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We investigate theoretically the transport properties of a closed Aharonov-Bohm interferometer containing
two quantum dots in the strong coupling regime. We find two distinct physical scenarios depending on the
strength of the interdot Coulomb interaction. When the interdot Coulomb interaction is negligible, only spin
fluctuations are important and each dot develops a Kondo resonance at the Fermi level independently of the
applied magnetic flux. The transport is characterized by the interference of these two independent Kondo
resonances. On the contrary, for large interdot interaction, only one electron can be accommodated onto the
double-dot system. In this situation, not only the spin can fluctuate but also the orbital degree of ftdetiom
pseudospin As a result, we find different ground states depending on the value of the applied flux. When
¢=m (mod 2m) (¢p=27d/ Dy, whered is applied flux andby=h/e the flux quantumthe electronic transport
can take place via simultaneous correlations in the spin and pseudospin sectors, leading to the highly symmet-
ric SU(4) Kondo state. Nevertheless, we find situations whth- 0 (mod 2r) where the pseudospin quantum
number is not conserved during tunneling events, giving rise to the commae®) 8dndo state with an
enhanced Kondo temperature. We investigate the crossover between both ground states and discuss possible
experimental signatures of this physics as a function of the applied magnetic flux.

DOI: 10.1103/PhysRevB.71.115312 PACS nun®er73.23-b, 72.15.Qm, 73.63.Kv

I. INTRODUCTION scenario$4?° Thus, in a double QD it is possible to tune

Progressive advance in nanofabrication technology ha@PPropriately the gate voltages in order to find two charge
achieved the realization of tiny droplets of electrons termecptateS almost degenerate. If inéerdot Coulomb interaction
quantum dot4QDS with a high-precision tunability of the S 'arge enough these two states éng=1,n,=0} and {n,
transport parametetsOne of the most exciting features of a =0:N2=1}, whereny ) =(fly)) is the charge state in the dot
QD is its ability to behave as a quantum impurity with spin “1” (“2”). This is one of the basic ingredients to observe
1/223 At temperatures lower than the Kondo temperaturé<ondo physics: the existence of degeneracy between two
(Ty), the localized spin becomes strongly correlated with theduantum states. The Kondo effect is then developed to its
conduction electrons and consequently is screérfeds a fullest extentin the pseudospiarbital) sector. We define the
result of the increasing rate of scattering there arises a res@seudospirT as follows: it points along )z when the elec-
nance at the Fermi energly) in the density of state©OS)  tron is at the “1"(“2") dot: T?=(1/2)(fA,—f,). The pseu-
of the QD# The transmission through the quantum dot isdospin of the double-QD system can be 1/2 or —=1/2, which
then almost perfect. This is the so-calladitary limit where is quenchedscreeneflvia higher order tunneling processes
conductance reache®?h.>” Among many of the advan- producing the so-calledrbital Kondo effec#?-24Other real-
tages offered by QD-based devices, we highlight the possizations of such exotic “orbital Kondo effects” have been
bility of studying the Kondo effect out of equilibrium by recently proposed in different QD-related structures as
applying a dc bidsor a time-dependent potentit? well.2~2"When theintradot Coulomb energy for each dot is

A natural step forward is the understanding of the mag{arge, then each QD also behaves as a magnetic impurity and
netic interactions of two artificial Kondo impuritiés:**The  the conventional Kondo effect is also observed in the spin
investigation of double QDs is mainly motivated by the pos-sector(S§=+1/2). The quantum fluctuations between these
sibility of their application as solid-state quantum bits, byfour state§S=+1/2={7, |} andT*=+1/2={0, O}] lead to
using either spin or charge degrees of freed8m When  an unusual strongly correlated Fermi liquid state in which the
the two QDs are interacting, the orbital degrees of freedontreal) spin and pseudospin are totally entangleth contrast
come into play as a pseudospin, as shown experimentally ito common spin Kondo physics observed in QDs, this new
Refs. 22 and 23, which may give rise to exotic physicalstate possesses a higher symmetry(43torresponding to
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As we anticipated, the physical scenario in our setup will
depend much on the strength of the capacitive interdot cou-
pling between the two dots. When the interdot Coulomb en-
ergy is negligible, each QD can accommodate one electron
and both spins become screened. We find that each QD de-
velops a Kondo resonance at the Fermi lekgkE0. Their
interference causes a very narrdip in the differential con-
ductanceg=dl/dVy. except atp~=0 (mod 27). In the limit
of strong interdot Coulomb interaction there are two degen-
erate charge states described by the pseudoBfint1/2.

The presence of flux allows us to explore two interesting
situations:(i) when the pseudospin is a good quantum num-
FIG. 1. Sketch of the Aharonov-Bohm interferometer containingber [ =7 (mod 27)] and (ii) when the pseudospin is not

two quantum dots attached to two leads. The arrowed straight lineonserved during tunneling. In the former case the(43U
indicates the tunnel coupling and the dashed line represents thkondo state is fully developed, whereas far away from this
interdot Coulomb interaction. symmetry point the conventional $2) Kondo physics

the total internal degrees of freedom of the double QD:arlses. In addition, we will show tha shows a zero-bias

: : anomaly(ZBA) instead of a dip when the interdot Coulomb
o, l DiT_D’ ! DA}' The sqr(k)aened magnitude is now e energy is large, which is suppressedfasnhances and even-
perspin M=Z2,,(S+1/ 2)(TSUZ‘)1./ 2). Importantly, the asso- 4jly disappears at the destructive interference condition
ciated Kondo temperaturg " is muchhigherthan in the  [\when ¢=7 (mod 2m)], resulting in a complete suppression
common spin-1/2 Kondo effect in a QD, which makes thet the tunneling current. Nevertheless, this fact does not pre-
observation of this spin and pseudospin entangled state mo{g s from observing the highly symmetric @JKondo
accessiblé® Strong entanglement of charge and spin ﬂipstate since it survives even away fraf 7 (mod 27) where

events is also possible in a single-electron Henetallic the differential conductance is not totally suppressed
grain) coupled to a lead via a smaller quantum dot in the . . . ) Y suppressed.
This work is organized as follows: we begin in Sec. I

Kondo regime?®2” Here, the spin Kondo physics stems from . o .
the screening of the spin of the small dot, while the pseupresen'ung the theory to treat both limits for the interdot Cou-

dospin Kondo physics emerges when charging states of tH@Mb interaction using different theoretical techniques. We

grain with (charge Q=0 andQ=e are almost degenerate. ~ derive the transport properties as well. In Sec. lll we present
The most prominent feature of the Kondo effect is theour numerical results and their interpretation. Finally, we

phase coherence experienced by the electrons that particip@témmarize our main conclusions in Sec. IV.

in the many-body correlated state. Therefore, it is thus of

W1L=Ve —i¢/4 W1R=Ve i¢/4

W2L=Ve i¢/4 W2R=Ve —ip/4

great interest to have access to the phase of the transmission Il. THEORY
amplitude in order to give a full characterization of the trans-
port properties. The widely known Aharonov-Boh(AB) The system that we consider is depicted in Fig. 1. It is a

effect® provides us a valuable tool to investigate quantumclosed-geometry AB interferometer, where electrons emitted
coherence of electrons. When the coherence of a circulatinfjom the leads are never lost in surrounding gates. Electrons
electron wave packet enclosing a magnetic fibxis pre-  traveling through the device have to go either through the
served, the result is an extra flux-dependent phase (hift  upper dot or through the lower dot before being transmitted
In the simplest realization of an AB interferometer, an in-into either the left or the right electrode. The area enclosing
coming electronic wave function splits into two paths, whichthe two paths is penetrated by a fldx The two reservoirs
join again into the outgoing electronic wave function. Apply- are Fermi seas of electrons described by the Hamiltonian
ing a magnetic flux which threads this closed geometry, the
outgoing wave function acquires a flux-dependent phése, Ho= > >, gakcgkgcmm (2.2
=27®/d,, whered=BSis the flux,B is the applied mag- e=LR ko o
netic field, Sis the enclosing surface, anby=h/e the flux . ) _ o
guantum. As a consequence, the transmission is a periodi¥herec, g ,(CLr) ko) is the creatior(annihilatior) operator
function of ¢. for an electron in the statewith spino in the leadL(R). The

In this work, we consider a double-quantum dot embed-isolated dots are described B
ded in a prototypical mesoscopic interferometer threading a
magnetic flux®, see Fig. £* Our motivation to investigate Hp= 2 | 2 edl by +Uin i) [+ Uy, (2.2)
this system is twofold(i) there are striking effects, such as i=12| o
Fano resonances, which arise already in the noninteracting
casé®32and, more interestinglyii) as the interdot interac- The operatod (d; ,) is the creatior(annihilation operator,
tion gets stronger, the local density of states on the double; is the level positionl; are theintradot Coulomb interac-
QD changes drasticalf}. Here, we provide a unified picture tion, andni,(,:d;‘ygdi,(, is the occupation number on the dot
of the combined influence of wave interference, Kondo effect);, denotes thenterdot Coulomb interaction between the
and interdot interaction on the electronic transport through a dots. The tunneling between the dots and the leads is mod-
double QD in and out of equilibrium eled byH+
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- S ingly small (and yetU;,U,— ), the two dots are both sin-
HT j:El,ze:EL,RKEGW“Ce’k’UdJ’”h'c' 23 gly occupied:(n))=(n,)~1 and each dot can thus be re-
garded as a magnetic impurity with spin 1/2. In this situation
we notice that it is convenient and provides a more transpar-
ent picture of the system to perform the following canonical
transformation:

_ i /4 _ +igl4 . .
W=V, W=V e777, Cio | 1 it i [e ,
- \E e—iﬂ'/4 e+i7T/4 ' ( 7)

The tunneling amplitud&V, ; in Eq. (2.3) from the dotj to
the leadf is modulated by the external fluk threading the
loop (Fig. 1) and given by

CZ,k,U CR,k,o’

Wi 1= Vg €794 Wi, = Vg 79, (2.4
whereV, : is the amplitude in the absence of the flux and Under this transformation, the Hamiltonian for the leads Eq.

p=2mD/D,, with ®, being the flux quantunid,=h/e). (2.1 is rewritten as follows:
Then, the total Hamiltonian i8{,y;5=Ho+Hp+Hr. B T
To make the physical interpretations of our results more Ho= §2k2 8KCu k,oCuk,o (2.9
clear, we perform a few simplifications. First of all, we as- Hehe R
sume identical dots and symmetric junctions; i€=e,  while the tunneling Hamiltonian Ed2.3) reads
=&y, U]_:UZEU, and VL,l:VL,ZZVR,l:VR,ZEV' This is
only for the sake of simplicity* Furthermore, we consider He= D> > > VM,iCL,k,adi,a*' H.c., (2.9
the wide band limit, in which the couplings are independent i=1,2 u=1,2 ko
of energy. Then, the hybridization of the dot levels with the

conduction band is well characterized by the parameters Where

Tg;i i(@) = mpWe W 5, (2.5 Vy 1= Vs ,= cos(/)_ T
or, in the matrix notation 4
R S b+
FL(¢) = 1—‘L e+iq§/2 1 ' FR: FL! (26) Vl,2: V2'1: COST . (210)

wherel' = mp,V?, with p, being the DOS in the leaflat the  Now, the Schrieffer-Wolff transformatiéh of the Hamilto-

Fermi energy(p. = pr=po)- nians Egs.(2.9), (2.9), and (2.2 leads to the Kondo-type
Since we are interested in Kondo correlatiéhisye shall  Hamiltonian

mainly concentrate on the Kondo regirfiatradot charging
energyU — o and localized level g4> (I +T'g)] for which  Hygngo= Ho+ 331(S1+ S,) - [ #1(0) o41(0) + ¢7(0) 0r44(0) |
the fluctuations of the charges in the single dots are highly

! t t
suppressed. For the interdot Coulomb interactidy3, we *35(51+S) '["”1(0)”%(0)*' ‘/’2(0)‘”/’1(0)]

will investigate two opposite limits, namely) U;,=0 and +334(S,-S) [0 a1(0) - ¥(0)oy(0) ]

(ii) U;,=. In the former case, each dot is singly occupied X

((np=(n,y=1) and behaves as separate magnétiondo) =39S+ S, (2.11

impurities. In the latter case, the double-quantum dot syste
contains just one electrdin;+n,)=1). These two limits in-
duce striking differences between the resulting Kondo ef- d; Cuk

fects. Moreover, the interference modulated by the external = d’ , =l (2.12
flux ¢ threading the AB geometry leads to an even richer ! Crk.l

variation of the Kondo effects in either case. Our goal is to(j=1,2 andu=1,2), according to which the spin operator on
investigate these scenarios thoroughly. For this purpose We dotj is given by

employ different techniques: scaling analys$ialid for T

>Ty), the slave-boson mean-field theo(@BMFT, for T i h 4

<Ty), and the numerical renormalization grouplRG) ESJ' - E"bi oy, (2.13
method. We elaborate below on these approaches.

T Eqg. (2.11), we have adopted the spinor representations

where o denotes the three Pauli matrices.

A. Scaling analysis The coupling constantg; (i=1,...,4) in Eqg. (2.11) are
We derive effective Hamiltonians in the Kondo regime for given initially (in the RG senseby
the two limiting case$U;,=0 andU,,=«) and discuss their VP2
qualitative features at equilibrium by means of the scaling  j, = wu J,=J,coddl2), Jz=J;sin(¢l2),
theory. e
1. Case Y,—0 (2.14

First, we discuss the large capacitance limit between th@here A/ is the spin degeneracy. Under the renormalization
two dots(U;,— 0). As we mentioned, whet,, is vanish-  group transformatiof’ these coupling constants scale as
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dJ; , dJ; equivalentlyc,  , andc, ), individually. The ferromagnetic
m = po(J+35+3)), Qg " 2podia = 2podids, coupling in Eq.(2.20 does not play any significant role in
this case, because its coupling strend@ihis the same as the

(2.19 exchange coupling between the localized spins and the itin-

where ¢=-logD indicates the renormalization stef® is  €rant spins. Therefore, the mod@.20 corresponds to the

the bandwidth J, is given by3-40 usual single-channel spin-1/2 Kondo model.
5 The coupling constants scale according to the renormal-
J4 =~ 2peJ1(0)Y(D)(1 + cose), (2.16  jzation group equation
where Y(D) is order 1.J, corresponds to a ferromagnetic dJ )
RKKY coupling between the spins in the dots. qe = 2po¥ (2.2

Under the renormalization group transformation all the
system flows to the strong coupling fixed point, with the and the Kondo temperature is given by

ratiosJ,/J4, J3/J;, @andJ,/J; remaining constant. In particu- 1
lar, the solution for the initial condition®.14) satisfies the T« ~D exp(— _) (2.22
simple properties 2pod
J, J In the general casd¢+0,w), the two localized spins
J_l = cog¢/2), J_l =sin(¢/2), (217 (#/2)S, and(#/2)S, are coupled to two conduction bangs
and ¢, let alone the ferromagnetic coupling with each other.
with J; — < according to the equation Unlike the previous, special case ¢t , the two conduc-
dJ; tion bands are no longer independent; see @Bdll). This
—:ZpoJ"{. (2.189 fact makes the physical interpretation of the model rather
d¢ involved. However, the renormalization group flpsee Egs.

distinctive ways for different values of flug, especially, for ~Malization group methodsee below suggest thafor any
#=0 (mod 2m) and ¢=m (mod 27). In the absence of the finite flux @ #0), the two localized spins are fully screened

external flux (¢=0), J;=0 while J;=J,=J and J,=|  Outatzero temperature
=pOJ§/2. Thus, the Kondo-type Hamiltoniat2.11) is re- 2. Case Y,—x
duced to

We now investigate the limit dfJ;,— c where the system
Hyondo= Ho + %J(Sl + S)[41(0) + Y(0)] o ¢41(0) + 14,(0)] properties change completely. In this case, only one electron
is accommodated in the whole double QD system, {m®.,
~15:-5. (2.19 +n,) =1 having either spir{ or spin |. The orbital degrees

This is the two-impurity[characterized by the two spins of freedom(pseudospinplay as significant a role as the spin,
(h12)S, and(%/2)S,] Kondo model coupled to a single con- and the double QD behaves as an impurity with four degen-
duction band (characterized by, +,, or equivalently erate levels with different tunneling amplitudes depending on
CikotCak o). The two spins are coupled to each other ferro-the applied flux. Due to the orbital degrees of freedom in-
magnetically(-1S, - S,, with | >0). Due to the ferromagnetic volved in the interference, the symmetry of the wave func-
coupling, and to the fact that both spins are coupled to thé&on is crucial. Therefore, in this limit, it is more useful to
same conduction band, the total spin is underscreendd atwork with a representation in terms of the symmetguen)
— 038 Note that a strong RKKY interaction may arise from and antisymmetri¢odd combinations of the localized and
our peculiar geometry since both QDs are directly connectedelocalized orbital channets.
to a single channel in the leads. Nevertheless, in an actual In accordance with these observations, we take the fol-
experimental situaticii?® the QDs are far apart and the lowing canonical transformations:
RKKY interaction may be negligible. Furthermore, slightly q 1M1 1104
above =0 (mod 2m), even for alarge ferromagnetic cou- [ e } = _{ M 14’] (2.23
pling |I|>Tx=D exp(-1/2pyJ), the spins of the dots added idos] V2 dz
in a S=1 state become effectively screeriéd.

For the flux$=m (mod 2m), the coupling constant,=0 for the QD electrons, and

1 -1

while J;=J3=J,/2=1J. Then, the Kondo-type Hamiltonian Ceko |_ 1|1 1 ||CLke 29
(2.12) is reduced to Cokol V211 —1]lcrko )’ (2.24
Hiondo™= Mo+ 3351 - ¥4(0)af(0) + 33S, - Y(0) o (0) for the conduction electrons.

~135,.5, (2.20 Then, we identify the pseudospin ggown as the elec-
2 ' ' tron occupying the evefodd) orbital. More explicitly, taking

This model is clearly distinguished from the one in the pre-the four-spinor representation

vious case ofp=0 (mod 27) cf. Eq. (2.19. The two impu- _

rity spins (A/2)S, and (#/2)S,, of magnitude 1/2 are Ya=[de e o1, do, ], (2.29

coupled to two independent conduction bangisand i, (or  the spin and orbital pseudo-spin operators are given by
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the renormalization group transformation for typical behav-
iors of the solutions at different values of flgx Importantly,
we show now that the system exhibits a crossover from 0

respectively, wherer(7) are Pauli matrices operating on the flux to = flux. Near the 0 flux[¢=~0 (mod 27)], the
spin (pseudospinspace. Notice that in this even/odd basisdouble-QD odd orbital is completely decoupled from the

the dot pseudospin has been rotat€ti-T? TY—-TY, and
T2—T*, whereas the spin remains invariant.

In terms of the new operato, ,, dy ) Cek o» @NACo
the total HamiltonianH, is rewritten as follows:

7—{D = 2 E Sk,u'ca,k,u'+ 2 |:2 Eddl.z,ada,(f-’- %(U

a=e,0 k.o a=e0| o

+ UlZ)na,Tna,l:| + 711(U +3U1)NeN, — %(U -Ujpp)

X (dlady) - (dfedy) — 3(U - Ug)(d] ,dl do dos

+He)+ 2 X Vel dastHe, (2.27)
a=e,0 ks o
where
Ve=2Vcod¢ld), V,=2Vsin(¢ld). (2.28

odd-symmetric lead and only the even orbital is coupled to
the even-symmetric conduction lead with=2V [see Eq.
(2.28]. Equation(2.29 then reduces to a model involving
only the spin in the even orbitéf/2)S, [not (7/2)S]

Hiondo= Ho+ ISe - (Yo th) (1 + T + 2I(plp) T = JsTZ,
(2.33

wherel=2|V|?/|e4|. This model was already analyzed in Ref.
41, where it was shown that the ground state corresponds to
a Fermi liquid state with a greatly enhanced Kondo tempera-
ture Te*?=D exp(—1/4p,J) (due to a coupling doubling of
the even orbital to the even-symmetric conduction lead, i.e.,
Ve=2V) and the orbital pseudospin gets frozen completely,
T#=1. (J5 does not flow to the strong coupling regim®ne

can easily see that the model33 is equivalent to the two-
fold orbitally degenerate Anderson model described by the

Therefore, the eveifodd orbitals are coupled only to the commonSU(2) Kondo physic®

ever{odd)-symmetric combinations of the conduction bands.

Near ther flux [ = 7 (mod 27)] the exchange couplings

To examine the low-energy properties of the system, weare J=J,=J,=J3, andJ,=J5=0. The corresponding Kondo-

obtain for all values ot the following effective Hamiltonian
by performing a Schrieffer-Wolf transformatich:

Hiondo=Ho+ 3hS - (Wloy) + 33,8 (Wlo7ty) - T+
+30S- (WaT T2+ J0,(pi 7ty T
+ 15T T+ 3[S - (yTo74y)
+S- (Yo T? - IsT?,

where H, is the first term

(2.29
in Eg. (2.27 and ¢

=[Wer, e o1, ¥o,] 1S the spinor of the itinerant electrons.

Here, the effective coupling constarks(i=1,...,6) are ini-
tially (in the RG sensegiven by

vV 2
‘Jl = J3 = ZA/u

. Jpy=Jysin(¢l2),
|8d|

Jy=J; codl2),

(2.30

and scale according to the RG equatidop to the second
order inJs)

dJ dJ
S 2+ B 0D, 2 = pola(30, 4 ),
dJ dJ
a0 = A0l ) = Aol (2.31)
Js is given and by#—4°
+D
Js = 4pgV|? cog ¢/2)In 24
Eq—
+ 8 pod1(£ = 0)]2Y(D)cod ¢/2). (2.32

As one can see from the RG equatid@s31), in general,
each coupling constant in E€R.29 scales differently under

type Hamiltonian reads

J
Hy=7[S: o) +(@'ry) - T+S - (Ylomyp - T1.

(2.39

This is the celebrate®&U(4) Kondo modelwhere the spin
and the orbital degrees of freedom become entangled due to
the third term in Eq(2.34). The RG equation reads

dJd € = 4pyJ?, (2.35
leading to
TRUY = D exp(- 1/4pyd). (2.36)

As the flux departs fromr, the degeneracy of the even and
odd orbitals is lifted and the S¥) symmetry is broken,
much like a single Kondo impurity in the presence of a Zee-
man splitting?? The crossover from the SY) to the SU2)
Kondo model occurs at a given critical fluk.. From our
NRG calculation(see below we estimatep,~0.75z.

This discussion demonstrates the existence of high-
symmetry Kondo states in double-quantum systems with in-
terdot interaction in the presence of an Aharonov-Bohm flux.
We have shown that the magnetic flux critically alters the
properties of the ground state, resulting in a smooth transi-
tion from SU?2) to SU4) Kondo physics. Below, we prove
that thedifferential conductancevould indicate the principal
features of this effect. This is important since it would serve
as a means of experimental detection.

B. Slave-boson mean-field theory

In this section, we adopt the so-called slave-boson mean-
field theory which captures the main physics of the Kondo
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problent?® at sufficiently low temperatured <Ty). The SB-  equation-of-motio(EOM) technique and the analytical con-
MFT corresponds to the leading order in\&large expan- tinuation ruleé54” we can relate the lesser lead-dot Green
sion, whereV is the degeneracy of each site. Such a SBMFTfunction with the dot-dot Green function. Eventually, the ex-
has been recently applied to study the Kondo effect in nonplicit form of the Green'’s functions can be found easily using
equilibrium situation&“>and in double-QDs system$1315>  the EOM technique. This way, we close the set of mean-field
equations, which are self-consistently solved for each set of
1. Case Y—0 parametergthe dot levelss;, the tunneling amplitude¥,;,
First, we consider the case of vanishing interdot Coulomihe flux ¢, the bandwidttD, and the applied dc biag,,).
interactionU;,=0. We express the two-impurity Anderson At zero bias we can derive analytical expressionsTf
model (H) in terms of the slave-boson operators. This(¢-dependentwithin the SBMFT. For example, for-flux
way the fermionic operator of each dot is written as a comwe getTy?'=D exp(— s | /2I') (I'=mpo|V|? is the hybrid-
bination of a pseudofermion and a boson operathr;  ization width. As expected, it is in agreement with scaling
:b?fi'm where f; , is the pseudofermion which annihilates theory, see Eq(2.22.
one “occupied state” in thigh dot andbiT is a boson operator
which creates an “empty state” in tith dot. We include two
constraints to prevent double occupation in each QD in the ForU;,— % only one dot can be charged at a given time.
limit U;,U,—c0 by using two Lagrange multipliersy,\,. In this case we introduce one boson field and one constraint
Thus, the Hamiltonian in the slave-boson language reads that preserves the conditi@qn;+n,)=1. The rest of the cal-
culation follows the lines exposed above. We find for the

2. Case Yp,—>

Hsg="Ho+ E 2 eioflofio Kondo temperature ap=m T =(D/\2)exp(-m|ey/4T)
=Lz o [cf. Eq. (2.36)].
+ LW,E _E > (\/_Vf'ic;[‘kyvbi“fi,(ﬁ H.c) 3. Transport properties
WVist2€=LR ke We next describe how to calculate the current through the
+> N(E ff fip+blb; - 1), (2.37)  double-QD system within the SBMFT. The simplicity of our
i=12 \ o approach allows us to write the current using the Landauer-

— — Buttiker formula
whereW, ;=W, ;\N. The hallmark of the SBMFT consists of

replacing the boson operator by its classicainfluctuating | = 2e ( de VTf ¢ 24
averagebi(t)/\NV— (b,)/\N'=b;, thereby neglecting charge ) 2777(8’ alfu(e) = frle)], (249
fluctuations in each dot. This approximation is exact in the . - . .
limit A’— oo, and it corresponds t%[))(l) in a 1/\ expansion. where 7(e,Vyo) is the transmission probability which de-

At zero temperaturd =0, it correctly describes spin fluctua- pends 028 renormallzgd_parameters. .FOIIOng Meir and
tions (Kondo regime. Then, the mean-field Hamiltonian is Wingreen,” the transmission through this system can be ob-

given by tained using

Hme=Ho+ 2 E Ei,UfIUfi,U+ E E (W(,iczk,o-fi,a'-'_ HC)

| o i ko

T=Tr{GTGT,}. (2.42

~ Here, G2 is the matrix of the advance@etarded Green’s
+ 30 (Wib2- 1), (.39 function for the dot electrons; i.e.G{ (t)=+i6(t)
I

><<{di,(,(t),d-’r 0)}). l~"€ is the matrix of the renormalized hy-

],0
whereW,;=b,W, ;. We obtain a quadratic Hamiltonian con- bridization parameters; i.eL;;=mpW W, jbib; for Uy,
taining four parametersb, , and renormalized levels; , =0 andl'¢;;=mp,W,;W, ;|bJ? for U =0
=gq+\1 ) to be determined from mean-field equatidhé’ For identical dots and symmetric junctions, the transmis-
These mean-field equations are the constraints for thé dotsion probability is given by

=1,2 _ ny
2g‘«<fiT,a(t)fi,U(t)>+/\45i|2=1. (2.39 o~ r [(j—zsd) cos’?] |
and the equations of motioftOM) of the boson fields {(G—Ed)z— (g) si#%J +(e—39)°T?
S Weidel OF M) +\MBE=0.  (2.40 (2.43

bk regardless of whethel;,=0 or U;,=x. Of course, the

The next step is to write these mean-field equations inenormalized couplind” in the above equation should be
terms of nonequilibrium Green functions. The lesser dot-dobptained according to the different set of mean-field equa-
Green function is(i €1,2)G;, (t-t")==i(f] (t)f; (1)), and  tions, depending on whethdJ;,=0 or U;,=%. We notice
the corresponding lesser lead-dot Green function ighat Eq.(2.43 was previously obtained in Refs. 30 and 31

= (t=t")==i{Ccp i ,(t)fi ,()). By applying the for the noninteracting case.

i,o.0 ko
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The expression for the nonlinear conductance is straightdynamic spin susceptibility. To improve accuracy at higher

forward from the current expressidn G=dl/dVy. In the
same way, the linear conductan@gis determined upon in-

energies, we adopt the density-matrix NRG method
(DM-NRG).>? In this method, first usual NRG iterations are

sertion of the total transmission evaluated at the Fermi enperformed down to the energy scalg=DA V2 <T,. From

ergy into the well-known formula

2€?

Go= ?ﬂEF)- (2.49

C. Numerical renormalization group

the excitation spectrum at this scale, the density matrix is
constructed

p=3 eEnnmy(m, (2.52

where|m)y is the the eigenstate 6 with energyEm. Then,
the NRG iterations are performed again, but now at each

SBMFT does not take fully into account real charge fluc-iterationN’, calculating the Green’s function by

tuation effects. In order to confirm our previous results and
make quantitative predictions, we also use the NRG

procedure?-52

Following the standard NRG procedurés>*we evaluate

i
Gruuror(t) = - OOTr pro[d,, (1), ", ],

” (2.53

where

the various physical quantities from the recursion relation

(N=0)
ﬂN+l = \“"XﬂN DD (f/t,N,afn,Nﬂ,o'" H-C-)1
u=e0 0=
(2.49
with the initial Hamiltonian given by
~ 177~ ~
Ho=—=|Hp+ > 2V, (df,0,+H.C)|. (2.46
VA u=eo o

Here, the fermion operatofs, \ , have been introduced as a
result of the logarithmic discretization, and the accompany-
ing canonical transformation\, is the logarithmic discreti-

zation parametefwe chooseA=2)

1-AN

gN = \r,’[l _A_(ZN_l)][l _A—(2N+l):| ’ (24D
and
~ HD
Ho={ (2.48

with ¢=2/(1+1/A). The coupling constan'&e andT/o, re-
spectively, are given by

Ve= 44\/727—FDcos(¢/4),
V,= 4§\/2—I|;sin(¢/4).
T

(2.49

(2.50

(2.59

is the reduced density matrix for the cluster of sie The
Green'’s function in Eq(2.53 is valid at the frequency scale
w=wy:. The spin susceptibility is calculated in the same
manner

pne = Tiu=np

x(w)=—1lm f dte””tiTrpr{sz(t),sz}, (2.59
w o]

_ if
where

SZ = %E [dL,TdeT - dL,ldel] (256)
N

IIl. NUMERICAL RESULTS

We now present our results for the electronic transport in
both limits of the Coulomb interactionJ;,—0 and U,,
— o0, In the numerical calculations, the model parameters are
taken as follows: symmetric coupling¥; ;) =I'12r=1/2)
and equal level position&,=e,=¢g4). Throughout this pa-
per, all the parameters are given in units of the bare coupling
I'. The energy cutoff is set d3=60I".

A. CaseU,—0

In the left panel of Fig. 2, we present our results when
U;,— 0 obtained with slave-boson mean-field theory. First,
we focus on the pure Kondo regime wheyr-3.5 and dis-
cuss both the linear conductance and the nonlinear conduc-
tance [given by Go=G(V4.=0) and G=dl/dV,, respec-

The HamiltoniansHy, in Eq. (2.45 have been rescaled for tively]. The linear conductandsolid line in Fig. 2a)] shows
numerical accuracy. The original Hamiltonian is recoverednarrow peaks due to constructive interference aroupd

by

H i Hy
— = lim —,
N—»aoSN

(2.5

with Sy=AN-D72,

In the following, we study the local Green’s functions
(with which the linear conductance is calculatexhd the

~0 (mod 2m), whereas transport is suppressed elsewhere.
This is due to the fact that the DOS of each dot has a reso-
nance exactly aEg. In the language of slave bosons this
meanse; ,=0 and a S(R) Kondo state is well formed.
Therefore, these narrow peaks iy correspond to paths
through the AB geometry with multiple windings around the
enclosed flux. The width of each peak is given roughly by
~Tk. Away from the constructive interference condition, the
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FIG. 3. NRG resultsTop panel: Transmission probability versus
flux for (a) gq=—7I', U;=U,=5D, U;,=0, and (b) gq=—14I', Uy
=U,=5D, andU;,=5D. We setl’=D/60. [Notice that we do not
recover the unitary limit of7 for ¢~0 (mod 2m) because of the
systematic errors introduced in the NRG procedluB®ttom panel
(U1,=5D): (c) Spin susceptibilityin an arbitrary unitin the limit
of strong interdot interactiond) The peak position of the suscep-
tibility as a function of the fluxg.

SUA
Vdc/TIS(U(Z) (d) Vdc/TK @

—_
o
~

FIG. 2. SBMFT resultsLeft panel(U;,— 0): (a) Linear conduc-
tance (Go) versus flux¢ for different level positions. When the
Kondo state is formedfor e4=—3.5 the G, are delta-like peaks of
height 1 centered at even multiplesf. (c) Curves forG versus
voltage bias fore4=-3.5. Here, we change the flux from (€ull
line) to 7 (dot-dot-dashed line Right panel(U;,— =): (b) linear
and (d) differential conductance. Energies are measured in units of
I'=mpg|V[>=D/60. tion of lower harmonic§see Fig. 2a), caseey=-1.5]. For

g4=—2, —1.75 we still observe the sharp resonanc& @b
transmission at the Fermi energy quickly vanishes. This un=0) (mod 27) due to a quasiresonant condition when
usual behavior is clarified with our calculations of the differ- =0 (mod 2r). Finally, for e4=-1.5 the linear conductance
ential conductance. In Fig(® we show the nonlinear con- has a trivial cosine dependence.
ductancedl/dVy. as a function of the bias voltagé,. for
different values of the flux andy=-3.5. In the absence of B. CaseUj,—
flux (or for even multiples of jtthe nonlinear conductance . o
shows the usual zero-bias anomé&BBA), a narrow peak at Next, we elaborate on the_ numer_lcal results_ for the limit
V4.=0 that reaches the unitary limit due to the constructive®f @ strong interdot Coulomb interactidh,— < (right panel
interference in the resonant condition. Increasingoes not of _Flg. 2. The results show that in th|s_ S|tgat|on not only the
affect the Kondo resonance much, so the transmission pro$Pin fluctuates but also the pseudospin since just two charge
ability 7 can be written as a combination of a Breit-Wigner States are allowed in the double-QD systelm:=1,n,=0}
resonance foE,=0 plus a Fano antiresonant®A dip at and{nlzo_,nzzl}. The fluctuatlt_)ns in both sectofspin and
zero bias is then obtaindgee Fig. 2c)].3%32 The width of ~ Pseudospin lead to the exotic SU4) state close to¢
this dip is T«(¢)[1-co$2¢)]. It has an oscillatory depen- = (mod 2m).
dence on the applied flux. This result is in good agreement We begin with the linear regime. Figurét summarizes
with the NRG calculations as shown in FigiaB Here, we  OUr results forg, as a function 01_‘ the applied flux. We con-
plot 7 as a function of energy. It is worthwhile to note tifat ~ centrate on the pure Kondo regime and sgt-7, well be-
amounts tog at low bias. low Eg. Unlike the case of weak interdot Coulomb interac-

For increasingsy one enters the mixed-valence regimetion [see Fig. 2a)], the linear conductance showsoad

[see Fig. 2a)]. Although the results should be taken in a Peaks at positiongp~0 (mod 2m). In addition, the linear
qualitative way, we find that the renormalized levels #gr ~ conductance only vanishes when the condition of destructive

=-2, —1.75, —1.5 are no longer aE; except when¢ interference takes place. Let us investigate in some detail the
~0 (mod 2r). The transmission coefficie@nd thereby the two limit cases¢~0 and¢=~ m (mod 2m). In our RG analy-
conductanckis extremely sensitive to deviations@fout of ~ Sis, we find for¢~0 (mod 2r) that the ground state corre-
Er. When the bare level position is shifted toward the Fermisponds to the usual spin §2) Kondo effect with a greatly
energy the renormalized levels feg=-2, —1.75 as a func- enhanced Kondo scale. Accordingly, the corresponding
tion of ¢ are not atEg except when¢=0 (mod 27), renormalized level lies a&4=0, leading to a shift of the
whereas foe,=-1.5 they never readh. In these cases, due scattering phase é=m/2. On the contrary, for ¢

to the lack of a resonant condition at each dot, multiple=7 (mod 2m) we find that the ground state is the highly
windings are less likely to occur and the conductance startsymmetric SW4) Kondo state with a renormalized level at
to resemble a cosine-like function generated by a combin%dzTﬁu(A), which implies 6==/4 to fulfill the Friedel-
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Langreth sum rulé.Quite generally, in a SUIN) problem the  ferometer when interactions play a dominant role. We have
phase shift becomed= /A in the limit of large/ V" and the  shown that crucial differences arise in the limits of negligible
Kondo resonance shifts up Ty~ aL /N4 In the intermedi- and large interdot Coulomb interactions. In the former case,
ate regime, when 8 ¢ =< m, the renormalized level takes on only spin fluctuations matter and each dot develops a Kondo
a positive vaIueEd<T§U<4). As a consequence, away from resonance at the Fermi level independently of the applied
¢=~0 (mod 2m) the resonant condition is not satisfiéithe = magnetic flux. Due to the interference between these two
renormalized leveE, is not longer atEg). In this situation  Kondo resonances, the linear conductance versus the flux
electronic paths with multiple windings do not occur and theshows a series of narrow peaksdt 27 (mod 2) of uni-
linear conductance consists of a cosine-like funclibig. 51y height(in units of 222/h). Furthermore, we have found
2(b)]. At finite Vg, the nonlinear conductance displays & ZBA yhat any deviation from the Kondo regimelose to the
which is quenched ag decreasefsee Fig. &d)], unlike the mixed-valence regimdeads to dramatic changes in the con-

dip found in the Uy,,=0 case. Eventually, foré ——g,ance asafunction of the flux. Interestingly, the nonlinear
= (mod 2m) there is no transport due to completely de- conductance shows the formation of a dip wheh

structive interference. # 2 (mod 27). A complete suppression of the electronic
We can compare our results shown in Fi¢d)2with those 7T ) P PPTessIo o
transport occurs when the destructive interference condition

obtained from NRG plotted in Fig.(B). Here, one can see

that 7 decreases as increases, which is consistent with the k€S placeg=m (mod 2). _

results of the SBMFT. Nevertheless, SBMFT overestimates Charge and spin become entangled when the interdot
the decreasing rate of the ZBA. The NRG results show thafoulomb interaction is very large. Here, the differential con-
while the peak does not change appreciably dor ¢, it ~ ductance has a zero-bias anomaly quenched with increasing

decreases very rapidly fab> &.. flux. The Kondo state changes its symmetry, from(3Uo
SU(4), as ¢ approachesr (mod 2r7). Since the crossover is
C. Crossover not too close to¢=m (mod 27), the SU4) state remains

The value of¢, is the last component we have to explain. robust to be detected experimentally. Our geometry requires
¢ marks the crossover between @UKondo physics to the Symmetric couplings to the leads but not inevitably equal
highly symmetric S4) Kondo state. Fortunatelys, can be  (i.e., we needvy;+Ve,=Vg, +V,,).%® The charging energies
extracted from the peak position of the spin susceptibilityU;, U, andUy, should be of the same ordéa few meVj.
x(w), which yields a reasonable estimate of the Kondo tem¥inally, the external flux should correspond to a low mag-
perature. Figure (8) shows the evolution of when ¢ in-  netic field to avoid spin Zeeman splittings in the dot, around
creases. Remarkab|y, when the flux enhances, at some poﬁh@ mT2 All these constraints are eXperimenta”y accessible
the position of the peak moves toward higher frequenciestith present technique:2*2
The peak position as a function ¢f is plotted in Fig. &d).

We observe thatk(¢) is almost constant whei goes from

zero to¢.~0.75m. This fact allows us to establish a criterion ACKNOWLEDGMENTS
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