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We investigate theoretically the transport properties of a closed Aharonov-Bohm interferometer containing
two quantum dots in the strong coupling regime. We find two distinct physical scenarios depending on the
strength of the interdot Coulomb interaction. When the interdot Coulomb interaction is negligible, only spin
fluctuations are important and each dot develops a Kondo resonance at the Fermi level independently of the
applied magnetic flux. The transport is characterized by the interference of these two independent Kondo
resonances. On the contrary, for large interdot interaction, only one electron can be accommodated onto the
double-dot system. In this situation, not only the spin can fluctuate but also the orbital degree of freedomsthe
pseudospind. As a result, we find different ground states depending on the value of the applied flux. When
f=p smod 2pd sf=2pF /F0, whereF is applied flux andF0=h/e the flux quantumd the electronic transport
can take place via simultaneous correlations in the spin and pseudospin sectors, leading to the highly symmet-
ric SUs4d Kondo state. Nevertheless, we find situations withf.0 smod 2pd where the pseudospin quantum
number is not conserved during tunneling events, giving rise to the common SUs2d Kondo state with an
enhanced Kondo temperature. We investigate the crossover between both ground states and discuss possible
experimental signatures of this physics as a function of the applied magnetic flux.
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I. INTRODUCTION

Progressive advance in nanofabrication technology has
achieved the realization of tiny droplets of electrons termed
quantum dotssQDsd with a high-precision tunability of the
transport parameters.1 One of the most exciting features of a
QD is its ability to behave as a quantum impurity with spin
1/2.2,3 At temperatures lower than the Kondo temperature
sTKd, the localized spin becomes strongly correlated with the
conduction electrons and consequently is screened.2–4 As a
result of the increasing rate of scattering there arises a reso-
nance at the Fermi energysEFd in the density of statessDOSd
of the QD.4 The transmission through the quantum dot is
then almost perfect. This is the so-calledunitary limit where
conductance reaches 2e2/h.5–7 Among many of the advan-
tages offered by QD-based devices, we highlight the possi-
bility of studying the Kondo effect out of equilibrium by
applying a dc bias8 or a time-dependent potential.9,10

A natural step forward is the understanding of the mag-
netic interactions of two artificial Kondo impurities.11–19The
investigation of double QDs is mainly motivated by the pos-
sibility of their application as solid-state quantum bits, by
using either spin or charge degrees of freedom.18–21 When
the two QDs are interacting, the orbital degrees of freedom
come into play as a pseudospin, as shown experimentally in
Refs. 22 and 23, which may give rise to exotic physical

scenarios.24,25 Thus, in a double QD it is possible to tune
appropriately the gate voltages in order to find two charge
states almost degenerate. If theinterdot Coulomb interaction
is large enough these two states arehn1=1,n2=0j and hn1
=0,n2=1j, wheren1s2d=kn̂1s2dl is the charge state in the dot
“1” s“2” d. This is one of the basic ingredients to observe
Kondo physics: the existence of degeneracy between two
quantum states. The Kondo effect is then developed to its
fullest extent in the pseudospinsorbitald sector. We define the
pseudospinT̂ as follows: it points along +s−dz when the elec-

tron is at the “1” s“2” d dot: T̂z=s1/2dsn̂1− n̂2d. The pseu-
dospin of the double-QD system can be 1/2 or −1/2, which
is quenchedsscreenedd via higher order tunneling processes
producing the so-calledorbital Kondo effect.22–24Other real-
izations of such exotic “orbital Kondo effects” have been
recently proposed in different QD-related structures as
well.25–27When theintradot Coulomb energy for each dot is
large, then each QD also behaves as a magnetic impurity and
the conventional Kondo effect is also observed in the spin
sectorsSz= ±1/2d. The quantum fluctuations between these
four statesfSz= ±1/2=h↑ , ↓ j andTz= ±1/2=h⇑ , ⇓ jg lead to
an unusual strongly correlated Fermi liquid state in which the
sreald spin and pseudospin are totally entangled.25 In contrast
to common spin Kondo physics observed in QDs, this new
state possesses a higher symmetry, SUs4d, corresponding to
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the total internal degrees of freedom of the double QD:
h↑⇑ , ↓ ⇑ , ↑ ⇓ , ↓ ⇓ j. The screened magnitude is now thehy-

perspin M̂;oa,bsŜa+1/2dsT̂b+1/2d. Importantly, the asso-
ciated Kondo temperatureTK

SUs4d is muchhigher than in the
common spin-1/2 Kondo effect in a QD, which makes the
observation of this spin and pseudospin entangled state more
accessible.25 Strong entanglement of charge and spin flip
events is also possible in a single-electron boxsmetallic
graind coupled to a lead via a smaller quantum dot in the
Kondo regime.26,27Here, the spin Kondo physics stems from
the screening of the spin of the small dot, while the pseu-
dospin Kondo physics emerges when charging states of the
grain with scharged Q=0 andQ=e are almost degenerate.

The most prominent feature of the Kondo effect is the
phase coherence experienced by the electrons that participate
in the many-body correlated state. Therefore, it is thus of
great interest to have access to the phase of the transmission
amplitude in order to give a full characterization of the trans-
port properties. The widely known Aharonov-BohmsABd
effect28 provides us a valuable tool to investigate quantum
coherence of electrons. When the coherence of a circulating
electron wave packet enclosing a magnetic fluxF is pre-
served, the result is an extra flux-dependent phase shiftsfd.
In the simplest realization of an AB interferometer, an in-
coming electronic wave function splits into two paths, which
join again into the outgoing electronic wave function. Apply-
ing a magnetic flux which threads this closed geometry, the
outgoing wave function acquires a flux-dependent phase,f
=2pF /F0, whereF=BS is the flux,B is the applied mag-
netic field,S is the enclosing surface, andF0=h/e the flux
quantum. As a consequence, the transmission is a periodic
function of f.

In this work, we consider a double-quantum dot embed-
ded in a prototypical mesoscopic interferometer threading a
magnetic fluxF, see Fig. 1.29 Our motivation to investigate
this system is twofold:sid there are striking effects, such as
Fano resonances, which arise already in the noninteracting
case30–32 and, more interestinglysii d as the interdot interac-
tion gets stronger, the local density of states on the double
QD changes drastically.33 Here, we provide a unified picture
of the combined influence of wave interference, Kondo effect,
and interdot interaction on the electronic transport through a
double QD in and out of equilibrium.

As we anticipated, the physical scenario in our setup will
depend much on the strength of the capacitive interdot cou-
pling between the two dots. When the interdot Coulomb en-
ergy is negligible, each QD can accommodate one electron
and both spins become screened. We find that each QD de-
velops a Kondo resonance at the Fermi levelEF=0. Their
interference causes a very narrowdip in the differential con-
ductanceG;dI /dVdc except atf<0 smod 2pd. In the limit
of strong interdot Coulomb interaction there are two degen-
erate charge states described by the pseudospinTz= ±1/2.
The presence of flux allows us to explore two interesting
situations:sid when the pseudospin is a good quantum num-
ber ff=p smod 2pdg and sii d when the pseudospin is not
conserved during tunneling. In the former case the SUs4d
Kondo state is fully developed, whereas far away from this
symmetry point the conventional SUs2d Kondo physics
arises. In addition, we will show thatG shows a zero-bias
anomalysZBAd instead of a dip when the interdot Coulomb
energy is large, which is suppressed asf enhances and even-
tually disappears at the destructive interference condition
fwhenf=p smod 2pdg, resulting in a complete suppression
of the tunneling current. Nevertheless, this fact does not pre-
vent us from observing the highly symmetric SUs4d Kondo
state since it survives even away fromf=p smod 2pd where
the differential conductance is not totally suppressed.

This work is organized as follows: we begin in Sec. II
presenting the theory to treat both limits for the interdot Cou-
lomb interaction using different theoretical techniques. We
derive the transport properties as well. In Sec. III we present
our numerical results and their interpretation. Finally, we
summarize our main conclusions in Sec. IV.

II. THEORY

The system that we consider is depicted in Fig. 1. It is a
closed-geometry AB interferometer, where electrons emitted
from the leads are never lost in surrounding gates. Electrons
traveling through the device have to go either through the
upper dot or through the lower dot before being transmitted
into either the left or the right electrode. The area enclosing
the two paths is penetrated by a fluxF. The two reservoirs
are Fermi seas of electrons described by the Hamiltonian

H0 = o
,=L,R

o
k,s

«,,kc,,k,s
† c,,k,s, s2.1d

wherecLsRd,k,s
† scLsRd,k,sd is the creationsannihilationd operator

for an electron in the statek with spins in the leadLsRd. The
isolated dots are described byHD

HD = o
i=1,2

Fo
s

«idi,s
† di,s + Uini,↑ni,↓G + U12n1n2. s2.2d

The operatordi,s
† sdi,sd is the creationsannihilationd operator,

«i is the level position,Ui are theintradot Coulomb interac-
tion, andni,s=di,s

† di,s is the occupation number on the doti.
U12 denotes theinterdot Coulomb interaction between the
dots. The tunneling between the dots and the leads is mod-
eled byHT

FIG. 1. Sketch of the Aharonov-Bohm interferometer containing
two quantum dots attached to two leads. The arrowed straight line
indicates the tunnel coupling and the dashed line represents the
interdot Coulomb interaction.

LÓPEZ, SÁNCHEZ, LEE, CHOI, SIMON, AND LE HUR PHYSICAL REVIEW B71, 115312s2005d

115312-2



HT = o
j=1,2

o
,=L,R

o
k,s

W,,jc,,k,s
† dj ,s + h.c. s2.3d

The tunneling amplitudeW,,j in Eq. s2.3d from the dot j to
the lead, is modulated by the external fluxF threading the
loop sFig. 1d and given by

WL,1 = VL,1e
−if/4, WL,2 = VL,2e

+if/4,

WR,1 = VR,1e
+if/4, WR,2 = VR,2e

−if/4, s2.4d

whereV,,j is the amplitude in the absence of the flux and
f;2pF /F0, with F0 being the flux quantumsF0=h/ed.
Then, the total Hamiltonian isHtotal=H0+HD+HT.

To make the physical interpretations of our results more
clear, we perform a few simplifications. First of all, we as-
sume identical dots and symmetric junctions; i.e.,«1=«2
;«d, U1=U2;U, and VL,1=VL,2=VR,1=VR,2;V. This is
only for the sake of simplicity.34 Furthermore, we consider
the wide band limit, in which the couplings are independent
of energy. Then, the hybridization of the dot levels with the
conduction band is well characterized by the parameters

G,;i,jsfd = pr,W,,iW,,j
* , s2.5d

or, in the matrix notation

ĜLsfd = GLF 1 e−if/2

e+if/2 1
G, ĜR = ĜL

* , s2.6d

whereG,;pr,V
2, with r, being the DOS in the lead, at the

Fermi energysrL=rR=r0d.
Since we are interested in Kondo correlations,35 we shall

mainly concentrate on the Kondo regimefintradot charging
energyU→` and localized level −«d@ sGL+GRdg for which
the fluctuations of the charges in the single dots are highly
suppressed. For the interdot Coulomb interactionU12, we
will investigate two opposite limits, namelysid U12=0 and
sii d U12=`. In the former case, each dot is singly occupied
skn1l=kn2l<1d and behaves as separate magneticsKondod
impurities. In the latter case, the double-quantum dot system
contains just one electronskn1+n2l=1d. These two limits in-
duce striking differences between the resulting Kondo ef-
fects. Moreover, the interference modulated by the external
flux f threading the AB geometry leads to an even richer
variation of the Kondo effects in either case. Our goal is to
investigate these scenarios thoroughly. For this purpose we
employ different techniques: scaling analysissvalid for T
@TKd, the slave-boson mean-field theorysSBMFT, for T
!TKd, and the numerical renormalization groupsNRGd
method. We elaborate below on these approaches.

A. Scaling analysis

We derive effective Hamiltonians in the Kondo regime for
the two limiting casessU12=0 andU12=`d and discuss their
qualitative features at equilibrium by means of the scaling
theory.

1. Case U12\0

First, we discuss the large capacitance limit between the
two dotssU12→0d. As we mentioned, whenU12 is vanish-

ingly small sand yetU1,U2→`d, the two dots are both sin-
gly occupied:kn1l=kn2l<1 and each dot can thus be re-
garded as a magnetic impurity with spin 1/2. In this situation
we notice that it is convenient and provides a more transpar-
ent picture of the system to perform the following canonical
transformation:

Fc1,k,s

c2,k,s
G =

1
Î2
Fe+ip/4 e−ip/4

e−ip/4 e+ip/4GFcL,k,s

cR,k,s
G . s2.7d

Under this transformation, the Hamiltonian for the leads Eq.
s2.1d is rewritten as follows:

H0 = o
m=1,2

o
k,s

«kcm,k,s
† cm,k,s, s2.8d

while the tunneling Hamiltonian Eq.s2.3d reads

HT = o
i=1,2

o
m=1,2

o
k,s

Vm,icm,k,s
† di,s + H.c., s2.9d

where

V1,1= V2,2= cos
f − p

4
,

V1,2= V2,1= cos
f + p

4
. s2.10d

Now, the Schrieffer-Wolff transformation36 of the Hamilto-
nians Eqs.s2.8d, s2.9d, and s2.2d leads to the Kondo-type
Hamiltonian

HKondo= H0 + 1
4J1sS1 + S2d · fc1

†s0dsc1s0d + c2
†s0dsc2s0dg

+ 1
4J2sS1 + S2d · fc1

†s0dsc2s0d + c2
†s0dsc1s0dg

+ 1
4J3sS1 − S2d · fc1

†s0dsc1s0d − c2
†s0dsc2s0dg

− 1
4J4S1 ·S2. s2.11d

In Eq. s2.11d, we have adopted the spinor representations

c j = Fdj ,↑
dj ,↓

G, cm,k = Fcm,k,↑
cm,k,↓

G s2.12d

sj =1,2 andm=1,2d, according to which the spin operator on
the dot j is given by

"

2
Sj =

"

2
c j

†sc j , s2.13d

wheres denotes the three Pauli matrices.
The coupling constantsJi si =1,… ,4d in Eq. s2.11d are

given initially sin the RG sensed by

J1 = 2N uVu2

u«du
, J2 = J1 cossf/2d, J3 = J1 sinsf/2d,

s2.14d

whereN is the spin degeneracy. Under the renormalization
group transformation,37 these coupling constants scale as
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dJ1

d,
= r0sJ1

2 + J2
2 + J3

2d,
dJ2

d,
= 2r0J1J2,

dJ3

d,
= 2r0J1J3,

s2.15d

where ,=−logD indicates the renormalization stepssD is
the bandwidthd. J4 is given by38–40

J4 < 2r0J1
2s0dYsDds1 + cosfd, s2.16d

where YsDd is order 1.J4 corresponds to a ferromagnetic
RKKY coupling between the spins in the dots.

Under the renormalization group transformation all the
system flows to the strong coupling fixed point, with the
ratiosJ2/J1, J3/J1, andJ4/J1 remaining constant. In particu-
lar, the solution for the initial conditionss2.14d satisfies the
simple properties

J2

J1
= cossf/2d,

J3

J1
= sinsf/2d, s2.17d

with J1→` according to the equation

dJ1

d,
= 2r0J1

2. s2.18d

From Eq.s2.17d one can easily see that system behaves in
distinctive ways for different values of fluxf, especially, for
f=0 smod 2pd and f=p smod 2pd. In the absence of the
external flux sf=0d, J3=0 while J1=J2=J and J4= I
=r0J1

2/2. Thus, the Kondo-type Hamiltonians2.11d is re-
duced to

HKondo= H0 + 1
4JsS1 + S2dfc1s0d + c2s0dg†sfc1s0d + c2s0dg

− IS1 ·S2. s2.19d

This is the two-impurityfcharacterized by the two spins
s" /2dS1 ands" /2dS2g Kondo model coupled to a single con-
duction band scharacterized byc1+c2, or equivalently
c1,k,s+c2,k,sd. The two spins are coupled to each other ferro-
magneticallys−IS1·S2, with I .0d. Due to the ferromagnetic
coupling, and to the fact that both spins are coupled to the
same conduction band, the total spin is underscreened atT
→0.38 Note that a strong RKKY interaction may arise from
our peculiar geometry since both QDs are directly connected
to a single channel in the leads. Nevertheless, in an actual
experimental situation23,29 the QDs are far apart and the
RKKY interaction may be negligible. Furthermore, slightly
abovef=0 smod 2pd, even for alarge ferromagnetic cou-
pling uI u@TK=D exps−1/2r0Jd, the spins of the dots added
in a S=1 state become effectively screened.38

For the fluxf=p smod 2pd, the coupling constantJ2=0
while J1=J3=J4/2;J. Then, the Kondo-type Hamiltonian
s2.11d is reduced to

HKondo= H0 + 1
2JS1 · c1

†s0dsc1s0d + 1
2JS2 · c2

†s0dsc2s0d

− 1
2JS1 ·S2. s2.20d

This model is clearly distinguished from the one in the pre-
vious case off=0 smod 2pd cf. Eq. s2.19d. The two impu-
rity spins s" /2dS1 and s" /2dS2, of magnitude 1/2 are
coupled to two independent conduction bands,c1 andc2 sor

equivalentlyc1,k,s andc2,k,sd, individually. The ferromagnetic
coupling in Eq.s2.20d does not play any significant role in
this case, because its coupling strengthsId is the same as the
exchange coupling between the localized spins and the itin-
erant spins. Therefore, the models2.20d corresponds to the
usual single-channel spin-1/2 Kondo model.

The coupling constants scale according to the renormal-
ization group equation

dJ

d,
= 2r0J

2, s2.21d

and the Kondo temperature is given by

TK , D expS−
1

2r0J
D . s2.22d

In the general casesfÞ0,pd, the two localized spins
s" /2dS1 ands" /2dS2 are coupled to two conduction bandsc1

andc2, let alone the ferromagnetic coupling with each other.
Unlike the previous, special case off=p, the two conduc-
tion bands are no longer independent; see Eq.s2.11d. This
fact makes the physical interpretation of the model rather
involved. However, the renormalization group flowfsee Eqs.
s2.17d and s2.18dg and the results from the numerical renor-
malization group methodssee belowd suggest thatfor any
finite flux (fÞ0), the two localized spins are fully screened
out at zero temperature.

2. Case U12\`

We now investigate the limit ofU12→` where the system
properties change completely. In this case, only one electron
is accommodated in the whole double QD system, i.e.,kn1

+n2l<1 having either spin↑ or spin↓. The orbital degrees
of freedomspseudospind play as significant a role as the spin,
and the double QD behaves as an impurity with four degen-
erate levels with different tunneling amplitudes depending on
the applied flux. Due to the orbital degrees of freedom in-
volved in the interference, the symmetry of the wave func-
tion is crucial. Therefore, in this limit, it is more useful to
work with a representation in terms of the symmetricsevend
and antisymmetricsoddd combinations of the localized and
delocalized orbital channels.11

In accordance with these observations, we take the fol-
lowing canonical transformations:

F de,s

ido,s
G =

1
Î2
F1 1

1 − 1
GFd1,s

d2,s
G , s2.23d

for the QD electrons, and

Fce,k,s

co,k,s
G =

1
Î2
F1 1

1 − 1
GFcL,k,s

cR,k,s
G , s2.24d

for the conduction electrons.
Then, we identify the pseudospin upsdownd as the elec-

tron occupying the evensoddd orbital. More explicitly, taking
the four-spinor representation

cd = fde,↑,de,↓,do,↑,do,↓g, s2.25d

the spin and orbital pseudo-spin operators are given by

LÓPEZ, SÁNCHEZ, LEE, CHOI, SIMON, AND LE HUR PHYSICAL REVIEW B71, 115312s2005d

115312-4



"

2
S=

"

2
cd

†scd,
"

2
T =

"

2
cd

†tcd, s2.26d

respectively, wheresstd are Pauli matrices operating on the
spin spseudospind space. Notice that in this even/odd basis
the dot pseudospin has been rotated:Tx→Tz, Ty→−Ty, and
Tz→Tx, whereas the spin remains invariant.

In terms of the new operatorsde,s, do,s, ce,k,s, andco,k,s,
the total Hamiltonian,Htotal is rewritten as follows:

HD = o
a=e,o

o
k,s

«k,sca,k,s + o
a=e,o

Fo
s

edda,s
† da,s + 1

2sU

+ U12dna,↑na,↓G + 1
4sU + 3U12dneno − 1

4sU − U12d

3sde
†sded · sdo

†sdod − 1
2sU − U12dsde,↑

† de,↓
† do,↓do,↑

+ H.c.d + o
a=e,o

o
k,s

Vaca,k,s
† da,s + H.c., s2.27d

where

Ve ; 2V cossf/4d, Vo ; 2V sinsf/4d. s2.28d

Therefore, the evensoddd orbitals are coupled only to the
evensoddd-symmetric combinations of the conduction bands.

To examine the low-energy properties of the system, we
obtain for all values off the following effective Hamiltonian
by performing a Schrieffer-Wolf transformation:36

HKondo= H0 + 1
4J1S · sc†scd + 1

4J2S · sc†st'cd ·T'

+ 1
4J1S · sc†st zcdT2 + 1

4J2sc†t'cd ·T'

+ 1
4J3sc†t zcdTz + 1

4J4fS · sc†st zcd

+ S · sc†scdTzg − J5T
z, s2.29d

where H0 is the first term in Eq. s2.27d and c
=fce↑ ,ce↓ ,co↑ ,co↓g is the spinor of the itinerant electrons.
Here, the effective coupling constantsJi si =1,… ,6d are ini-
tially sin the RG sensed given by

J1 = J3 = 2N uVu2

u«du
, J2 = J1 sinsf/2d, J4 = J1 cossf/2d,

s2.30d

and scale according to the RG equationssup to the second
order inJsd

dJ1

d,
= 2r0sJ1

2 + J2
2 + J4

2d,
dJ2

d,
= r0J2s3J1 + J3d,

dJ3

d,
= 4r0J2

2,
dJ4

d,
= 4r0J1J4. s2.31d

J5 is given and by38–40

J5 = 4r0uVu2 cossf/2dln
«d + D

«d − D

+ 8fr0J1s, = 0dg2YsDdcossf/2d. s2.32d

As one can see from the RG equationss2.31d, in general,
each coupling constant in Eq.s2.29d scales differently under

the renormalization group transformation for typical behav-
iors of the solutions at different values of fluxf. Importantly,
we show now that the system exhibits a crossover from 0
flux to p flux. Near the 0 flux ff<0 smod 2pdg, the
double-QD odd orbital is completely decoupled from the
odd-symmetric lead and only the even orbital is coupled to
the even-symmetric conduction lead withVe=2V fsee Eq.
s2.28dg. Equations2.29d then reduces to a model involving
only the spin in the even orbitals" /2dSe fnot s" /2dSg

HKondo= H0 + JSe · sce
†sceds1 + Tzd + 1

4Jsce
†cedTz − J5T

z,

s2.33d

whereJ=2uVu2/ u«du. This model was already analyzed in Ref.
41, where it was shown that the ground state corresponds to
a Fermi liquid state with a greatly enhanced Kondo tempera-
ture TK

SUs2d=D exps−1/4r0Jd sdue to a coupling doubling of
the even orbital to the even-symmetric conduction lead, i.e.,
Ve=2Vd and the orbital pseudospin gets frozen completely,
Tz=1. sJ5 does not flow to the strong coupling regime.d One
can easily see that the models2.33d is equivalent to the two-
fold orbitally degenerate Anderson model described by the
commonSU(2) Kondo physics.33

Near thep flux ff<p smod 2pdg the exchange couplings
are J=J1=J2=J3, andJ4=J5=0. The corresponding Kondo-
type Hamiltonian reads

HK =
J

4
fS · sc†scd + sc†tcd ·T + S · sc†stcd ·Tg.

s2.34d

This is the celebratedSU(4) Kondo model, where the spin
and the orbital degrees of freedom become entangled due to
the third term in Eq.s2.34d. The RG equation reads

dJ/d , = 4r0J
2, s2.35d

leading to

TK
SUs4d = D exps− 1/4r0Jd. s2.36d

As the flux departs fromp, the degeneracy of the even and
odd orbitals is lifted and the SUs4d symmetry is broken,
much like a single Kondo impurity in the presence of a Zee-
man splitting.42 The crossover from the SUs4d to the SUs2d
Kondo model occurs at a given critical fluxfc. From our
NRG calculationssee belowd we estimatefc<0.75p.

This discussion demonstrates the existence of high-
symmetry Kondo states in double-quantum systems with in-
terdot interaction in the presence of an Aharonov-Bohm flux.
We have shown that the magnetic flux critically alters the
properties of the ground state, resulting in a smooth transi-
tion from SUs2d to SUs4d Kondo physics. Below, we prove
that thedifferential conductancewould indicate the principal
features of this effect. This is important since it would serve
as a means of experimental detection.

B. Slave-boson mean-field theory

In this section, we adopt the so-called slave-boson mean-
field theory which captures the main physics of the Kondo
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problem43 at sufficiently low temperaturessT!TKd. The SB-
MFT corresponds to the leading order in aN-large expan-
sion, whereN is the degeneracy of each site. Such a SBMFT
has been recently applied to study the Kondo effect in non-
equilibrium situations44,45 and in double-QDs systems.12,13,15

1. Case U12\0

First, we consider the case of vanishing interdot Coulomb
interactionU12=0. We express the two-impurity Anderson
model sHtotald in terms of the slave-boson operators. This
way the fermionic operator of each dot is written as a com-
bination of a pseudofermion and a boson operator:di,s
=bi

†f i,s, where f i,s is the pseudofermion which annihilates
one “occupied state” in theith dot andbi

† is a boson operator
which creates an “empty state” in theith dot. We include two
constraints to prevent double occupation in each QD in the
limit U1,U2→` by using two Lagrange multipliersl1,l2.
Thus, the Hamiltonian in the slave-boson language reads

HSB = H0 + o
i=1,2

o
s

«i,sf i,s
† f i,s

+
1

ÎN o
i=1,2

o
,=L,R

o
k,s

sW,,ic,,k,s
† bi

†f i,s + H.c.d

+ o
i=1,2

liSo
s

f i,s
† f i,s + bi

†bi − 1D , s2.37d

whereW,,i =W,,iÎN. The hallmark of the SBMFT consists of
replacing the boson operator by its classicalsnonfluctuatingd
average.bistd /ÎN→ kbil /ÎN; b̃i, thereby neglecting charge
fluctuations in each dot. This approximation is exact in the
limit N→`, and it corresponds toOs1d in a 1/N expansion.
At zero temperatureT=0, it correctly describes spin fluctua-
tions sKondo regimed. Then, the mean-field Hamiltonian is
given by

HMF = H0 + o
i

o
s

«̃i,sf i,s
† f i,s + o

i
o

,,k,s

sW̃,,ic,,k,s
† f i,s + H.c.d

+ o
i

lisNub̃iu2 − 1d , s2.38d

whereW̃,,i = b̃iW,,i. We obtain a quadratic Hamiltonian con-

taining four parameterssb̃1,2 and renormalized levels«̃1,2
=«d+l1,2d to be determined from mean-field equations.13,43

These mean-field equations are the constraints for the doti
=1,2

o
s

kf i,s
† stdf i,sstdl + Nub̃iu2 = 1, s2.39d

and the equations of motionsEOMd of the boson fields

o
,,k,s

W̃,,ikck,s
† stdf i,sstdl + liNub̃iu2 = 0. s2.40d

The next step is to write these mean-field equations in
terms of nonequilibrium Green functions. The lesser dot-dot
Green function issi [1,2dGi,s

, st− t8d=−ikf i,s
† st8df i,sstdl, and

the corresponding lesser lead-dot Green function is
Gi,s;,,k,s

, st− t8d=−ikc,,k,s
† st8df i,sstdl. By applying the

equation-of-motionsEOMd technique and the analytical con-
tinuation rules46,47 we can relate the lesser lead-dot Green
function with the dot-dot Green function. Eventually, the ex-
plicit form of the Green’s functions can be found easily using
the EOM technique. This way, we close the set of mean-field
equations, which are self-consistently solved for each set of
parameterssthe dot levels«i, the tunneling amplitudesV,,i,
the flux f, the bandwidthD, and the applied dc biasVdcd.

At zero bias we can derive analytical expressions ofTK
sf-dependentd within the SBMFT. For example, forp-flux
we getTK

SUs2d=D exps−pu«du /2Gd sG=pr0uVu2 is the hybrid-
ization widthd. As expected, it is in agreement with scaling
theory, see Eq.s2.22d.

2. Case U12\`

For U12→` only one dot can be charged at a given time.
In this case we introduce one boson field and one constraint
that preserves the conditionkn1+n2l=1. The rest of the cal-
culation follows the lines exposed above. We find for the
Kondo temperature atf=p TK

SUs4d=sD /Î2dexps−pu«du /4Gd
fcf. Eq. s2.36dg.

3. Transport properties

We next describe how to calculate the current through the
double-QD system within the SBMFT. The simplicity of our
approach allows us to write the current using the Landauer-
Büttiker formula

I =
2e

"
E d«

2p
Ts«,VdcdffLs«d − fRs«dg, s2.41d

where Ts« ,Vdcd is the transmission probability which de-
pends on renormalized parameters. Following Meir and
Wingreen,48 the transmission through this system can be ob-
tained using

T = TrhĜaG̃RĜrG̃Lj. s2.42d

Here,Ĝasrd is the matrix of the advancedsretardedd Green’s
function for the dot electrons; i.e.,Gi,j ;s

r/a std= 7 ius±td
3khdi,sstd ,dj ,s

† s0djl. G̃, is the matrix of the renormalized hy-

bridization parameters; i.e.,G̃,;i,j =pr,W,,iW,,j
* b̃ib̃j

* for U12

=0 andG̃,;i,j =pr,W,,iW,,j
* ub̃u2 for U12=`.

For identical dots and symmetric junctions, the transmis-
sion probability is given by

Tsed =

G̃2Fse − «̃dd2cos2
f

2
G

Fse − «̃dd2 − S G̃

2
D2

sin2f

2
G2

+ se − «̃dd2G̃2

,

s2.43d

regardless of whetherU12=0 or U12=`. Of course, the

renormalized couplingG̃ in the above equation should be
obtained according to the different set of mean-field equa-
tions, depending on whetherU12=0 or U12=`. We notice
that Eq.s2.43d was previously obtained in Refs. 30 and 31
for the noninteracting case.
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The expression for the nonlinear conductance is straight-
forward from the current expressionI: G=dI /dVdc. In the
same way, the linear conductanceG0 is determined upon in-
sertion of the total transmission evaluated at the Fermi en-
ergy into the well-known formula

G0 =
2e2

h
TsEFd. s2.44d

C. Numerical renormalization group

SBMFT does not take fully into account real charge fluc-
tuation effects. In order to confirm our previous results and
make quantitative predictions, we also use the NRG
procedure.49–52

Following the standard NRG procedures,49–51we evaluate
the various physical quantities from the recursion relation
sNù0d

H̃N+1 = ÎLH̃N + jN+1 o
m=e,o

o
s=,↑↓

s fm,N,s
† fm,N+1,s + H.c.d ,

s2.45d

with the initial Hamiltonian given by

H̃0 =
1

ÎLFH̃D + o
m=e,o

o
s

Ṽmsds
† fm,0,s + H.c.dG . s2.46d

Here, the fermion operatorsfm,N,s have been introduced as a
result of the logarithmic discretization, and the accompany-
ing canonical transformation,L, is the logarithmic discreti-
zation parameterswe chooseL=2d

jN ;
1 − L−N

Îf1 − L−s2N−1dgf1 − L−s2N+1dg
, s2.47d

and

H̃D ; z
HD

D
, s2.48d

with z=2/s1+1/Ld. The coupling constantsṼe and Ṽo, re-
spectively, are given by

Ṽe ; 4zÎ 2G

pD
cossf/4d, s2.49d

Ṽo ; 4zÎ 2G

pD
sinsf/4d. s2.50d

The HamiltoniansH̃N in Eq. s2.45d have been rescaled for
numerical accuracy. The original Hamiltonian is recovered
by

H
D

= lim
N→`

H̃N

SN
, s2.51d

with SN;zLsN−1d/2.
In the following, we study the local Green’s functions

swith which the linear conductance is calculatedd and the

dynamic spin susceptibility. To improve accuracy at higher
energies, we adopt the density-matrix NRG method
sDM-NRGd.52 In this method, first usual NRG iterations are
performed down to the energy scalevN;DL−N/2!TK. From
the excitation spectrum at this scale, the density matrix is
constructed

r = o
m

e−Em
N/vNumlNkmu, s2.52d

whereumlN is the the eigenstate ofHN with energyEm
N. Then,

the NRG iterations are performed again, but now at each
iterationN8, calculating the Green’s function by

Gms;m8s8std =
i

"
ustdTr rN8fdm,sstd,dm8,s8

† g, s2.53d

where

rN8 ; TrN.N8r s2.54d

is the reduced density matrix for the cluster of sizeN8. The
Green’s function in Eq.s2.53d is valid at the frequency scale
v.vN8. The spin susceptibility is calculated in the same
manner

xsvd = −
1

p
ImE

−`

`

dte+ivt 1

i"
Tr rN8hszstd,szj, s2.55d

where

sz ; 1
2o

m

fdm,↑
† dm,↑ − dm,↓

† dm,↓g. s2.56d

III. NUMERICAL RESULTS

We now present our results for the electronic transport in
both limits of the Coulomb interaction,U12→0 and U12
→`. In the numerical calculations, the model parameters are
taken as follows: symmetric couplingssG1s2dL=G1s2dR=G /2d
and equal level positionss«1=«2=«dd. Throughout this pa-
per, all the parameters are given in units of the bare coupling
G. The energy cutoff is set asD=60G.

A. CaseU12\0

In the left panel of Fig. 2, we present our results when
U12→0 obtained with slave-boson mean-field theory. First,
we focus on the pure Kondo regime when«d=−3.5 and dis-
cuss both the linear conductance and the nonlinear conduc-
tance fgiven by G0;GsVdc=0d and G;dI /dVdc, respec-
tivelyg. The linear conductancefsolid line in Fig. 2sadg shows
narrow peaks due to constructive interference aroundf
<0 smod 2pd, whereas transport is suppressed elsewhere.
This is due to the fact that the DOS of each dot has a reso-
nance exactly atEF. In the language of slave bosons this
means «̃1,2=0 and a SUs2d Kondo state is well formed.
Therefore, these narrow peaks inG0 correspond to paths
through the AB geometry with multiple windings around the
enclosed flux. The width of each peak is given roughly by
<TK. Away from the constructive interference condition, the
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transmission at the Fermi energy quickly vanishes. This un-
usual behavior is clarified with our calculations of the differ-
ential conductance. In Fig. 2scd we show the nonlinear con-
ductancedI /dVdc as a function of the bias voltageVdc for
different values of the flux and«d=−3.5. In the absence of
flux sor for even multiples of itd the nonlinear conductance
shows the usual zero-bias anomalysZBAd, a narrow peak at
Vdc=0 that reaches the unitary limit due to the constructive
interference in the resonant condition. Increasingf does not
affect the Kondo resonance much, so the transmission prob-
ability T can be written as a combination of a Breit-Wigner
resonance for«̃d=0 plus a Fano antiresonance.30 A dip at
zero bias is then obtainedfsee Fig. 2scdg.30,32 The width of
this dip is TKsfdf1−coss2fdg. It has an oscillatory depen-
dence on the applied flux. This result is in good agreement
with the NRG calculations as shown in Fig. 3sad. Here, we
plot T as a function of energy. It is worthwhile to note thatT
amounts toG at low bias.

For increasing«d one enters the mixed-valence regime
fsee Fig. 2sadg. Although the results should be taken in a
qualitative way, we find that the renormalized levels for«d
=−2, 21.75, 21.5 are no longer atEF except whenf
<0 smod 2pd. The transmission coefficientsand thereby the
conductanced is extremely sensitive to deviations of«̃d out of
EF. When the bare level position is shifted toward the Fermi
energy the renormalized levels for«d=−2, 21.75 as a func-
tion of f are not at EF except whenf<0 smod 2pd,
whereas for«d=−1.5 they never reachEF. In these cases, due
to the lack of a resonant condition at each dot, multiple
windings are less likely to occur and the conductance starts
to resemble a cosine-like function generated by a combina-

tion of lower harmonicsfsee Fig. 2sad, case«d=−1.5g. For
«d=−2, 21.75 we still observe the sharp resonance atGsf
<0d smod 2pd due to a quasiresonant condition whenf
<0 smod 2pd. Finally, for «d=−1.5 the linear conductance
has a trivial cosine dependence.

B. CaseU12\`

Next, we elaborate on the numerical results for the limit
of a strong interdot Coulomb interactionU12→` sright panel
of Fig. 2d. The results show that in this situation not only the
spin fluctuates but also the pseudospin since just two charge
states are allowed in the double-QD system:hn1=1,n2=0j
andhn1=0,n2=1j. The fluctuations in both sectorssspin and
pseudospind lead to the exotic SUs4d state close tof
=p smod 2pd.

We begin with the linear regime. Figure 2sbd summarizes
our results forG0 as a function of the applied flux. We con-
centrate on the pure Kondo regime and set«d=−7, well be-
low EF. Unlike the case of weak interdot Coulomb interac-
tion fsee Fig. 2sadg, the linear conductance showsbroad
peaks at positionsf<0 smod 2pd. In addition, the linear
conductance only vanishes when the condition of destructive
interference takes place. Let us investigate in some detail the
two limit casesf<0 andf<p smod 2pd. In our RG analy-
sis, we find forf<0 smod 2pd that the ground state corre-
sponds to the usual spin SUs2d Kondo effect with a greatly
enhanced Kondo scale. Accordingly, the corresponding
renormalized level lies at«̃d=0, leading to a shift of the
scattering phase d=p /2. On the contrary, for f
=p smod 2pd we find that the ground state is the highly
symmetric SUs4d Kondo state with a renormalized level at
«̃d<TK

SUs4d, which implies d=p /4 to fulfill the Friedel-

FIG. 2. SBMFT results:Left panelsU12→0d: sad Linear conduc-
tance sG0d versus fluxf for different level positions. When the
Kondo state is formedsfor «d=−3.5d the G0 are delta-like peaks of
height 1 centered at even multiples off /p. scd Curves forG versus
voltage bias for«d=−3.5. Here, we change the flux from 0sfull
lined to p sdot-dot-dashed lined. Right panelsU12→`d: sbd linear
and sdd differential conductance. Energies are measured in units of
G=pr0uVu2=D /60.

FIG. 3. NRG results:Top panel: Transmission probability versus
flux for sad «d=−7G, U1=U2=5D, U12=0, andsbd «d=−14G, U1

=U2=5D, andU12=5D. We setG=D /60. fNotice that we do not
recover the unitary limit ofT for f<0 smod 2pd because of the
systematic errors introduced in the NRG procedureg. Bottom panel
sU12=5Dd: scd Spin susceptibilitysin an arbitrary unitd in the limit
of strong interdot interaction.sdd The peak position of the suscep-
tibility as a function of the fluxf.
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Langreth sum rule.4 Quite generally, in a SUsNd problem the
phase shift becomesd=p /N in the limit of largeN and the
Kondo resonance shifts up to«̃d<pG̃ /N.4 In the intermedi-
ate regime, when 0&f&p, the renormalized level takes on
a positive value«̃d,TK

SUs4d. As a consequence, away from
f<0 smod 2pd the resonant condition is not satisfiedsthe
renormalized level«̃d is not longer atEFd. In this situation
electronic paths with multiple windings do not occur and the
linear conductance consists of a cosine-like functionfFig.
2sbdg. At finite Vdc the nonlinear conductance displays a ZBA
which is quenched asf decreasesfsee Fig. 2sddg, unlike the
dip found in the U12=0 case. Eventually, for f
=p smod 2pd there is no transport due to completely de-
structive interference.

We can compare our results shown in Fig. 2sdd with those
obtained from NRG plotted in Fig. 3sbd. Here, one can see
thatT decreases asf increases, which is consistent with the
results of the SBMFT. Nevertheless, SBMFT overestimates
the decreasing rate of the ZBA. The NRG results show that
while the peak does not change appreciably forf,fc, it
decreases very rapidly forf.fc.

C. Crossover

The value offc is the last component we have to explain.
fc marks the crossover between SUs2d Kondo physics to the
highly symmetric SUs4d Kondo state. Fortunately,fc can be
extracted from the peak position of the spin susceptibility
xsvd, which yields a reasonable estimate of the Kondo tem-
perature. Figure 3scd shows the evolution ofx when f in-
creases. Remarkably, when the flux enhances, at some point
the position of the peak moves toward higher frequencies.
The peak position as a function off is plotted in Fig. 3sdd.
We observe thatTKsfd is almost constant whenf goes from
zero tofc<0.75p. This fact allows us to establish a criterion
for the crossover between the SUs2d and SUs4d Kondo states
in the double-QD system.

IV. CONCLUSION

We have analyzed the transport propertiessin and out of
equilibriumd of a prototypical mesoscopic double-slit inter-

ferometer when interactions play a dominant role. We have
shown that crucial differences arise in the limits of negligible
and large interdot Coulomb interactions. In the former case,
only spin fluctuations matter and each dot develops a Kondo
resonance at the Fermi level independently of the applied
magnetic flux. Due to the interference between these two
Kondo resonances, the linear conductance versus the flux
shows a series of narrow peaks atf=2p smod 2pd of uni-
tary heightsin units of 2e2/hd. Furthermore, we have found
that any deviation from the Kondo regimesclose to the
mixed-valence regimed leads to dramatic changes in the con-
ductance as a function of the flux. Interestingly, the nonlinear
conductance shows the formation of a dip whenf
Þ2p smod 2pd. A complete suppression of the electronic
transport occurs when the destructive interference condition
takes place,f=p smod 2pd.

Charge and spin become entangled when the interdot
Coulomb interaction is very large. Here, the differential con-
ductance has a zero-bias anomaly quenched with increasing
flux. The Kondo state changes its symmetry, from SUs2d to
SUs4d, asf approachesp smod 2pd. Since the crossover is
not too close tof=p smod 2pd, the SUs4d state remains
robust to be detected experimentally. Our geometry requires
symmetric couplings to the leads but not inevitably equal
si.e., we needVL1+VR2=VR1+VL2d.53 The charging energies
U1, U2, andU12 should be of the same ordersa few meVd.
Finally, the external flux should correspond to a low mag-
netic field to avoid spin Zeeman splittings in the dot, around
10 mT.29 All these constraints are experimentally accessible
with present techniques.22,23,29
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