contact. Bottom: Illustration of an accumulation contact.

Because \mathcal{D}_{MGr} depends on the back-gate electric field, the carrier density in the MGr shifts the Fermi level by $\Delta E_{F,MGr} = \hbar v_F [\pi |C_{OX}/e(V_{BG}-V_T)|)]^{1/2}$, where v_F is the Fermi velocity.

The tunable Schottky barrier is primarily responsible for modulation of the work function of thick graphene. Despite the large number of graphene layers, ohmic contacts can be formed.

II. Structure of MGr-embedded memory devices

Schematic representation of a 2D crystal stacked memory device.

Optical image of a multi-layered WS₂ memory transistor.

HANYANG UNIVERSITY

Inset: optical image of the device before metallization. The multi-layered graphene encapsulated by hBN flake had a triangular shape for electrical isolation (scale bar: $50 \ \mu m$).

HRTEM image of WS₂/hBN/MGr

AFM image and Small drain voltage dependence of the current under different gate voltages

D. Qiu, E.K. Kim et. al, Nano Res. 9, 2319 (2016)

Fabrication process for MGr-embedded memory device

Transfer of multi-layered graphene

D. Qiu, D.U. Lee, K.S. Lee, S.W. Pak, and E.K. Kim, Nano Res. 9, 2319 (2016)

Material and structural characterizations

Cross-sectional TEM imaging and EDX mapping of van der Waals heterostructure.

- (a) Cross-sectional HRTEM image,
- (b) STEM micrograph of a WS_2 -hBN-MGr stack. Inset: low magnification TEM image of the final site-specific samples for TEM imaging.
- (c) Elemental mapping for W, S, C, and N acquired from the EDX measurement.

Electrical performance

Electrical performance of the memory devices.

(a) $I_{DS}-V_{CG}$ transfer characteristics of the device acquired using positive and negative voltage sweeps at V_{DS} = 100 mV. The maximum control gate voltage changes from 5 to 25 V.

(b) Evolution of temporal retention characteristics after applying ± 20 V for a $\Delta t = 3$ s pulse with an erase/program state ratio of 4 × 10³ for a $t_{\rm R} = 1,500$ s retention time. Inset: memory window as a function of maximum control gate voltages extracted from data in (a).

Charge trapping & electrical conduction

Top: Optical image of the Ti–WS₂– hBN–MGr–Ti device (the scale bar is 10 μ m). The thickness of WS₂ and hBN were 9.4 and 21 nm, respectively.

Bottom: Schematics of the measurement setup for measuring electrical conduction in the hBN barrier. Here, $J_{\rm B} = I_{\rm B}/A$, with an active contact area A.

Energy band diagram of floating-gate memories in the program ($V_{CG} > 0$) and erase operation ($V_{CG} < 0$). Here, ϕ_{BE} represents the tunnel barrier.

Carrier transport mechanism through a thin hBN

- Direct tunneling:

If the voltage drops on the hBN dielectric satisfies $\textit{V}_{\rm BN}{<}\varphi_{\rm BE}$

- Fowler-Nordheim (F-N) tunneling:

If $V_{BN} > \phi_{BE}$, electrons will encounter a triangular barrier

$$J_{FN} = C_1 F_{BN}^2 \exp[-(32 \, m_{BN}^*)^{1/2} (e \, \phi_{BE})^{3/2} / 3\hbar e F_{BN}]$$

$$C_1 = e^2 / 16\pi^2 \hbar \phi_{BE} (m_e / m_{BN}^*)$$

where, F_{BN} , \hbar , and e are the electric field in the dielectric, Plank's constant, and the elementary charge, respectively

Tunnel barrier extraction

- (a) The measured tunneling current density $J_{\rm B}$ as a function of the applied voltage $V_{\rm B}$ for the forward direction (positive voltage on WS₂).
- (b) F–N plot of the measured current density. \rightarrow the tunnel barrier of hBN from graphene was about 3.0 eV.
- (c) Temperature dependent $I_{\rm B}$ - $V_{\rm B}$ data deduced from $V_{\rm B}$ = 2–4 V at a temperature range of 200–400 K.
 - → The weak temperature dependence of the $I_{\rm B}$ level indicated that the current across hBN was due to quantum tunneling in the low-bias range.

Characteristics of programming and erasing

(a) Transient characteristics of the memory device when applying $V_{CG,P} = +20$ V and $V_{CG,E} = -20$ V pulses with various width of 7 ms to 5 s.

(b) Separation of relative control gate voltages in the programmed and erased states as a function of the pulse duration time. Data extracted from (a).

The corresponding plot of threshold voltage shift as a function of pulse time can be obtained also. \rightarrow It can be found that long pulse duration results large memory window.

Charge retention characteristics

The $I_{DS}-V_{CG}$ transfer curves as a function of retention time at (a) programmed state and (b) erased state for V_{TH} extraction. (c) Charge-retention properties in each state after performing ±20 V, Δt = 100 ms pulses.

→ By linear fitting the V_{TH} for both states, it was retained ~87% of the initial charge on the floating gate after 10 years. It is comparable to the performance of silicon-based ploy-Si floating-gate cells.

III. SnS₂/hBN TFT with broadband photoresponse

Bottom-gated SnS_2/hBN heterostructure Tr. with gate length/width of 1.5/5 μm

HANYANG UNIVERSIT

Optical image of hBN flake on gold gate (left), the transfer layered SnS_2 onto top of hBN (middle), and the defined metal leads for source/drain contact (right).

The height profile for line A and B that acquired from AFM image (inset, left) of the device.

The scale bar is 5 μ m.

Inset(right): 3D topography for hBN on SiO₂, showing about 30 nm of thickness.

D. Qiu, S. W. Pak, and E. K. Kim, Scientific Reports 8, 10585 (2018)

Electrical transport properties of SnS₂ TFT

(a) Semi-log (left axis, red) and linear (right axis, blue) scale I_{DS}-V_G transfer characteristics of multi-layered SnS₂ transistor biased at V_{DS}= 0.7 V.

 \rightarrow The device performed a SS as low as 585 mV/decade and on/off ratio about 10⁵ at room-temp.

 (b) I_{DS}-V_{DS} output curves for various applied gate bias from -3 to 3 V. The black circle reveals a non-linear property. Inset: transconductance vs. bottom-gate voltage at V_{DS}=0.7 V → maximum g_M peak of 0.12 µS.

(c) The extracted activation energy as function of applied gate voltage. Inset: I-V characteristics under small V_{DS} bias.

 \rightarrow The Schottky barrier height is evaluated to be 135 meV for Ni/SnS₂ interface.

Photoresponse and responsivity of SnS₂ transistor

- (a) Semi-log I_{DS} - V_{G} characteristics of the SnS₂ based transistor for dark state and 500 nm wavelength illumination at V_{DS} =0.1 V. Inset: the normalized field effect mobility as a function of gate voltage. The black and red data are corresponding to dark and with illumination condition, respectively. \rightarrow mobility enhancement appears up to 150 %.
- (b) Linear scale of transfer curves for different wavelengths (ranging from 500 nm to 1000 nm) under accumulation regime.
 - \rightarrow The device performance exhibits an R_{PH} of 0.47–0.65 mA/W at the visible light range.
- (c) Photoresponsivity and detectivity of the device as a function of wavelength at V_{DS} =0.1 V.

→ A maximum R_{PH} of 0.65 mA/W and detectivity in a range of 1.4×10⁶ to 5.1×10⁶ Jones at V_{DS}=0.1 V and V_G=7 V.
[Jones : cmHz^{1/2}/W]

한양대학교 HANYANG UNIVERSITY

IV. A new conceptual device, CARRISTOR

ScienceAdvances NAAAS

Home News Journals Topics Careers Science Science Advances Science Immunology Science Robotics Science Signaling Science Translational Medicine SHARE RESEARCH ARTICLE | NANOMATERIALS 6 Selective control of electron and hole tunneling in 2D 0 assembly Dongil Chu^{1,*}, Young Hee Lee 2,3 and Eun Kyu $\text{Kim}^{1,\dagger}$ **8**+ + See all authors and affiliations Science Advances 19 Apr 2017 Vol. 3, no. 4, e1602726 Peer Reviewed DOI: 10.1126/sciadv.1602726 PDF hBN Article Figures & Data Info & Metrics eLetters 10-6 10⁻⁷ V_{TB}=-0.5 V 150 10-7 10⁻⁸ T (K) 100 290 10-8 (PA) 290 K 275 10⁻⁹ 260 50 on/off ratio ~3.6×106 10⁻⁹ 245 10⁻¹⁰ 230 90 K $I_{TB}\left(A\right)$ 10⁻¹⁰ 210 I_{TB} (A) 0.0 0.5 V_{TB} (V) 1.0 190 10⁻¹¹ 170 10⁻¹¹ 150 10⁻¹² 130 10⁻¹² -- 110 10⁻¹³ 100 90

D. Qiu, Y. H. Lee, and E. K. Kim, *Science Advances* **3**(4), e1602726 (2017)

Carristor configuration

10⁻¹⁴

-0.5

0.0

V_{TB} (V)

-1.0

Summary

We have studied an interface engineering for MoS2 FET.

- **Bridge channel FET** with four layer MoS_2 was fabricated and characterized; carrier mobility of about 65.8 cm²/Vs, on/off ratio of ~2×10⁶, SS of 113 mV/decade, and ultra-low trap density of 3.84 x 10¹⁰ states/eVcm²
- **Back-gate tunable Schottky barrier** in multi-layered graphene/MoS₂ FET was demonstrated; Schottky barrier height tunable ranges from 300 to -46 meV
- MGr-embedded nonvolatile memories with WS₂ as a semiconducting channel was produced; a memory window up to 20 V with a high current ratio around 10³, perfect charged retention at 13% charge loss after 10 years
- We demonstrated the SnS₂/hBN heterostructured transistor with a current on/off ratio of ~ 10⁵ and SS value of 585 mV/decade, which showed also high photo responsivity of approximately 0.65 mA/W.
- We suggested a new conceptual device, CARRISTOR, which is a carrier-type controllable device.

