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Cotunneling Transport and Quantum Phase Transitions in Coupled Josephson-Junction Chains
with Charge Frustration
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We investigate the quantum phase transitions in two capacitively coupled chains of ultrasmall
Josephson junctions, where the particle-hole symmetry is broken by the gate voltage applied to each
superconducting island. Near the maximal-frustration line, cotunneling of the particles along the two
chains is shown to play a major role in the transport and to drive a quantum phase transition out of the
charge-density-wave insulator, as the Josephson-coupling energy is increased. We also argue briefly
that slightly off the symmetry line the universality class of the transition remains the same as that right
on the line, being driven by the particle-hole pairs. [S0031-9007(98)07601-7]

PACS numbers: 74.50.+r, 67.40.Db, 73.23.Hk
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Systems of ultrasmall tunnel junctions composed
metallic or superconducting electrodes have been t
source of a great number of experimental and theoretic
works [1]. Single charge (electron or Cooper-pair
tunneling observed in those systems demonstrates
remarkable effects of Coulomb blockade. Especiall
in Josephson-junction arrays, the charging energy
competition with the Josephson-coupling energy fu
ther brings about the noble effects of quantum fluctu
tions, which induce quantum phase transitions at ze
temperature [2]. Very recently, another fascinatin
manifestation of Coulomb blockade has been revealed
capacitively coupled one-dimensional (1D) arrays o
metallic tunnel junctions [3,4]: In such coupled chains
the major transport along both chains occurs viacotun-
neling of the electron-hole pairs, which is a quantum
mechanical process through an intermediate virtual sta
Such a cotunneling transport leads to the interesti
phenomenon of the current mirror.

In capacitively coupled Josephson-junction chains, t
counterpart of the electron-hole pair is the particle-ho
pair, i.e., the pair of an excess and a deficit in Cooper pa
across the two chains. Such particle-hole pairs, combin
with the quantum fluctuations, have been proposed
drive the insulator-to-superconductor transition [5]. Her
it should be noticed that the particle-hole pair is stab
only near the particle-hole symmetry line; far awa
from the symmetry line, it no longer makes the lowes
charging-energy configuration. Moreover, in a singl
chain of Josephson junctions, breaking the particle-ho
symmetry (by applying a gate voltage) is known t
change immediately the universality class of the transitio
[6,7]. Therefore, it is necessary to find another releva
cotunneling process, if any, off the particle-hole symmet
line and examine how the transitions change in coupl
Josephson-junction chains.

As an attempt toward that goal, we investigate in th
paper the quantum phase transitions in two chains
ultrasmall Josephson junctions, coupled capacitively wi
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each other. The particle-hole symmetry is broken b
the gate voltage applied to each superconducting islan
the resulting induced charge introducesfrustration to the
system. Near the maximal-frustration line, cotunneling
of the particles along the two chains is found to play
a major role in the transport and to drive a quantum
phase transition out of the charge-density-wave (CDW
insulator, as the Josephson-coupling energy is increase
We also argue that slightly off the symmetry line the
universality class of the transition remains the same as th
right on the line, i.e., a Berezinskii-Kosterlitz-Thouless
(BKT) transition [8], driven by the particle-hole pairs.

We consider two 1D arrays, i.e., chains of Joseph
son junctions, each of which is characterized by th
Josephson-coupling energyEJ and the charging energies
E0 ; e2y2C0 andE1 ; e2y2C1, associated with the self-
capacitanceC0 and the junction capacitanceC1, respec-
tively (see Fig. 1). The two chains are coupled with eac
other via the capacitanceCI , with which the electrostatic
energyEI ; e2y2CI is associated, while no Cooper-pair
tunneling is allowed between the two chains [9]. The in
trachain capacitances are assumed to be so smallsEJ ø
E0, E1d that, without the coupling, each chain would be
in the insulating phase [10]. We are interested in th
limit where the coupling capacitance is sufficiently large
compared with the intrachain capacitances,CI ¿ C0, C1,
i.e., EI ø E0, E1 [see Eq. (4) below]. On each super-
conducting island, external gate voltageVg is applied,
and, accordingly, the external chargeng ; C0Vgy2e is
induced, with e being the electric charge. The exter-
nal chargeng breaks the particle-hole symmetry of the
system, introducing charge frustration. We restrict ou
discussion to two regions: near the particle-hole symme
try line (jng 2 N j ø 1y4 with N integer) and near
the maximal-frustration linesjng 2 N 2 1y2j ø 1y4d,
where the properties of the system are severely differen
We further note the invariance with respect to the sub
stitution ng ! ng 1 1, and takeN ­ 0 without loss of
generality.
© 1998 The American Physical Society
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FIG. 1. Schematic diagram of the system.

The Hamiltonian describing the system is given by

H ­ 2e2
X

,,,0;x,x0

fn,sxd 2 nggC21
,,0 sx, x0d fn,0sx0d 2 ngg

2 EJ

X
,,x

cosff,sxd 2 f,sx 1 1dg , (1)

where the numbern,sxd of the Cooper pairs and the phas
f,sxd of the superconducting order parameter at sitex on
the ,th chain s, ­ 1, 2d are quantum-mechanically con
jugate variables:fn,sxd, f,sx0dg ­ id,,0dxx0. The capaci-
tance matrixC in Eq. (1) can be written in the block form:

C,,0sx, x0d ; Csx, x0d
∑

1 0
0 1

∏
1 dx,x0CI

∑
1 21

21 1

∏
(2)

with the intrachain capacitance matrix

Csx, x0d ; C0dxx0 1 C1f2dxx0 2 dx,x011 2 dx,x021g .

For simplicity, we keep only the on-site and the neare
neighbor interactions between the charges (i.e.,C1yC0 &

1) although this is not essential in the subsequent d
cussion (as long as the interaction range is finite). W
the block form of the capacitance matrix in Eq. (2), th
Hamiltonian can be conveniently expressed as the sum

H ­ H0
C 1 H1

C 1 HJ (3)

with the components

H0
C ; U0

X
x

fn1sxd 2 2ngg2 1 V0

X
x

fn2sxdg2,

H1
C ; U1

X
x

fn1sxd 2 2ngg fn1sx 1 1d 2 2ngg

1 V1

X
x

n2sxdn2sx 1 1d ,
(4)

HJ ; 2EJ

X
,,x

cosff,sxd 2 f,sx 1 1dg ,

wheren6sxd ; n1sxd 6 n2sxd and the coupling strengths
are given byU0 . 2E0, U1 . 4sC1yC0dE0, V0 . EI ,
andV1 . sC1yCI dEI .

The on-site charging-energy term of the Hamiltonia
H0

C in Eq. (4) reveals clearly the crucial difference be
tween the charge configurations in the system near
maximal-frustration lineng ­ 1y2 and those near the
e
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particle-hole symmetry lineng ­ 0. In the former re-
gion sjng 2 1y2j ø 1d, the charge configurations which
do not satisfy the conditionn1sxd ­ 1 (for all x) have
a huge excitation gap of the order ofE0. (Note that we
are interested in the parameter regimeEI , EJ ø E0, E1.)
Furthermore, the ground states ofH0

C , separated from the
excited states by the gap of the order ofEI , have twofold
degeneracy for eachx, corresponding ton2sxd ­ 61.
This degeneracy is lifted as the Josephson-coupling e
ergy EJ is turned on. As a result, it is convenient in
this case to work within the reduced Hilbert spaceEd,
where n1sxd ­ 0 and n2sxd ­ 61 for eachx. In the
latter regionsjngj ø 1y4d, on the other hand, the low-
energy charge configuration should satisfy the conditio
n1sxd ­ 0 for all x. Unlike the former case, the ground
state ofH0

C is nondegenerate and forms a Mott insula
tor characterized byn1sxd ­ n2sxd ­ 0 for all x. As EJ

is turned on, the ground state ofH0
C is mixed with the

states withn2sxd ­ 62. Accordingly, the relevant re-
duced Hilbert space is given byEs, wheren1sxd ­ 0 and
n2sxd ­ 0, 62 for all x (see also Ref. [5]).

We first consider the region near the maximal
frustration lines, where we project the Hamiltonian
Eq. (1) ontoEd, and analyze the properties of the system
near the maximal-frustration linesjng 2 1y2j ø 1y4d,
based on the resulting effective Hamiltonian. Given th
projection operatorP onto Ed, the effective Hamiltonian
up to the second order inEJyE0,

Heff ; P

∑
H 1 HJ

1 2 P

E 2 H0
C

HJ

∏
P , (5)

can be obtained via the standard procedure [6,11]. Im
plementing explicitly the projection procedure, we obtai
the effective Hamiltonian describing asinglespin-1y2 an-
tiferromagnetic Heisenberg chain [12]

Heff ­ gJ
X

x
SzsxdSzsx 1 1d

2
1
2

J
X

x
fS1sxdS2sx 1 1d 1 S2sxdS1sx 1 1dg ,

(6)

where the exchange interaction and the uniaxia
anisotropy factor are given byJ ; E2

Jy4E0 and
g ; 16l2E2

I yE2
J , respectively. The pseudospin operator

have been defined according to

Szsxd ; P
n1sxd 2 n2sxd

2
P ,

S1sxd ; Pe2if1sxds1 2 Pde1if2sxdP , (7)

S2sxd ; Pe2if2sxds1 2 Pde1if1sxdP .

(Note the difference from the standard definition.)
The effective Hamiltonian in Eq. (6) includes contribu-

tions from several complex processes, back in the char
picture: The first term in Eq. (6), which comes from the
projectionPH1

CP, simply describes the nearest-neighbo
interaction of the charges in the formn2sxd. On the other
4241
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FIG. 2. A typical second-order process via intermediate vi
tual states with energies of the order ofE0 near the maximal-
frustration line.

hand, the second term in Eq. (6), arising from the seco
order expansionPHJ

12P
E2H0

C
HJP, describes thecotunneling

process of two particles on different chains by way of
quantum mechanical virtual state with energy of the o
der of E0. Figure 2 shows schematically a particle atx
on one chain and another particle atx 1 1 (or x 2 1) on
the other chain hopping at the same time in the oppos
direction. This cotunneling process plays a major ro
in the charge transport along the two chains, and driv
the quantum phase transition in the system, as discus
below.

The antiferromagnetic Heisenberg chain described
Eq. (6) has been extensively studied [13], and is know
from the Bethe ansatz solution or the Sine-Gordon theo
[14], to exhibit a quantum phase transition atg ­ 1:
For g . 1, it belongs to the universality class of the
Ising chain in the renormalization group (RG) sense
and its ground state displays genuine long-range ord
in the staggered magnetization, i.e.,ks21dxSzsxdSzs0dl
approaches a nonzero constant asx ! `. This long-
range order in the staggered magnetization correspon
to the charge-density wave in the charge picture of th
original problem. Forg , 1, on the other hand, the
system described by Eq. (6) is equivalent to the quantu
XY chain, where the Mermin-Wagner theorem prohibit
genuine long-range order. In this case, the system c
be mapped to the repulsive Luttinger model, and th
transverse component of the magnetization, as well
the z component of the staggered magnetization, exhib
quasi-long-range order. Namely, bothks21dxSzsxdSzs0dl
and kS1sxdS2s0dl decay algebraically with the distance
x, and the system in the charge picture displaysboth
the diagonal and the off-diagonal quasi-long-range orde
This state may be regarded as the counterpart of t
supersolid, possessing both the diagonal and off-diagon
(true) long-range order and proposed recently in 2
Josephson-junction arrays [6].

The properties of the repulsive Luttinger liquid phase
with both the diagonal and off-diagonal quasi-long-rang
order, has been discussed in Ref. [11] for asingle
Josephson-junction chain. It has been suggested that
system is extremely sensitive to impurities [15] and ma
make another insulator, different in nature from the CDW
insulator. In the coupled chains, the repulsive Luttinge
liquid phase has another remarkable feature of the curre
mirror. According to the basic transport mechanism du
to the cotunneling process of particles in the two chain
shown in Fig. 2, the current fed through one chain
4242
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accompanied by the secondary current in the other ch
with the same magnitude but in the opposite directio
Similar current mirror effects have also been point
out for ng ­ 0, where the mechanism is rather differen
and via the particle-hole pair transport (see below a
Ref. [5]).

We now turn to the region near the particle-ho
symmetry line. In the reduced Hilbert spaceEs with the
condition n1sxd ­ 0 satisfied,n2sxdy2 can be regarded
as the number of particle-hole pairs located atx. The
role of such particle-hole pairs can be analyzed by me
of the imaginary-time path-integral representation of t
partition function and its dual transformation [5]. Th
Euclidean action, in the current-loop representation [
then reads

S ­
1

4K

X
,,0,xx0,t

fn,sx, td 2 ngg f2CIC
21
,,0 sx, x0dg

3 fn,sx0, td 2 ngg 1
1

4K

X
,,x,t

fJ,sx, tdg2, (8)

where the (imaginary) time has been rescaled
units of the inverse Josephson plasma frequen
v21

p ; h̄y
p

4EIEJ , the dimensionless coupling consta
defined to beK ;

p
EJy16EI . Here sn,, J,d may be

viewed as the current ins1 1 1d dimensions, satisfying
the continuity equation

=tn,sx, td 1 =xJ,sx, td ­ 0 . (9)

With the capacitance matrix Eq. (2), it is convenient
decompose the action in Eq. (8) into the sumS ­ S1 1

S2:

S1 .
E0

4KEI

X
x,t

fn1sx, td 2 2ngg2 1
1

8K

X
x,t

fJ1sx, tdg2,

S2 .
1

8K

X
x,t

fn2sx, tdg2 1
1

8K

X
x,t

fJ2sx, tdg2,
(10)

whereJ6sx, td ; J1sx, td 6 J2sx, td.
The factorE0yEI in the componentS1, which is enor-

mous in the parameter regime of interest, again impl
the condition n1sxd ­ 0 already mentioned. Further
more, the continuity equation in Eq. (9) requiresJ1sxd
to be a constant on the average, which should ob
ously be zero. Consequently, near the transition po
the system is effectively described by the actionS2

in Eq. (10), which is equivalent to the 2DXY model,
and exhibits a BKT transition atK ­ KBKT ø 2yp [8].
Here the transition, which is between the Mott insula
ing phase and the superconducting phase, is driven
clusively by the particle-hole pairs represented by t
variable n2sxd, whereasn1 and J1 merely renormal-
ize the actionS2 and shift slightly the transition point
[5]. This shift of the transition point depends on th
external chargeng and may be estimated in the follow
ing way: The transition to the superconducting pha
occurs when the Josephson-coupling energyEJ also over-
comes the Coulomb blockade associated with a partic
hole pair. Since the Coulomb blockade increases w
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FIG. 3. Schematic phase diagram of the coupled Josephs
junction chains.

ng, approximately given by8E0n2
g 1 4EI , the critical

value ofEJ is concluded to grow from the symmetry-line
value 16K2

BKTEI as ng is increased. It is also stressed
that the BKT-type transition survives the gate voltage a
long as the induced charge is sufficiently smallsjngj ø
1y4d; this is in sharp contrast to the single-chain cas
where breaking the particle-hole symmetry by nonze
ng immediately alters the universality class of the tran
sition [6].

In the parameter regimes other than those conside
above, the behavior of the system may be inferred by t
following argument: It is obvious that, forEJ ¿ E0, the
system should be a superconductor with each chain
perconducting separately. Note that this superconduct
phase, denoted byS, comes from theparticle (Cooper-
pair) transport as usual, thus it is different in charact
from the superconducting phase in the regionEJ ø E0.
In the latter, denoted byS0, only the coupled chains as
a whole are superconducting, with superconductivity ari
ing from theparticle-hole pairtransport. Far away from
both the particle-hole symmetry line and the maxima
frustration lines, the Hamiltonian may be projected on
the subspace, wheren1sxd ­ 0, 1 andn2sxd ­ 0, 1 for all
x, and single-particle processes dominate the transpor
the system.

The observations so far are summarized by the pha
diagram displayed schematically in Fig. 3. The phas
transitions of our main concern are represented by t
thick solid lines, separating the CDW from the repulsiv
Luttinger liquid (LL) and the Mott insulator (MI) from the
superconductorsS0d; the somewhat speculative boundarie
discussed above are depicted by dashed lines. Here
is not clear within our approach whether the bounda
between the repulsive Luttinger liquid region and th
superconducting region in the phase diagram describe
phase transition or merely a crossover. Furthermore, ev
in the single-chain case, the properties of the repulsi
Luttinger liquid phase is controversial, and the possibilit
of an intermediatenormal phase has recently been raise
as well [16].
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Coupled chain systems are presumably be realized
experiment by current techniques, which have alread
made it possible to fabricate submicron metallic junctio
arrays with large interarray capacitances [4] as we
as large arrays of ultrasmall Josephson junctions [1
We also point out that quasiparticles have been safe
disregarded in obtaining the equilibrium properties at ze
temperature.
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