

2016.7.20

Joo-Eon Oh

Image Reconstruction from the Spatial Correlation of Speckle Illumination

Quantum Optics & Quantum Information Laboratory

Advisor Prof. Yoon-Ho Kim

Imaging? Image?

Imaging in Daily Life

How to be a good photographer?

• Imaging by classical techniques other than nonlinearity or non-classicality ?

$E(x) = A(x) \bullet e^{-\Delta \phi}$ Amplitude Phase

The Lights in Quantum Optics

□Non-classical light

Coherent light

□Incoherent light

The Lights in Quantum Optics

The Correlation Function

- g⁽¹⁾(x,t); a coherent effect of the electromagnetic field
- g⁽²⁾(x,t); Classical statistical correlation of intensity fluctuation.

The Light

The Light

New Imaging Modality

Speckles

Classical Correlation

Classical Correlation

Observe the statistical properties of photons

Temporal Correlation

Spatial Correlation

- The Correlation Function G⁽²⁾
- $G^{(2)}$; Statistical correlations of intensity fluctuations

$$G^{(2)}(x_1, t_1; x_2, t_2) = \left\langle E^*(x_1, t_1) E(x_1, t_1) E^*(x_2, t_2) E(x_2, t_2) \right\rangle$$
$$= \left\langle I(x_1, t_1) I(x_2, t_2) \right\rangle$$

g⁽²⁾; Normalized G⁽²⁾

$$g^{(2)}(\tau) = \frac{\langle I(t)I(t+\tau) \rangle}{\langle I(t) \rangle \langle I(t+\tau) \rangle}$$

Transverse coherence length

Imaging with the Correlation

Ghost Imaging

THE CORRELATION IMAGING

Ghost Imaging principle

Ghost Imaging (GI)

Reconstruct the ghost image from the correlation of two detector signals

Pittman, PRA **52** R3429 (1995)

SPDC Ghost Imaging

PHYSICAL REVIEW A

VOLUME 52, NUMBER 5

NOVEMBER 1995

Optical imaging by means of two-photon quantum entanglement

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko Department of Physics, University of Maryland Baltimore County, Baltimore, Maryland 21228 (Received 22 December 1994)

...."The entanglement of this two-photon state can be used to demonstrate high-resolution imaging".....

History of Ghost Imaging

"Two-Photon" Coincidence Imaging with a Classical Source

Ryan S. Bennink,^{*} Sean J. Bentley, and Robert W. Boyd The Institute of Optics, University of Rochester, Rochester, New York 14627 (Received 15 March 2002; published 26 August 2002)

..."Ghost imaging technique could also be implemented using a classical source with the proper statistical properties. The entanglement is not necessary for this"....

Ghost Imaging (GI)

Reconstruct the ghost image from the correlation of two detector signal

Classical Spatial Correlation

Correlation from Ghost Imaging

Second-Order Correlation Function of the Intensity

Transverse Coherence $G^{(2)}(|x_1 - x_2|, t) = < I_1(x_1, t)I_2(x_2, t) >$

Second-order Correlation of the Intensity Fluctuation

$$<\Delta I_1(x_1)\Delta I_2(x_2) > = < I_1(x_1)I_2(x_2) > - < I_1(x_1) > < I_2(x_2) >$$

Incoherent Light Ghost Imaging (GI)

Incoherent Light Ghost Imaging

- An incoherent light source is able to simulate one of the main features of entangled ghost imaging.
 - Bennink et al, Phys. Rev. Lett 89 113601 (2002)
 - Abouraddy, Phys. Rev. Lett. 87 123602 (2001)
 - Gatti, Phys. Rev. A 70 013802 (2004)
- Based on the 2nd-order spatial correlation g⁽²⁾

It's not surprising or new observation !

Hanbury Brown Twiss Experiment (HBT) ^[2]

- Measures the classical correlation of the intensity
- Applied in astronomy for measuring the angular size of stars

[2] Hanbury-Brown et al. [Nature 178 1046 (1956)]

Our Experiment ; G⁽²⁾ from the auto-correlation measurement

• Three problems are solved in the experiment of correlation imaging.

The Fundamental Problems in Imaging

Resolution

Classical: Rayleigh Limit

$$\Delta \theta = 1.22 \frac{\lambda}{D}$$

where

 $\boldsymbol{\lambda}$; the wavelength of the source

 $d_{\text{o}}\,;$ the distance from the source to the aperture(lens)

D ; the diameter of the aperture(lens)

$$\Delta \theta = 1.22 \frac{\lambda}{D}$$

Minimum Resolvable Length

$$\Delta x = 0.61 \frac{\lambda \cdot d_o}{R_{aperture}} \cdot M$$

[J.-E. Oh et al., Opt. Lett. 38 682 (2013)]

- (a) Conventional imaging.
- (b) Speckle illumination with big speckles
- (c) Speckle illumination using small speckles

Sub-Rayleigh Imaging via Speckle Illumination

• What happened in the Correlation imaging with the turbidity or turbulence?

The Fundamental Problems in Imaging

[J.-E. Oh et al., in preparation]

Classical Correlation

Imaging thru the Turbulence

The Fundamental Problems in Imaging

Turbidity

Scattering Coefficeint (μ_s) Mean free path ($I_S = 1/\mu_s$)

Classical Correlation

[J.-E. Oh et al., in preparation]

Thank You!