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Cotunneling Transport and Quantum Phase Transitions in Coupled Josephson-Junction Chains
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We investigate the quantum phase transitions in two capacitively coupled chains of ultrasmall
Josephson junctions, where the particle-hole symmetry is broken by the gate voltage applied to each
superconducting island. Near the maximal-frustration line, cotunneling of the particles along the two
chains is shown to play a major role in the transport and to drive a quantum phase transition out of the
charge-density-wave insulator, as the Josephson-coupling energy is increased. We also argue briefly
that slightly off the symmetry line the universality class of the transition remains the same as that right
on the line, being driven by the particle-hole pairs. [S0031-9007(98)07601-7]

PACS numbers: 74.50.+r, 67.40.Db, 73.23.Hk

Systems of ultrasmall tunnel junctions composed ofeach other. The particle-hole symmetry is broken by
metallic or superconducting electrodes have been ththe gate voltage applied to each superconducting island;
source of a great number of experimental and theoreticdahe resulting induced charge introdudesstration to the
works [1]. Single charge (electron or Cooper-pair)system. Near the maximal-frustration line, cotunneling
tunneling observed in those systems demonstrates the# the particles along the two chains is found to play
remarkable effects of Coulomb blockade. Especiallya major role in the transport and to drive a quantum
in Josephson-junction arrays, the charging energy iphase transition out of the charge-density-wave (CDW)
competition with the Josephson-coupling energy fur-nsulator, as the Josephson-coupling energy is increased.
ther brings about the noble effects of quantum fluctuaWe also argue that slightly off the symmetry line the
tions, which induce quantum phase transitions at zeraniversality class of the transition remains the same as that
temperature [2]. Very recently, another fascinatingright on the line, i.e., a Berezinskii-Kosterlitz-Thouless
manifestation of Coulomb blockade has been revealed i(BKT) transition [8], driven by the particle-hole pairs.
capacitively coupled one-dimensional (1D) arrays of We consider two 1D arrays, i.e., chains of Joseph-
metallic tunnel junctions [3,4]: In such coupled chains,son junctions, each of which is characterized by the
the major transport along both chains occurs edun-  Josephson-coupling enerdy and the charging energies
neling of the electron-hole pairs, which is a quantumkE, = ¢?/2Cy andE; = ¢/2C;, associated with the self-
mechanical process through an intermediate virtual stateapacitance’y, and the junction capacitandg,, respec-
Such a cotunneling transport leads to the interestingively (see Fig. 1). The two chains are coupled with each
phenomenon of the current mirror. other via the capacitandg;, with which the electrostatic

In capacitively coupled Josephson-junction chains, thenergyE; = ¢2/2C; is associated, while no Cooper-pair
counterpart of the electron-hole pair is the particle-holgunneling is allowed between the two chains [9]. The in-
pair, i.e., the pair of an excess and a deficit in Cooper pairgsachain capacitances are assumed to be so gmakk
across the two chains. Such particle-hole pairs, combine#y, E;) that, without the coupling, each chain would be
with the quantum fluctuations, have been proposed tin the insulating phase [10]. We are interested in the
drive the insulator-to-superconductor transition [5]. Herelimit where the coupling capacitance is sufficiently large
it should be noticed that the particle-hole pair is stablecompared with the intrachain capacitana@s> Cy, Ci,
only near the particle-hole symmetry line; far awayi.e., E; < Ey, E; [see EQ. (4) below]. On each super-
from the symmetry line, it no longer makes the lowestconducting island, external gate voltadge is applied,
charging-energy configuration. Moreover, in a singleand, accordingly, the external charge = CyV,/2e is
chain of Josephson junctions, breaking the particle-holinduced, withe being the electric charge. The exter-
symmetry (by applying a gate voltage) is known tonal chargen, breaks the particle-hole symmetry of the
change immediately the universality class of the transitiorsystem, introducing charge frustration. We restrict our
[6,7]. Therefore, it is necessary to find another relevantliscussion to two regions: near the particle-hole symme-
cotunneling process, if any, off the particle-hole symmetnytry line (ln, — IN'| < 1/4 with N integer) and near
line and examine how the transitions change in couplethe maximal-frustration linéln, — N — 1/2| < 1/4),
Josephson-junction chains. where the properties of the system are severely different.

As an attempt toward that goal, we investigate in thisWe further note the invariance with respect to the sub-
paper the quantum phase transitions in two chains oftitutionn, — n, + 1, and take/N" = 0 without loss of
ultrasmall Josephson junctions, coupled capacitively wittgenerality.
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v, particle-hole symmetry linez, = 0. In the former re-
? gion (In, — 1/2| < 1), the charge configurations which
do not satisfy the conditiom(x) = 1 (for all x) have
w a huge excitation gap of the order Bf. (Note that we
o are interested in the parameter regifye E; << Ey, E;.)

= Furthermore, the ground states 8§, separated from the
excited states by the gap of the orderff have twofold
degeneracy for each, corresponding tor_(x) = *1.
This degeneracy is lifted as the Josephson-coupling en-
S ergy E; is turned on. As a result, it is convenient in
Vg this case to work within the reduced Hilbert spa€g,
wheren;(x) = 0 andn_(x) = *1 for eachx. In the
latter region(|n,| < 1/4), on the other hand, the low-

The Hamiltonian describing the system is given by energy charge configuration should satisfy the condition
n+(x) = 0 for all x. Unlike the former case, the ground

.
=
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FIG. 1. Schematic diagram of the system.

H =2 > [nx) — ngdCop(x,x") [ne(x') — ng] state of H2 is nondegenerate and forms a Mott insula-
€4 x X! tor characterized byt (x) = ny(x) = 0 for all x. AsE;
_ E,Zcos{d)g(x) ~ dox + 1], 1) is turned on, the ground state &f¢c is mixed with the

states withn_(x) = *+2. Accordingly, the relevant re-
duced Hilbert space is given i, wheren,(x) = 0 and
n—(x) = 0, =2 for all x (see also Ref. [5]).

We first consider the region near the maximal-
frustration lines, where we project the Hamiltonian
Eq. (1) ontoZ,, and analyze the properties of the system
near the maximal-frustration lin€ln, — 1/2| < 1/4),
Coolx.x) = C(x,x')[ 1 0} + s, x’CI|: I =1 } based on the resulting effective Hamiltonian. Given the

0 1 -1 1 projection operatoP onto E,, the effective Hamiltonian
(2)  up to the second order ifi;/Ey,

1—P

where the numbei,(x) of the Cooper pairs and the phase
¢ ¢(x) of the superconducting order parameter at sita
the £th chain(¢ = 1,2) are quantum-mechanically con-
jugate variablesin¢(x), ¢p¢(x')] = id¢p 8. The capaci-
tance matrixC in Eq. (1) can be written in the block form:

with the intrachain capacitance matrix
C(x xl) = CO xx T Cl[z‘sxx’ - 5xx’+l - 6xx’ l] gHji|P’ (5)

For simplicity, we keep only the on-site and the nearestcan be obtained via the standard procedure [6,11]. Im-
neighbor interactions between the charges (Ce/Co =  plementing explicitly the projection procedure, we obtain
1) although this is not essential in the subsequent disthe effective Hamiltonian describingsinglespin-1/2 an-

cussion (as long as the interaction range is finite). Withiferromagnetic Heisenberg chain [12]
the block form of the capacitance matrix in Eq. (2), the

Hamiltonian can be conveniently expressed as the sum g .. — yJZSZ(x)SZ(x +1)

Heff EP[H + Hj

H =H) + H. + H; (3)
with the components - JZ[S*(x)S’(x 1)+ S ST+ D],
HY = Up Y [n:(0) = 2, + Vo 3 [n-(0)P, (6)
. * where the exchange interaction and2 the uniaxial
HL =0, [ne(x) = 2n,0[ne(x + 1) — 2n,] anisotropy factor are given byJ = Ej/4E, and
¢ Z i s ¢ vy = 16A2E; /E?, respectively. The pseudospin operators

(4)  have been defined according to

Vi n-(n-(x + 1), si(r) = p & — m&)

P,
Hy = —E; Y codee(x) — ¢elx + 1], ST(x) = PeT (1 — P)eti®p, (7)

- — —igy(x +ig(x

wheren- (x) = n;(x) * n,(x) and the coupling strengths §7(x) = PeTt (1 = P)e™ P
are given byU, = 2E,, U; = 4(C,/Cy)Ey, Vo = E;,  (Note the difference from the standard definition.)
andV, = (C,/C;)E;. The effective Hamiltonian in Eq. (6) includes contribu-

The on-site charging-energy term of the Hamiltoniantions from several complex processes, back in the charge
HY in Eq. (4) reveals clearly the crucial difference be-picture: The flrst term in Eq. (6), which comes from the
tween the charge configurations in the system near thgrojection PH( P, simply describes the nearest-neighbor
maximal-frustration linen, = 1/2 and those near the interaction of the charges in the form (x). On the other
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PR accompanied by the secondary current in the other chain,
o I — " - with the same magnitude but in the opposite direction.
b == = Similar current mirror effects have also been pointed
Y . e e out for n, = 0, where the mechanism is rather different,
A and via the particle-hole pair transport (see below and
FIG. 2. A typical second-order process via intermediate vir-Ref. [5]).
tual states with energies of the order &f near the maximal- We now turn to the region near the particle-hole
frustration line. symmetry line. In the reduced Hilbert spa&g with the

condition n4(x) = 0 satisfied,n_(x)/2 can be regarded
hand, the second term_ in Eq. (6), arising from the secongs the number of particle-hole pairs locatedxat The
order expansio®H; - — aHiP, describes theotunneling  role of such particle-hole pairs can be analyzed by means
process of two partlcles on different chains by way of aof the imaginary-time path-integral representation of the
guantum mechanical virtual state with energy of the orartition function and its dual transformation [5]. The
der of Eg. Figure 2 shows schematically a particlexat Euclidean action, in the current-loop representation [7],
on one chain and another particlexat- 1 (orx — 1) on  then reads
the other chain hopping at the same time in the opposite

-1
direction. This cotunneling process plays a major role T 4K Z [ne(x, 7) = ng][2C1Crp (x, x)]
in the charge transport along the two chains, and drives €oxx'sr
the quantum phase transition in the system, as discussed X [ne(x',7) — ng] + Z [Je(x, )P, (8)
below. ' (xr

The antiferromagnetic Heisenberg chain described byhere the (imaginary) time has been rescaled in
Eq. (6) has been extensively studied [13], and is knownunits of the inverse Josephson plasma frequency
from the Bethe ansatz solution or the Sine-Gordon theoryo !'= n/J4E/E;, the dimensionless coupling constant

[14], to exhibit a quantum phase transition at= 1: deflned to beK = \JE,/16E;. Here (n¢,J;) may be

For y > 1, it belongs to the universality class of the \jowed as the current inl + 1) dimensions, satisfying
Ising chain in the renormalization group (RG) sensegnq continuity equation

and its ground state displays genuine long-range order

in the staggered magnetization, i.€(—1)*S%(x)S%(0)) Vone(x, ) + ViJelx,7) = 0. ©)
approaches a nonzero constantaas- «. This long- With the capacitance matrix Eq. (2), it is convenient to
range order in the staggered magnetization correspondi£compose the action in Eg. (8) into the s§m= S, +

to the charge-density wave in the charge picture of thé-:

original problem. Fory < 1, on the other hand, the 1

system described by Eq. (6) is equivalent to the quantums+ = 4KE Z[n+(x 7) = 2n ' + SK > [+ . T,

XY chain, where the Mermin-Wagner theorem prohibits | o (10)
genuine long-range order. In this case, the system ca§_ = — Z[n_(x,r)]z + — Z[J_(x,r)]z,

be mapped to the repulsive Luttinger model, and the 8K

transverse component of the magnetization, as well ashereJ.(x,7) = Ji(x,7) * Jo(x, 7).

the z component of the staggered magnetization, exhibits The factorE,/E; in the componens,., which is enor-
guasi-long-range order. Namely, bath-1)*S%(x)S?(0))  mous in the parameter regime of interest, again implies
and (S*(x)S~(0)) decay algebraically with the distance the conditionn(x) = 0 already mentioned. Further-
x, and the system in the charge picture displéyggh  more, the continuity equation in Eq. (9) requirés(x)

the diagonal and the off-diagonal quasi-long-range ordeto be a constant on the average, which should obvi-
This state may be regarded as the counterpart of theusly be zero. Consequently, near the transition point,
supersolid, possessing both the diagonal and off-diagon#the system is effectively described by the actién
(true) long-range order and proposed recently in 20n Eg. (10), which is equivalent to the 2I¥Y model,
Josephson-junction arrays [6]. and exhibits a BKT transition & = Kgxr = 2/7 [8].

The properties of the repulsive Luttinger liquid phase,Here the transition, which is between the Mott insulat-
with both the diagonal and off-diagonal quasi-long-rangeng phase and the superconducting phase, is driven ex-
order, has been discussed in Ref. [11] forsimgle clusively by the particle-hole pairs represented by the
Josephson-junction chain. It has been suggested that thariable n_(x), whereasn, and J. merely renormal-
system is extremely sensitive to impurities [15] and mayize the actionS— and shift slightly the transition point
make another insulator, different in nature from the CDW[5]. This shift of the transition point depends on the
insulator. In the coupled chains, the repulsive Luttingerexternal charge:, and may be estimated in the follow-
liquid phase has another remarkable feature of the curreimg way: The transition to the superconducting phase
mirror. According to the basic transport mechanism dueoccurs when the Josephson-coupling endrgylso over-
to the cotunneling process of particles in the two chainsgomes the Coulomb blockade associated with a particle-
shown in Fig. 2, the current fed through one chain ishole pair. Since the Coulomb blockade increases with
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ng Coupled chain systems are presumably be realized in
. experiment by current techniques, which have already
~=_ ' made it possible to fabricate submicron metallic junction

UNIERESSSS L arrays with large interarray capacitances [4] as well
o as large arrays of ultrasmall Josephson junctions [1].

| We also point out that quasiparticles have been safely
cowf - LL s disregarded in obtaining the equilibrium properties at zero
e temperature.
A This work was supported in part by the Ministry of
0 e SK;Z;,I{TED E Science and Technology through the CRI Program, from
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