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1 Introduction 

Magnetic impurities embedded in metallic hosts cause anomalous resonant scattering of 
conduction electrons. Further, the localised magnetic moments of the impurities are 
screened at low temperatures by the itinerant electron spins. Such an effect is called the 
Kondo effect, one of the most extensively studied subjects in condensed-matter  
physics [1,2].  

Ever since the theoretical predictions [3,4] and the experimental demonstrations  
[5–9], the Kondo effect has been revived recently in phase-coherent mesoscopic systems 
and has stimulated great-renewed interest in this field [10]. The main support of this 
remarkable success is the tunability in the mesoscopic systems. The fine tunability 
enables to test various aspects of the Kondo effect that cannot be directly investigated in 
bulk solids. For example, a scattering phase shift at the Kondo resonance in a quantum 
dot has been measured using a two-path interferometer [8].  
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The controlled manipulation in mesoscopic systems has also posed further exciting 
issues. Among many other examples are the competitions of the spin-dependent transport 
(Section 2) and the superconducting correlation (Section 3) with the Kondo correlation 
and the interplay of the orbital and the spin Kondo effects (Section 4), whose recent 
experimental and theoretical developments will be reviewed in subsequent sections.  
This review should not be regarded in any respect as a complete review of the 
mesoscopic Kondo effects. Rather we will focus on a few special topics. Some important 
examples of issues that are left for a more complete review include the anomalous 
transmission phase shift through the quantum dot in the Kondo regime [8,11,12], the 
singlet-triplet Kondo effects in quantum dots with even number of electrons [13–21], and 
the Kondo screening cloud [22,23].  

The paper is organised as following: In Section 2, the Kondo effects in the quantum 
dot coupled to ferromagnetic leads will be reviewed, focusing on the theoretical debates 
and recent experiments. Section 3 is devoted to discuss the Josephson current through a 
quantum dot in the Kondo regime and the 0 – π transition as a function of the ratio of the 
superconducting gap and the Kondo temperature. In Section 4, we will review the orbital 
Kondo effects on vertical quantum dots, carbon nanotube quantum dots, and parallel 
double dots, where one tune the crossover between the SU(2) and SU(4) Kondo effects.  

2 Quantum dots coupled to ferromagnetic leads 

A flood of very recent works [24–36] has addressed an interesting issue, namely, how the 
Kondo physics is affected when the continuum electrons themselves are allowed to form 
spin-dependent bands. The motivation for this research stems from the successful field of 
spintronics [37]. In particular, a change has been detected in the resistivity of a Kondo 
alloy due to spin-polarised currents [38]. Furthermore, it is already possible to attach 
ferromagnetic leads to a carbon nanotube [39], and a carbon-nanotube QD has been 
shown to display Kondo physics below an unusually high temperature [40]. In addition, a 
QD coupled to ferromagnetic electrodes has been proposed as a promising candidate for 
spin injection devices, but until very recently, analysed only in the Coulomb blockade 
regime [41].  

Recent studies of QDs coupled to ferromagnetic leads in the strong coupling regime 
(Kondo regime) raised a controversy in the literature with regard to whether a  
spin-dependent renormalisation of the impurity level induced by the spin-polarised leads 
will split the Kondo peak when the magnetic moments of both leads are aligned.  
In Sergueev et al. [35], an equation-of-motion (EOM) method plus an ansatz for the 
interacting self-energy [42] were employed and it was suggested that the splitting, ∆K, is 
absent. In a later work [32], the scaling arguments (together with the EOM method) were 
used to find that ∆K is nonzero. In Zhang et al. [36], using a similar approach, a splitting 
was predicted only in the mean-field peaks. In a more recent work [26], they made use of 
a noncrossing approximation (NCA) and obtained ∆K ≠ 0. In Bułka and Lipiński [24] and 
López and Sánchez [27], on the other hand, the slave-boson mean-field theory (SBMFT) 
was utilised to study the zero-temperature properties and no splitting was observed.  
The answer to the controversy is, thus, elusive because each approximation method 
mentioned above has certain drawbacks of its own.  
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The controversy was resolved in Choi et al. [25] and Sánchez et al. [34] using the 
numerical renormalisation group (NRG) method [43–49]. They (and independently the 
authors in Martinek et al. [31]) also investigated the influence of ferromagnetic electrodes 
and the relative orientations of their magnetisations on the equilibrium properties of a QD 
with and without intrinsic spin flip processes, across the different parameter regimes  
(i.e., Kondo, mixed-valence, and empty-orbital), thoroughly analysed with the assessment 
of local DOS, linear conductance, and tunnelling magneto resistance (TMR).  
The theoretical results have been confirmed in a recent experiment [33] on C60 molecules 
coupled to ferromagnetic nickel electrodes. The effect of the detailed band structure on 
the splitting of the Kondo peak in the presence of the ferromagnetism was further 
investigated in Martinek et al. [30].  

The system consists of ultra small tunnel junctions between a QD and two 
ferromagnetic leads. It is assumed that the QD has a localised energy level with an 
unpaired spin-1/2 electron and a charging energy U. This way, the QD is equivalent to an 
Anderson-type impurity with single-particle energy εd,σ for spin σ = {↑, ↓} [3,4]. Notice 
that εd,σ includes the Zeeman energy ∆Z ≡ εd,↑ – εd,↓ due to the magnetic field from an 
external magnet and possibly from the ferromagnetic leads. In what follows, we set 
∆Z = 0 in order to unmask the spin-dependent normalisations of the bare energy level 
purely due to coupling with the leads [50]. Tunnelling of electrons from the QD to the 
leads (reservoirs) α = {L, R} is described by the hopping integral Vαkσ. The resulting 
Hamiltonian is given by:  

 ( )† † †H c ( H c )ˆ ˆ ˆd k k k k k
k

H U R d d c c V c dn n nσσ α σ α σ α σ α σ α σ σ
σ α σ
ε ε↑ ↓, ↓↑

 = + + + . . + + + . . , ∑ ∑  (1) 

where † ( )k kc cα σ α σ  is the creation (annihilation) operator for an electron with wave vector 
k and spin in the electrode α. The QD occupation number is †ˆ d dnσ σ σ=  [ †dσ  (dσ) creates 
(annihilates) an electron in the dot].  

For definiteness, leads are assumed to be identical, with chemical potentials 
µL = µR = EF and symmetric couplings. Ferromagnetism on the leads may be represented 
either by a spin-dependent DOS ρασ(ω) or by spin-dependent tunnelling amplitudes Vαkσ. 
Both pictures are formally equivalent as far as the transport properties are concerned.  
In any case, the overall effect results in a spin-dependent hybridisation parameter 

2( ) ( ).k kk
Vασ α σ αω π δ ω εΓ ≡ | | −∑  As usual, proximity effects such as stray fields 

induced in the QD and the energy dependence of Γασ(ω) are neglected. In the following, 
we choose EF = 0 as the origin of energies. One can define the spin polarisation (close to 
the Fermi energy) at each lead as pα = (Γα↑ – Γα↓)/(Γα↑ + Γα↓) with –1 ≤ pα ≤ 1.  
We consider parallel (P) and antiparallel (AP) magnetisations of the two leads. In the  
P case (pL = pR ≡ p), we have ΓL↑ = ΓR↑ = (1 + p)Γ0/2 and ΓL↓ = ΓR↓ = (1 – p)Γ0/2, where 
Γ0 ≡ Γα↑ + Γα↓, whereas the AP case (pL = –pR ≡ p) yields ΓL↑ = ΓR↓ = (1 + p)Γ0/2 and 
ΓL↓ = ΓR↑ = (1 – p)Γ0/2.  

Various methods [24–36] have been used to obtain the local spectral density of 
single-particle excitations (or, simply DOS, density of states) Aσ(ω) with spin σ. Notice 
that all the physics (correlations, dependence on the gate voltage, etc.) is contained in 
Aσ(ω). The linear conductance (normalised to e2/h) of the junction at zero temperature is  
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obtained from the impurity spectral density function at the Fermi level [51], 
2 (0) ( ).L R L Rg Aσ σ σ σ σσ

= Γ Γ / Γ + Γ∑   

Figure 1 shows A↑(ω), A↓(ω), and A(ω) = A↑(ω) + A↓(ω) for different values of the 
lead polarisation p in the P configuration (the AP case is less interesting as both spin 
orientations are equally coupled). Left panels correspond to the symmetric Anderson 
model (i.e., εd = –U/2). For p = 0, in addition to two (symmetric) mean-field peaks at 
ω = εd and ω = εd + U, A(ω) shows a peak at ω = 0 [see Figure 1(a)], which is responsible 
for the observed zero-bias anomaly. As p increases, the spectral peak of A↑(ω) [A↓(ω)], at 
the Fermi energy increases (decreases). Remarkably, however, the central peaks of both 
A↑(ω), and A↓(ω), are pinned at the Fermi level; in particular, the Kondo peak in A(ω), 
does not split. Experimentally, one would see a perfect transparency of the junction  
(see below). Right panels of Figure 1 show the same functions for the asymmetric case 
(εd ≠ –U/2), where charge fluctuations are allowed to certain extent. As p increases,  
A↑ and A↓ shift in opposite directions [see Figure 1(b)] and the Kondo peak in A(ω) splits 
into two. As a result, the Kondo effect is suppressed. One can checked as well that both 
mean-field peaks are shifted in opposite directions.  

Figure 1 Local DOS of the QD for (a) the symmetric Anderson model and (b) the asymmetric 
Anderson model. Plotted are A↑(ω) (top), A↓(ω) (middle), and A(ω) (bottom) for  
εd = –U/2 = –0.1D and Γ0 = 0.02D, where D is the bandwidth) 

    

The finite splitting for the asymmetric Anderson model may be understood in terms of 
simple scaling arguments [32]: Because the hybridisation for up spins is larger than for 
down spins (Γα↑ > Γα↓), the renormalisation of the bare level εd is spin-dependent; the 
↑(↓)-electron lowers (raises) its energy. Then, the coupling acts as an effective magnetic 
field, leading to a finite ∆K [52]. Yet, the perturbative nature of a poor man’s scaling 
cannot describe the fixed point in the strong coupling regime. In particular, such simple 
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scaling arguments cannot account properly for the particle-hole symmetry in the 
symmetric Anderson model and always predict ∆K ≠ 0. For the symmetric Anderson 
model, it is important to notice that the particle-hole symmetry quenches charge 
fluctuations completely for both spins (〈 n↑ 〉 = 〈 n↓ 〉 = 1/2) at any 1,p <  and the real 
part of the self-energy (at EF) is zero. This means that although the binding energy of the 
singlet state (the Kondo temperature TK) diminishes with p, the quasiparticle lifetime is 
still infinite and the Fermi liquid picture is valid. Therefore, the results in Figure 1(a) are 
consistent with SBMFT, which describes the Kondo peak when spin fluctuations prevail. 
Likewise, the results in Figure 1(b) are in agreement with EOM and NCA models, which 
support charge fluctuations to some degree. Of course, the NRG method can encompass 
the whole parameter range.  

To illustrate the conclusions above, Choi et al. [25] measured the splitting ∆K of the 
Kondo peak as a function of εd (experimentally this is controlled by a gate voltage) with 
U fixed [see Figure 2(a)]. The splitting ∆K increases roughly linearly from zero as moving 
away from the symmetric point εd = –U/2. Notice also that well away from εd = –U/2, ∆K 
is linear in the lead polarisation [see Figure 2(b)], confirming the prediction relying upon 
scaling arguments.  

Figure 2 The splitting ∆K of the Kondo peak in the local spectral density A(ω) as a function of  
(a) the impurity level position εd and (b) the polarisation P 

 

We now turn to the tunnelling magnetoresistance, TMR = (gP – gAP)/gAP as reported in 
Choi et al. [25]. Here gP = πΓ0[(1 + p) A↑(0) + (1 – p) A↓(0)] and gAP = (1 – p2) πΓ0 A(0) 
are the dimensionless linear conductance for the P and AP configurations, respectively. 
For the symmetric Anderson model, the Kondo effect survives even for a finite value of 
polarisation ( )1 ,p p <  and gP preserves the unitary limit. As a result, the TMR is given 

by TMR = p2/(1 – p2). For the asymmetric Anderson model, on the contrary, gP gets 
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strongly suppressed as p increases and the system exhibits a strong negative TMR [53]; 
see Figure 3(b). Figure 3(a) shows TMR as a function of εd, which shows a sharp peak 
around the symmetry point (εd  –U/2). The width of the peak is determined by how fast 
the Kondo effect is suppressed as / 2d Uε −  increases from zero, and hence depends 
strongly on the polarisation p and the hybridisation Γ0; see Figure 2(a) and 2(b). 
Experimentally, finite temperatures would smoothen this peak.  

Figure 3 TMR as a function of (a) the impurity level position εd for P = 0.5 and (b) the 
polarisation P 

 

3 Kondo enhanced Josephson current 

The Kondo effect and superconductivity are two of the most extensively studied 
phenomena in condensed matter physics ever since the pioneering works by Kondo [2] 
and by Bardeen et al. [54], respectively. When a localised spin is coupled to 
superconducting electrons, the two effects are intermingled and even richer physics 
emerge. Physically interesting questions are: Would the Kondo effect survive, 
overcoming the spin-singlet pairing of electrons in superconductors (SCs) and the 
superconducting gap at the Fermi level? If it does, how would such a strongly correlated 
state affect the transport, especially the Josephson current, between two superconductors?  

The Josephson effect through a strongly interacting region with a localised spin was 
discussed long before by Shiba and Soda [55] and Glazman and Matveev [56] and further 
elucidated by Spivak and Kivelson [57]. The large on-site interaction only allows the 
electrons in a Cooper pair to tunnel one by one via virtual processes in which the spin 
ordering of the Cooper pair is reversed, leading to a negative Josephson coupling (i.e., a 
π-junction). This argument, however, is based on a perturbative idea and holds true only 
for sufficiently weak tunnelling. It was suggested [56] that as the tunnelling increases, the 
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Kondo effect produces a collective resonance at the Fermi level. As a result, the 
Josephson current is enhanced by the Coulomb repulsion. Moreover, the Josephson 
coupling is expected to be positive (i.e., a 0-junction) since the localised spin is screened 
due to the Kondo effect. Based on this, Glazman and Matveev [56] assumed a strong 
coupling fixed point and derived the Josephson current as a function of phase difference. 
Recently, several approximation methods have been used to investigate the transition 
from the 0- to π-junction as a function of the tunnelling strength [58–61]: A modified 
Hartree-Fock approximation [59], a non-crossing approximation (NCA) [58], and a 
variational method [60] predict a 0–π transition, whereas the slave-boson mean-field 
theory [60] always favours the Kondo effect.  

More thorough and accurate studies of the 0–π transition and associated Josephson 
current have been reported very recently based on a NRG method [62–64] (see Yoshioka 
and Ohashi [65] for an extension of the NRG method to the case of superconducting 
leads) and Quantum Monte Carlo simulation [66] (see also Choi et al. [63], Siano and 
Egger [67] for refinement of the interpretations of the results in Siano and Egger [66]). 
Buitelaar et al. [68] measured experimentally the linear and non-linear conductance in 
SC-carbon nanotube-SC junctions in the Kondo regime.  

The system in question consists of a QD with an odd number of electrons coupled to 
two superconducting leads (L and R). The two leads are regarded to be standard s-wave 
superconductors (SCs) and described by the BCS Hamiltonian  

 ( )† † †
BCS

i

L R
H c c e c c h cφ

σ σ
σ
ε +

, , , , , ,↑ ,− ,↓
= , ,

= − ∆ + . . ,∑ ∑ ∑∑k k k k k
k k

 (2) 

where † ( )c cσ σ, , , ,k k  creates (destroys) an electron with energy ε ,k, momentum k, and 

spin σ on the lead . ∆  is the superconducting gap and φ  is the phase of the 
superconducting order parameter. The QD is described by an Anderson-type impurity 
model 

 † † †
QD dH d d Ud d d dσ σ

σ
ε ↑ ↑ ↓ ↓= + ,∑  (3) 

which is widely adopted for sufficiently small quantum dots. In equation (3) †dσ  and dσ 
are electron creation and annihilation operators on the QD. The level position εd, 
measured from the Fermi energy EF of the two leads (throughout the paper every energy 
is measured from EF), can be tuned by an external gate voltage. The interaction U is order 
of charging energy e2/2C (C is the capacitance of the QD). The coupling between the QD 
and the SCs is described by the tunnelling Hamiltonian  

 ( )† .VH V d c h cσ σ
σ

, ,
,

= + . .∑∑ k
k

 (4) 

Putting all together the Hamiltonian for the whole system is given by 
H = HQD + HBCS + HV. 

For simplicity, the two SCs are assumed to be identical (εL,k = εR,k = εk and 
∆L = ∆R = ∆, see Oguri et al. [64] for a discussion in the asymmetric case) except for a 
finite phase difference φ = φL – φR; without loss of generality we put φL = –φR = φ/2.  
In the normal state, the conduction bands on the leads are symmetric with a flat density of 
states N0 and the width D above and below the Fermi energy. We also put εd = –U/2 in 
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HQD, equation (3); one can check that an asymmetric model (εd ≠ –U/2) gives the 
qualitatively same results. Only symmetric junctions are considered, VL = VR = V.  
The coupling to the leads is well characterised by the single parameter Γ = 2πN0V2. The 
strong (TK  ∆) and the weak (TK  ∆) coupling limits is characterised by the ratio of the 
superconducting gap ∆ to the normal-state Kondo temperature TK(kB = 1) given by [69]  

 exp 1
2 2

d d
K

UT
U

ε επ  = Γ + .  Γ Γ   
 (5) 

How superconductivity on the leads affects the interacting QD in the strong and weak 
coupling limits is already reflected in the local properties on the QD with zero phase 
difference (φ = 0). Figure 4 shows the local pair correlation † †

d d d↑ ↓∆ ≡  as a function of 

∆/TK. As expected, the local pair correlation ∆d vanishes with ∆, and gets smaller (even 
vanishes when U → ∞) as ∆ → ∞; see Figure 4 (inset). An interesting aspect of ∆d is the 
sign change at ∆ = ∆c  2.4TK, which suggests that the physical properties are different in 

the strong (TK  ∆) and the weak (TK  ∆) coupling limits. Indeed one can be convinced 
(from the NRG calculation [62] or the variational studies [60]) that the ground-state wave 
function of the whole system is of spin singlet (the localised spin is screened out) for 
∆ < ∆c and of spin doublet (the SCs form Cooper pairs separately and the localised spin is 
left unscreened) for ∆ < ∆c. The negative sign in ∆d in the weak coupling limit can be 
explained by a simple second-order perturbation theory, while the positive on in the 
strong-coupling limit is expected when there is a resonance channel for Cooper-pair 
tunnelling [70]. This feature can also be interpreted by means of the Andreev bound 
states crossing the Fermi level with the increasing ∆/TK; see Clerk et al. [71], Clerk and 
Ambegaokar [58].  

Figure 4 Gap of the local quasiparticle excitations 

 

We now turn to the Josephson current through the QD in the presence of a finite phase 
difference φ. Figure 5 shows the Josephson current as a function of phase difference φ 
between the two superconducting leads for different values of ratio ∆/TK. In the weak 
coupling limit (TK  ∆), it is clearly seen from Figure 5(a) that the effective Josephson 
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coupling is negative (i.e., a π-junction) [55–58,72]. In addition, the supercurrent-phase 
relation is very close to a sinusoidal function, like typical ‘tunnelling junctions’ [70]. It 
was also noticed that the ground state is a doublet for any phase difference φ.  

Figure 5 Josephson current IS(φ) (in units of / )short
cI e≡ ∆ as a function of phase different φ  

(a) for ∆/TK = 10 and (b) for ∆/TK = 0.1. (c) Same curves for ∆/TK = 1.6, 1.8, 2.0, 
and 2.2 (near the 0 – π junction transition point) 

 

 

 

In the strong coupling limit (TK  ∆), on the other hand, the Josephson coupling is 
positive [58–60]; see Figure 5(b). Another remarkable thing is that the current-phase 
relation is highly non-sinusoidal and reminiscent of the current-phase relation in the short 
junction limit [70]. Furthermore, the critical current approaches the unitary limit short

cI  of 
‘short junctions’ [70] as the coupling grows stronger (∆/TK → 0), as shown in Figure 6. 
These results suggest again that in the strong coupling limit the Kondo resonance 
develops at the Fermi level and Cooper pairs tunnel resonantly through it. Naturally, the 
ground state turns out to be a spin singlet for any φ.  

Another interesting regime is the intermediate one (∆ ∼ TK). As demonstrated in  
Figure 5(c), for ∆ ∼ TK the curve of IS(φ) breaks into three distinct segments. The central 
segment resembles that of a ballistic short junction [70], while the two surrounding 
segments are parts of a π-junction curve [59]. Namely, the critical value ∆c(φ) depends on 
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φ with ∆c(φ) > ∆c(φ′) for φ φ< ′  [73,74]; for example, ∆c(0.3π) ≈ 1.6 and ∆c(0) ≈ 2.4. 
Evidently, the NRG results show that the ground state is a spin singlet in the central 
segments (∆ < ∆c(φ)) and a doublet in the other (∆ > ∆c).  

Figure 6  Critical current in the Kondo regime. We put εd = –U/2 = –0.1D and Γ = 0.04D.  
Inset: conductance resulting from the RSJ-model (see text) 

 

In the experiments of Buitelaar et al. [68] the interplay between superconductivity and 
Kondo physics was observed in non-equilibrium transport (multiple Andreev reflections) 
[75,76], but no supercurrent was measured. The absence of dissipation less branch in the 
IV is not surprising in such (intrinsically) small junctions. Indeed thermal or quantum 
fluctuations in connection with a resistive environment can lead to a finite resistance [77]. 
The numerical results in Choi et al. [62] are in qualitative agreement with the crossover 
of the conductance in the experiment [see Figure 6 (inset)], and further analysis is 
required [78].  

So far, there is no experiment where the Josephson current in the Kondo regime is 
directly measured. A possible experimental setup for direct measurement of the 
Josephson current in the Kondo regime is a superconducting loop interrupted with the 
quantum dot (see Figure 7), which was successfully used to measure the spontaneous 
supercurrent through the superconductor-ferromagnet-superconductor junctions in the 
Kondo regime [79].  

Figure 7 The superconducting loop interrupted with the quantum dot as a possible  
experimental setup to measure directly the Josephson current in the Kondo regime;  
see Bauer et al. [79]. Here the carbon nanotube serves as a quantum dot. Measurement 
of the flux induced in the loop gives the Josephson current through the quantum dot 
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4 SU(4)-symmetric orbital and spin Kondo effects 

In the previous sections, we have discussed Kondo effects through single localised levels 
in artificial Kondo impurities, focusing on the roles of unusual electrodes. A natural step 
forward is the understanding of the interaction between the two or more localised orbital 
levels in the Kondo regime, which is the subject of the present section. The relevant 
orbital states may be either in the same Kondo impurity [80–83] or separately in 
respective Kondo impurities [84–86]. In this case, the orbital degrees of freedom also 
come into play as a pseudo-spin, giving rise to exotic physical scenarios [87–90].  
In particular, when the interdot Coulomb interaction is large, the Kondo correlated state 
possesses a SU(4) symmetry involving both the (real-)spin and pseudo-spin [91,92], and 
the Kondo effect is enhanced. Similar physics emerges on other QD-related structures as 
well [93].  

Natural prototype models for studying the interplay between the orbital  
pseudospin and real spin degrees of freedom are provided by the vertical quantum dot 
[see Figure 8(a)], the carbon nanotube quantum dot [Figure 8(b)], and the double 
quantum dot [Figure 8(c)] on the two-dimensional electron systems. The vertical 
quantum dot systems have been studied extensively as a tunable single-electron devices 
[9,20,82,83,94] as the electronic states, in particular, the orbital degeneracy between them 
can be easily tuned via external gate voltage. Carbon nanotubes (NTs) also exhibit a good 
deal of remarkable transport phenomena including quantum interference [95], Luttinger 
liquid features [96] or spin polarised transport [39]. Finite-length NTs behave like 
quantum dots (QDs) and thus show Coulomb blockade and Kondo physics [40,97,98]. 
The electronic states of a NT form one-dimensional electron and hole sub-bands. They 
originate from the quantisation of the electron wavenumber perpendicular to the nanotube 
axis, k⊥, which arises when graphene is wrapped into a cylinder to create a NT.  
By symmetry, for a given sub-band at k⊥ = k0 there is a second degenerate sub-band at 
k⊥ = –k0. Semiclassically, this orbital degeneracy corresponds to the clockwise ( ) or 
counterclockwise ( ) symmetry of the wrapping modes [99–101]. The lateral double 
quantum is also an attractive system as the transport through the system can be coherently 
manipulated by tuning the external flux threading the loop [91,92].  

Eto [87] and Kuramoto [88] have studied theoretically the multi-level Kondo effects 
using the perturbative renormalisation group method (so called scaling theory) at 
equilibrium. They investigated the effects of the orbital degeneracy and the associated 
with SU(4) symmetry on the enhancement of the Kondo effect. More thorough 
theoretical investigations of the interplay of the orbital degeneracy and the SU(4) 
symmetry in the non-equilibrium transport regime have been given by [92] and [102] 
using the NRG method [43–49], non-crossing approximation (NCA) [103–105], 
equation-of-motion (EOM) [106] methods. It was also pointed out [102] that neither the 
enhanced Kondo temperature or the linear conductance measurement cannot distinguish 
between the SU(4) Kondo effect and the two-level SU(2) Kondo effect, which both give 
the same amount of the enhancement in the Kondo temperature; only the non-linear 
conductance at finite magnetic field has disguish the two effects unambiguously. In 
López et al. [92] it was found that the system undergoes a crossover between the SU(4) 
and the two-level SU(2) Kondo effects as changing the magnetic flux threading the loop.  
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Figure 8 Schematics of the prototype models exhibiting SU(4) Kondo effects. (a) Vertical 
quantum dot (b) Semiconducting carbon nanotube quantum dot (c) Double quantum 
dot. (d) Coupling scheme and (e) Coupling scheme corresponding to the double  
quantum dot in (c), which is mathematically equivalent to the scheme in  
(d); see the text 

 

A strong enhancement of the Kondo effect has been reported in a recent experiment on 
vertical quantum dots [82]. Sasaki [82] found that the enhancement agreed qualitatively 
with the SU(4) model near the orbital degeneracy. While this experiment suggest strongly 
that the vertical quantum dot systems can exhibit SU(4) Kondo effects at the orbital 
degeneracy, in principle, the experimental data reported in this experiment can be 
explained in terms of the two-level SU(2) model. A more clearly evidence of the SU(4) 
Kondo effect associated with the orbital degeneracy was reported by Jarillo-Herrero et al 
[80,81] in experiments on carbon nanotube quantum dots in the presence of an external 
magnetic field parallel to the carbon nanotube axis. They observed the four-peak splitting 
of the Kondo resonance at finite magnetic field, a unique characteristic of the SU(4) 
Kondo effect [102].  

Let us consider a system of quantum dots with two (nearly) degenerate localised 
orbitals. For a VQD, these orbitals correspond to two degenerate Fock-Darwin states with 
different values of the angular momentum quantum number. Sasaki et al [82] in the 
quantum dot. For a SWNT, they originate from the peculiar electronic structure of the 
nanotube. [81,101,107] The electronic states of a NT form one-dimensional electron and 
hole sub-bands as a result of the quantisation of the electron wavenumber perpendicular 
to the nanotube axis, k⊥, which arises when graphene is wrapped into a cylinder to create 
a NT. By symmetry, for a given sub-band at k⊥ = k0 there is a second degenerate sub-band 
at k⊥ = –k0. Semiclassically, this orbital degeneracy corresponds to the clockwise ( ) or 
counterclockwise ( ) symmetry of the wrapping modes. In both cases the quantum 
number associated with the localised orbitals is related to the cylindrical symmetry of the 
‘dot’. Hereafter we will denote this orbital quantum number by m = 1, 2. In a parallel 
double QD, the degenerate orbital states are the lowest unoccupied states in two QDs, 
respectively. The ‘dot’ is then described by the Hamiltonian  
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 †

1 2 ( ) ( )
D m m m mm m m

m m m
H d d U n nσ σ σ σ σ

σ σσ
ε ′ ′ ′

′ ′= , , ≠ ,=↑,↓

= + ,∑ ∑ ∑  (6) 

where εmσ is the single-particle energy level of the localised state with orbital m and spin 
σ, † ( )m md dσ σ  the fermion creation (annihilation) operator of the state, †

m m mn d dσ σ σ=  the 
occupation, Umm(m = 1, 2) the intra-orbital Coulomb interaction, and U12 the inter-orbital 
Coulomb interaction. The effect of the external magnetic field parallel to the symmetry 
axis of the system is to lifting the orbital and spin degeneracy of the single-particle 
energy levels. We will denote them by ∆orb and ∆z, respectively, so that the single-particle 
energy levels εmσ has the form  

 0 orb(2 3) ( ) 2.m Zm signσε ε σ= + − ∆ + ∆ /  (7) 

The precise values of the Coulomb interactions Umm′ depend on the details of the system, 
but should be of the order of the charging energy EC = e2/2C with C being the total 
capacitance of the dot. In this work we focus on the regime where the system of the 
localised levels is occupied by a single electron (∑mσ〈nmσ〉 ≈ 1) and the Coulomb 
interaction energy (Umm′ ∼ EC) is much bigger than other energy scales. In this regime the 
Hamiltonian in equation (6) suffices to describe all relevant physics of our concern.  

Kondo physics arises as a result of the interplay between the strong correlation in the 
dot and the coupling of the localised electrons with the itinerant electrons in conduction 
bands. Naturally, different Kondo effects are observed depending on the way the dot is 
coupled to the electrodes and whether the orbital quantum number m is conserved or not. 
Nevertheless, it turns out highly non-trivial experimentally to distinguish those different 
Kondo effects. In subsequent sections we will consider different coupling schemes 
between the dot and the electrodes, show how different physics emerges, and propose 
how to distinguish them unambiguously in experiments.  

The two leads α = L and R are treated as non-interacting gases of fermions:  

 †

1 2
k k k

k
H a aα α µ α µσ α µσ

µ σ
ε

= ,

= ,∑ ∑ ∑  (8) 

where µ denotes the channels in the leads. Without loss of generality, we assume that 
there are two distinguished (groups of) channels µ = 1 and 2 in each lead. When the leads 
bears the same symmetry as the dot, this channel quantum number µ in the leads is 
identical to the orbital quantum number m in the dot and will be preserved over the 
tunnelling of electrons from the dot to leads and vice versa; see Figure 8(d). Otherwise, 
there should occur the mixing of the channels and the orbitals; see Figure 8(d).  
The general situation is accounted by the tunnelling Hamiltonian  

 ( )†
T k m k m

k
H V c d h cα µ σ α µσ σ

α µσ
= + . . .∑  (9) 

The total Hamiltonian is then given by H = HL + HR + HT + HD. Notice that the parallel 
coupling of the double quantum dot to the two leads [see Figure 8(e)] can be shown to be 
mathematically equivalent to the Hamiltonian in equation (9).  
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For the sake of simplicity, we will assume identical electrodes (εLkµ = εRkµ), 
symmetric tunnelling junctions (VLkµmσ = VRkµmσ), and the tunnelling amplitudes 
independent of spin σ and the wave number k. Therefore it is convenient to consider a 
simplified model with 2k m mV Vα µ σ µ,= / . Then in equilibrium the Hamiltonian H in 
equation (8) is equivalent to H = HC + HT + HD with  

 †
C k k k

k
H c cµ µσ µσ

µσ
ε= ,∑  (10) 

 ( )†
T m k m

k m
H V c d h cµ µσ σ

µ σ, ,
= + . . ,∑  (11) 

where we have made the canonical transformation  

 k Lk Rk

k Lk Rk

c a a
b a a

µσ µσ µσ

µσ µσ µσ

= + ,

= − ,
 (12) 

and discarded the decoupled term †
k k kb bµ µσ µσε .  

At B  = 0, the spectral density shows a peak near the Fermi energy, corresponding to 
the formation of the SU(4) Kondo state; see Figure 9(a) (solid line). The peak width, 
which is much broader than that for the SU(2) Kondo model (dotted line), demonstrates 
the exponential enhancement of the Kondo temperature mentioned above. Another 
remarkable effect is that the SU(4) Kondo peak shifts away from ω = EF = 0 and is 
pinned at SU(4) .KTω ≈  This can be understood from the Friedel sum rule [108] which, in 
this case, gives δ = π/4 for the scattering phase shift at EF. Accordingly, the linear 
conductance at zero temperature is given by G0 = 4(e2/h) sin2δ = 2e2/h. It is interesting to 
recall that the Friedel sum rule gives the same linear conductance also for the TL SU(2) 
Kondo model. Thus, neither the enhancement of the Kondo temperature nor the  
linear conductance, can distinguish between the SU(4) and the TL SU(2) Kondo effects. 
This can only be achieved by studying the influence of a parallel magnetic field, which 
we do now.  

Because of the underlying SU(4) symmetry, the orbital pseudo-spin should behave 
the same way as the real spin. In particular, the lift of the pseudo-spin degeneracy will 
split the Kondo peak (as long as the lift is larger than the Kondo temperature) just like the 
Zeeman splitting of the real spin does. The only difference is that pseudo-spin is more 
susceptible to the magnetic field than the real spin since µorb  µB (see above). Therefore, 

at sufficiently large fields ( )SU(4)
orb2 ,Z KT∆ ∆  one has four split-Kondo peaks at 

ω ≈ ±2∆orb and ω ≈ ±∆Z; see Figure 9. At moderate fields such that 
SU(4) SU(2)

orb2 ,K K ZT T∆ ∆ one can have a three-peak structure; see Figure 9(b) (dashed 
line). The lifted degeneracy in the orbital pseudo-spin gives two side-peaks at ω ≈ ±2∆orb 
while the spin still retains a Kondo effect and gives the central peak. The central peak 
(which is now at ω = 0) corresponds to a conventional SU(2) Kondo effect and hence is 
much narrower than the central resonance for B  = 0.  
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Figure 9 Local spectral density A(ω) for (a) ∆orb = ∆Z = 0 and (b, c) at finite magnetic fields.  
(a) and (b) are the NRG results and (c) is the EOM results 

  
 (a) (b) 

 
(c) 

These features is ascribed essentially to the conservation of the orbital quantum number. 
Therefore, in the presence of the mixing between orbital quantum numbers will 
eventually destroy the SU(4) Kondo effects, leading to the less symmetric two-level 
SU(2) Kondo effects. One can see the crossover from the SU(4) to two-level SU(2) 
Kondo physics a function of the mixing parameter ΓX/Γ0 in Figure 10 By studying the 
dynamical susceptibility we find that the crossover occurs around ΓX/Γ0 ≈ 0.05.  

Figure 10 The total spectral density ( ) ( )d mm m mmm
A E A Eσσ

π ′ ′ ;′
= Γ∑ ∑  for different  

values of coupling asymmetry ΓX/Γ0 
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For the double quantum dot parallel coupled to the leads, one can tune the effective 
mixing between the two orbitals with the external magnetic flux. In Figure 11, one can 
see that T decreases as φ increases, which is consistent with the results of the SBMFT. 
Nevertheless, SBMFT overestimates the decreasing rate of the ZBA. The NRG results 
show that while the peak does not change appreciably for φ < φc, it decreases very rapidly 
for φ > φc.  

Figure 11 Top panel: transmission probability vs. flux for (a) εd = –7Γ, U1 = U2 = 5D, U12 = 0, and 
(b) εd = –14Γ, U1 = U2 = 5D, and U12 = 5D. We set Γ = D/60. (Notice that we do not 
recover the unitary limit of T for φ ≈ 0 (mod 2π) because of the systematic errors 
introduced in the NRG procedure). Bottom panel (U12 = 5D): (c) Spin susceptibility  
(in an arbitrary unit) in the limit of strong interdot interaction. (d) The peak position of 
the susceptibility as a function of the flux φ 

 

The value of φc is the last ingredient we have to explain. The φc marks the crossover 
between the SU(2) Kondo physics to the highly symmetric SU(4) Kondo state. 
Fortunately, φc can be extracted from the peak position of the spin susceptibility χ(ω), 
which yields a reasonable estimate of the Kondo temperature. Figure 11(c) shows the 
evolution of χ when φ increases. Remarkably, when the flux enhances, at some point the 
position of the peak moves toward higher frequencies. The peak position as a function of 
φ is plotted in Figure 11(d). We observe that TK(φ) is almost constant when φ goes from 
zero to φ ≈ 0.75π. This fact allows us to establish a criterium for the crossover between 
the SU(2) and SU(4) Kondo states in the double QD system.  

5 Conclusions 

A few selected topics on the Kondo effects in mesoscopic systems have been reviewed. 
The Kondo effects in quantum dots coupled to spin polarised ferromagnetic leads raised 
recently theoretical controversy. Through a thorough investigation based on the NRG, it 
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was suggested that the unitary Kondo limit is still available even at finite polarisation in 
the ferromagnetic leads if the system bears the particle-hole symmetry. The Kondo 
effects with ferromagnetic leads have been reported recently. In quantum dots coupled to 
superconducting leads, the Josephson current through the quantum dot in the Kondo 
regime and the 0 – π transition have attracted much interest recently. Due to the circular 
symmetry of the system in the vertical quantum dots and the carbon nanotube quantum 
dots, the orbital degrees of freedom also begin to play a role and interplay with the spin to 
give the SU(4) Kondo effects. The crossover between the SU(2) and SU(4) Kondo effects 
can be tuned with the external flux through the loop consisting of the double dots parallel 
coupled to two leads.  
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