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Quantum State Preparation

* Object: A quantum state |s) has to be prepared on an empty qubit register.
If the state preparation method is not known that exploits the structure of the state to prepare it
efficiently, we have to use a method for creating an arbitrary state instead.



QSP #1: Uniformly Controlled Rotation

QIC 5, 6, 467—473 (2005)

Transformation of quantum states using uniformly controlled rotations

Mikko Mottonen,* Juha J. Vartiainen, Ville Bergholm, and Martti M. Salomaa
Materials Physics Laboratory, P.O. Box 2200,
FIN-02015 Helsinki University of Technology, Finland

(Dated: February 1, 2008)

We consider a unitary transformation which maps any given state of an n-qubit quantum register
into another one. This transformation has applications in the initialization of a quantum computer,
and also in some quantum algorithms. Employing uniformly controlled rotations, we present a
quantum circuit of 272 — 4n — 4 CNOT gates and 2”2 — 5 one-qubit elementary rotations that
effects the state transformation. The complexity of the circuit is noticeably lower than the previously
published results. Moreover, we present an analytic expression for the rotation angles needed for
the transformation.

PACS numbers: 03.67.Lx, 03.65.Fd
Keywords: quantum computation, quantum state preparation



QSP #1: Uniformly Controlled Rotation

;i k-fold Uniformly Controlled

Rotation Gate
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FIG. 1: Definition of the k-fold uniformly controlled rotation r(i) of qubit m about the axis a. The left hand side defines
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r v

Single- and Two-qubit gate
— T decomposition of

l l l i J} k-fold Uniformly Controlled Rotation
I Ra - —{R6)) R(6,) D R(65) R(84) D R (65) R (86) Ry(6,) R (85) D— G at e

FIG. 2: Efficient gate decomposition for the uniformly controlled rotation Fj(a, ). The relation of the angles {6;} to the
angles {a;} is shown in Eq. (3).




QSP #1: Uniformly Controlled Rotation

Our algorithm for transforming |a) = (Jay|e®?, |az]e™2, ..., lan|e~)T into |e;) works as follows:

e First we equalize the phases w; using a cascade of uniformly controlled z-rotations =, rendering the vector real
up to the global phase ¢: Z, |a) = €%? |a).

e Then we rotate the real state vector |a) into the direction of |e;) using a similar sequence of uniformly controlled
y-rotations =, thus achieving our goal.

n n

s s . N .
EyEz |a) = H Fy "y, Q1) ® Ian— H FY 'z, Q1) @lan-j | |a) = ¢! 2=/ |ey). (7)
j=1 j=1
Bt ¢ Ry——¢—¢ R: ¢ gl
| i (. |
R; Ry Ry R’
R; Ry Ry Ry
- R}, Ry R} Ry -

FIG. 3: Gate sequence for state preparation using uniformly controlled rotations. The rotation angles {a? .} for the uniformly
controlled rotations are given in Egs. (8) and (5).



QSP

PHYSICAL REVIEW A 83, 032302 (2011)

Quantum-state preparation with universal gate decompositions

Martin Plesch?? and Caslav Brukner!*
! Faculty of Physics, University of Vienna, Vienna, Austria
2Faculty of Informatics, Masaryk University, Brno, Czech Republic
3 Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
*Institute of Quantum Optics and Quantum Information (IQ0QI), Austrian Academy of Sciences, Vienna, Austria
(Received 30 March 2010; published 3 March 2011)

In quantum computation every unitary operation can be decomposed into quantum circuits—a series of
single-qubit rotations and a single type entangling two-qubit gates, such as controlled-NOT (CNOT) gates. Two
measures are important when judging the complexity of the circuit: the total number of CNOT gates needed to
implement it and the depth of the circuit, measured by the minimal number of computation steps needed to
perform it. Here we give an explicit and simple quantum circuit scheme for preparation of arbitrary quantum
states, which can directly utilize any decomposition scheme for arbitrary full quantum gates, thus connecting the
two problems. Our circuit reduces the depth of the best currently known circuit by a factor of 2. It also reduces
the total number of CNOT gates from 2" to %2" in the leading order for even number of qubits. Specifically, the
scheme allows us to decrease the upper bound from 11 CNOT gates to 9 and the depth from 11 to 5 steps for four
qubits. Our results are expected to help in designing and building small-scale quantum circuits using present
technologies.

Evaluation: #CNOT or Circuit Depth

2: Scmidt Decomposition

PRA 83, 032302 (2011)

Scmidt Decomposition
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Fig. 56. Circuit for four qubit-state preparation. The four phases of the circuit are indicated in dashed boxes.

Circuit Optimization with circuit identity:
- Z with Ctrl qubit of CNOT
- X with Trgt qubit of CNOT

#CNOT: 2">23/24 x 2" for even n Depth: 23/48 x 2"for even n

115/96 x 2" for odd n 115/192 x 2" for odd n
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QSP #2: Scmidt Decomposition

e Schmidt Decomposition

Theorem 2.2.1 — Schmidt decomposition. Consider quantum systems A and B with dimen-
sions dy, dp respectively, and let d = min(dy,dp). Any pure bipartite state |¥)4p has a Schmidt
decomposition

d
W) = Y Ailui)alvi)s, (2.16)
i=1

where A; > 0 and {|u;)4 }i,{|vi)s}i are orthonormal vector sets. The coefficients A; are called the
Schmidt coefficients and |u;) 4, |v;)p the Schmidt vectors.

10



QSP: Scmidt Decomposition

» To generate a circuit for the creation of a quantum state |s),
we first need to express the state in terms of two subspaces V and W such that span Hilbert
space.

* With the orthonormal basis {f;, -, fx} € V.and {gq,:-:, g} E W,
|s) is represented as a linear combination of these basis vectors: |s) = ;i b; j - fi®g;-

* The Singular Value Decomposition (SVD) of the matrix M = {bij} is computed as
_ A\
M = (ULU,) (O)V .

* The entries of the diagonal matrix A build the set {a4, :**, a;;,}, which defines the Schmidt
decomposition of |s), |s) = X1t @; - u;Qv;, a; € R = 0, where Y12, a; = 1, where aq, -+, apy,
are Schmidt coefficients for the Schmidt basis {u;}, {vj}.

11



QSP: Scmidt Decomposition
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Fig. 53. Schmidt decomposition.
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QSP: Scmidt Decomposition

* To get the precise values of U, V, and B, we write |s) = Zizj:l a;; |ei)|ej) for some constants
. n n
a;; € C, and define A = {aij}. Then, Z?Fl a;; Iei)|ej) = Y% by Ule)(V]e)).

« Multiplying (eil(ej|on the left part, then a;; = 2,2;;1 b1 Uik Vjk, where u;, = (e;|Ulex) and
Vjk = (ej|V|ek). They respectively corresponds to U;, and Vi

13



QSP: Sparse Data Structure

e Circuit with Optimal Depth (at the cost of exponential qubits)

PHYSICAL REVIEW LETTERS 129, 230504 (2022)

Quantum State Preparation with Optimal Circuit Depth:
Implementations and Applications

Xiao-Ming Zhang, Tongyang Li, and Xiao Yuan
Center on Frontiers of Computing Studies, Peking University, Beijing 100871, China
and School of Computer Science, Peking University, Beijing 100871, China

® (Received 30 January 2022; revised 1 August 2022; accepted 1 November 2022; published 30 November 2022)

Quantum state preparation is an important subroutine for quantum computing. We show that any n-qubit
quantum state can be prepared with a ®(n)-depth circuit using only single- and two-qubit gates, although
with a cost of an exponential amount of ancillary qubits. On the other hand, for sparse quantum states with
d = 2 nonzero entries, we can reduce the circuit depth to ©(log(nd)) with O(ndlogd) ancillary qubits.
The algorithm for sparse states is exponentially faster than best-known results and the number of ancillary
qubits is nearly optimal and only increases polynomially with the system size. We discuss applications of
the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems
of equations, and realizing quantum random access memories, and find cases with exponential reductions
of the circuit depth for all these three tasks. In particular, using our algorithm, we find a family of linear
system solving problems enjoying exponential speedups, even compared to the best-known quantum and
classical dequantization algorithms.

DOI: 10.1103/PhysRevLett.129.230504

FIG. 1. (a) Layout of binary tree H. Each block represents a
qubit. (b) Layout of binary tree V,, which connects to the second
layer of H with dashed box, i.e., H,. Here, V; o 1S V55 ¢. In (a)
and (b), CNOT gates are only applied at qubit pairs connected by
solid lines. (c) CNOT gate between two distant qubits (black
circles) based on pre-shared Bell states (blue circles). M, ., and X,
Z represent measurements and Pauli gates [40].
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Quantum analog-digital
conversion (PRA 99,012301)



Quantum anaog-digital conversion

PHYSICAL REVIEW A 99, 012301 (2019)

Quantum analog-digital conversion

Kosuke Mitarai,""" Masahiro Kitagawa,-? and Keisuke Fujii>*f

'Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
2Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives,

Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
3Graduate School of Science, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8302, Japan
4JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

® (Received 21 June 2018; published 2 January 2019)

Many quantum algorithms, such as the Harrow-Hassidim-Lloyd (HHL) algorithm, depend on oracles that
efficiently encode classical data into a quantum state. The encoding of the data can be categorized into two
types: analog encoding, where the data are stored as amplitudes of a state, and digital encoding, where they are
stored as qubit strings. The former has been utilized to process classical data in an exponentially large space
of a quantum system, whereas the latter is required to perform arithmetics on a quantum computer. Quantum
algorithms such as HHL achieve quantum speedups with a sophisticated use of these two encodings. In this
work, we present algorithms that convert these two encodings to one another. While quantum digital-to-analog
conversions have implicitly been used in existing quantum algorithms, we reformulate it and give a generalized
protocol that works probabilistically. On the other hand, we propose a deterministic algorithm that performs a
quantum analog-to-digital conversion. These algorithms can be utilized to realize high-level quantum algorithms
such as a nonlinear transformation of amplitudes of a quantum state. As an example, we construct a “quantum
amplitude perceptron,” a quantum version of the neural network that hence has a possible application in the area
of quantum machine learning.

DOI: 10.1103/PhysRevA.99.012301

(a) Analog-encoding
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(b) HHL algorithm
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FIG. 1. (a) Schematic sketch of analog encoding and digital
encoding. QDAC and QADC mediate these two encodings. (b) A
brief flowchart of the HHL algorithm [4]. {|a;)} denote eigenvectors
of a Hermitian matrix A, each corresponding to eigenvalues {A;}. x;
are complex numbers such that Z?’:l x;lj) = Z?[:l Xjla;).
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Preliminaries (1/2)

* Analog encoding: Data is encoded into analog quantities, complex amplitude of a quantum state
with unitary transformation UA({cj}) as UA({cj})IO) =2 ¢lj)

* Digital encoding: Data, m bits of binary string, is encoded into qubit strings with unitary
transfomation UD({dj}) as UD({dj}) 1j)|0) = |j)|dj)

* Phase estlmatlon Let U be a unitary operator acting on M-qubit Hilbert space with eigenstates
{|1/JJ)} __and corresponding eigenvalues {ezm‘l’f}]M where qb] [0,1). Let € = 27™ for positive

integer m There exists a quantum algorithm transforming Z 14 |1/)])|0)®m
|1/JPE)Z a]|l/)]>|d)]> such that ‘Z c,b](.k) — 27 ‘ < € for all j with state fidelity at least 1-
poly(e)

 Amplitude Amplification: Suppose that we have a unitary operator U that acts on M-qubit

Hilbert space as U|0)®M = a|yY)|0) + B|G)|1), where |), |G) are arbitrary (M-1)-qubit states.
Then, the prob. of getting |1)|0) can be made close to 1 by O(1/|a|) applications of U

17



Preliminaries (2/2)

* Quantum arithmetics: Let a, b be m-bit strings. There exists a quantum algorithm that performs
transformation |a)|b) — |a)|a + b) or |a)|b) — |a)|ab) with O(poly(m)) single- and two-qubit
gates.

* Quantum functions: Some basic functions such as inverse, trigonometric functions, square root,
and inverse trigonometric functions can be calculated to accuracy €. That is, we can perform a
transformation |a)|0) - |a)|f (a)) such that |f(a) — f(a)| < € where f(a) is the objective
function, using O(poly(log, 1/€)) quantum arithmetics

18



QDAC (Digital-to-Analog)

* QDAC with ancilla. There exists a quantum algorithm that performs m-bit QDAC using

O(poly(logz(l/e))) single- and two-qubit gates and one Ug where € = 27™ with Z?Ll djz/N.

* Procedures:
1. (Compute ;= —cos 1d byquantum arithmetic)

\/—ZJ 1|])|d>|0)®m rzj 1|]>|d )l‘PJ) where ¢; = - 190](k)2'k

2. (Add ancilla |0) and Perform controIIed rotation Ry(mp]) on the ancilla,

erld ooy, — Zmld o) (410, + [1-aziny,)

3. (Measure anC|IIa in the computational ba5|s)
With prob. Z] 1d /N, we obtain CZ] 1dil)|d;)|e;)10), where C = \[(Z] 1d]2)
4. (Uncompute ¢; and apply Uf;) CZ]-=1 d;lj)

19



QADC (Analog-to-Digital) (0/3)

N
* For the amplitudes {Cj}j_lof a quantum state, there are three versions of QADC.

~(m)

* Absolute QADC: Let 7; denote the m-bit string T}-(l), .o T that best approximates |cj| by

heq #®)2=k An m-bit absolute-QADC operation transforms analog-encoded state
: 1 NP
Y GINI0YE™ to = ZNIF).

* Real QADC: Let X; denote the m-bit string fj(l), - fj(m) that best approximates the real part of ¢;

by Yyt fj(k)Z‘k. An m-bit real-QADC operation transforms analog-encoded state Z?’ Cj |j)|0)®m
1 QN |~
to \/_NZJ' |]>|xj>-
* Imaginary QADC: Let y; denote the m-bit string 57].(1), . 5/’].(7") that best approximates the
imaginary part of ¢; by Y 37].(k)2‘k. An m-bit imaginary-QADC operation transforms analog-
PR 1 N
encoded state Z?’ ¢ilj>10) ™ to \/—Nsz)lyﬂ.

20



QADC (Analog-to-Digital) (1/3)

* Absolute QADC. There exists an m-bit absolute-QADC algorithm that runs using 0(1/¢)
controlled U, gates and O (((logz N))Z/e) single- and two-qubit gates with output state fidelity
1-— O(poly(e)) where e = 27™,

* Procedures:

) 1 «p address: |0) n H e h
1. (Prepare address qubits) ﬁ2k=1|k>ad mmreenee
2. (CNOT from address qubits to ancilla qubits A) data: {0) L Uys : )
1 ' =Ygl k)ad [Wk)
\/_NzllLllk)ad |k>A A: (0) n b : 7w k1K )ad 1P )datan B
3. (Prepare analog-encoded state in data qubits) 5 10
| : H HH—
Z]=1 C] |])data K | ) l\\ __________ !
4. (SWAP test with another ancilla B) 4 44
= \/Lﬁzk“() a d|‘Pk) dataAB ] FIG. 3. Quantum circuit through steps (i) to (iv) of absolute

QADC in the main text.

V: It extracts an absolute value 7, of amplitude ¢,
21



QADC (Analog-to-Digital) (2/3)

* Procedures (cont’d):

(c 6) address — -+
5. onstruct a gate
data — -+
G=V-CNOT 44 So CNOTggs-VT-Zg, A j, vtiels lbly = o G
where Sq = I — 2(|0X0|) g4ta.4 5 and Zp is Pauli-Z on B B—|7 1 T ]

1 1 . :
G\/—Nzk|k>ad|q’k>damﬂ’3 = ﬁ2k|k>ad (Gk |ka)dam’A,B), FIG. 4. Definition of gate G in absolute QADC.
where Gy, = VS VTZg and S, =1 — 2(|0X0]) gata,s ®(1k)k) 4

6. (Introduce Register qubits and Phase estimation of )

1 m bit register: [0) @ | H IQFT —
= — E k) o |¥ : -
JN | >ad k'AE>reg’,data,A,B
k
where |l_I_] — address: |O) . - I
kAE)reg’,data,A,B data: }8§ ¢ e [

B: |0)
——=10) 0 g | Wres? + 1= 6k),, ., | Wr=) ?
\/7( f reg’ f+/data,A,B f reg’ %ﬁfa’j'A S?e (vi) of the absolute-QADC algorithm. The phase

estimation is performed to encode the analog-encoded value x; into
qubit bit strings. IQFT: inverse quantum Fourier transformation [25].

22



QADC (Analog-to-Digital) (3/3)

* Procedures (cont’d):

7. (On another register, calculate 13, = \/Z(Sin 0, )% — 1)

1
\/_NE |k>ad i >reg |lpk'AE>reg’,data,A,B
k
8. (Uncompute the data, A, B, and reg’)

1 .
\/_N2|k>ad |rk>reg |0>reg’,data,A,B
k

Digital-encoded state !!

Real- and Imaginary-QADC work similarly, but with little modifications such as taking Hadamard test.

23



Ansatz
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Glimpse of VQA

Training set

Cost function
Ansatz

Input

Output
Classical Computer C0) = Xk fx (0, pr) i

.- T

Quantum state

Updated parameters

Probability distribution
Bitstring
: Gate sequence
g Quantum operator

Optimizer
arg min C(60)
6

Hybrid Loop

FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function
C(0), with 0 a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize
the cost, and (possibly) a set of training data {px} used during the optimization. Here, the cost can often be expressed in
the form in Eq. (3), for some set of functions {fr}. Also, the ansatz is shown as a parameterized quantum circuit (on the
left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses
a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that
leverages the power of optimizers to navigate the cost landscape C(0) and solve the optimization problem in Eq. (1). Once a
termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends
on the precise task at hand. The red box indicates some of the most common types of outputs.
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Glimpse of VOQA

* Variational method in quantum theory is a method for finding low energy states of a quantum
system. The rough idea of the method is that one defines a trial wave function (sometimes called
an ansatz) as a function of some parameters, and then one finds the values of these parameters
that minimize the expectation value of the energy with respect to these parameters.

* The minimized ansatz is then an approximation to the lowest energy eigenstate, and the
expectation value serves as an upper bound on the energy of the ground state.

I
|

VQA

predict

update

cost \/

optimize \/

~

search

/

Fig. 1. Schematic of variational quantum algorithm, the model is designed
based on quantum gates on quantum computer, and the optimization progress
is on classical computer, the classical computer optimizes and updates the

parameters in the trainable layer of the model.

<source: arXiv:2212.0491>
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Ansatz

* In the context of variational circuits, an ansatz describes a subroutine consisting of a sequence of
gates applied to specific wires (qubits). Similar to the architecture of a neural network, this only
defines a base structure, while the types of gates and/or their free parameters can be optimized
by the variational proceudre.

* Generically speaking the form of the ansatz dictates what the parameters are, and hence, how
they can be trained to minimize the cost.

* Problem-inspired ansatz: Ansatz tailored to the information about the problem.

* Problem-agnostic ansatz: They can be used even when no relevant information about the
problem is available.

27



Ansatz

—_— r : ; :
* Parameters are encoded into a unitary U(0) that is L B
applied to the input state, IS -2
ue)=u.(6,) - U1(91) with v |- o= || [tad)] - - - UB) -
U(6)) = [Im e Omfmt,,. = ER = =
Here W}, is an unparametrlzed unitary and H,, is a ™ g B
Hermitian operator. e T i ! ) CE

FIG. 2. Schematic diagram of an ansatz. The unitary
U(@), with @ a set of parameters, can be expressed as a prod-

uct of L unitaries U (0;) sequentially acting on an input state.
As indicated, each unitary U;{0;) can in turn be decomposed

into a sequence of parametrized and unparametrized gates.
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Types of Ansatz #1: Layered Gate Ansatz

* Alayer is a sequence of gates that is repeated. The number of repetitions of a layer forms a
hyperparameter of the variational circuit. The layer can be decomposed into two overall unitaries

A and B.

A(a)

t
=

* Block A contains single-qubit gates applied to every subsystem or wire (qubits). Block B consists of
both single-wire gates as well as entangling gates

Afa)
I
L
1
L
M
L
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Types of Ansatz
Ansatz

2: Alternating operator

* We use layers of two blocks, but the difference is that here we apply the unitaries representing
the Hamiltonians A and B which are evolved for a short time At.

8iA((y) At

SIB(B) At

* The idea of this ansatz is based on analogies to adiabatic quantum computing, in which the
system starts in the ground state of A and adiabatically evolves to the ground state of B. Quickly
alternating applications of A and B for very short time At can be used as a heuristic to

approximate this evolution

30



Types of Ansatz #3: Tensor network ansatz

* Gate sequence inspired by tensor networks. The simplest one is a tree architecture that
consecutively entangles subsets of qubits.

U{0}h)

U({}s)

U({0}2)

* Another tensor network is based on matrix product states. The circuit unitaries can be
decomposed in different ways, and their size corresponds to the “bond dimension” of the matrix
product state — the higher the bond dimension, the more complex the circuit ansatz.

Zonl]

oo

U({0}s)
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Types of Ansatz #4: Hardware efficient ansatz

* The hardware efficient ansatz is a generic name used for ansatzes that are aimed at reducing the

circuit depth needed to implement U(8) when using a given quantum hardware.
* One uses unitaries W, and e ~*¥mHm that are taken from a gate set determined from the
connectivity and interactions specific to a quantum hardware which avoids the circuit depth

overhead arising from translating an arbitrary unitary into the sequence of native gates

32



Ansatz Expressibility

* Given the wide range of ansatzes one can use, a relevant question is whether a given architecture
can prepare a target state by optimizing its parameters.

* Two ways to judge the quality of an ansatz: expressibility and entangling capability

* An ansatz is expressible if the circuit can be used to uniformly explore the entire space of a
quantum state. One way to quantify the expressibility of an ansatz U(8) is to compare the
distribution of states obtained from U(8) to the maximally expressive uniform (Haar) distribution

Xt t
of states Uyaqr, AP U) = [ dUnaarUSE, |0XOI(UY ) — [ duU®toyo|(ut)™.

* A measure of entangling capability for ansatz quantifies the average entanglement of states
produced from randomly sampling the circuit parameter 6.
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Quantum architecture search (QAS)

ARTICLE W) Check for updates

Quantum circuit architecture search for variational quantum
algorithms

Yuxuan Du'?*™, Tao Huang®®, Shan You?, Min-Hsiu Hsieh @™*>™ and Dacheng Tao ('™

Variational quantum algorithms (VQAs) are expected to be a path to quantum advantages on noisy intermediate-scale quantum
devices. However, both empirical and theoretical results exhibit that the deployed ansatz heavily affects the performance of

VQAs such that an ansatz with a larger number of quantum gates enables a stronger expressivity, while the accumulated noise
may render a poor trainability. To maximally improve the robustness and trainability of VQAs, here we devise a resource and
runtime efficient scheme termed quantum architecture search (QAS). In particular, given a learning task, QAS automatically seeks
a near-optimal ansatz (i.e., circuit architecture) to balance benefits and side-effects brought by adding more noisy quantum gates
to achieve a good performance. We implement QAS on both the numerical simulator and real quantum hardware, via the IBM
cloud, to accomplish data classification and quantum chemistry tasks. In the problems studied, numerical and experimental

results show that QAS cannot only alleviate the influence of quantum noise and barren plateaus but also outperforms VQAs with
pre-selected ansatze.

npj Quantum Information (2022)8:62 ; https://doi.org/10.1038/s41534-022-00570-y
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Quantum architecture search (QAS

1(6) U, (0)

Step 1. Supernet setup U
M)

(1) 10)

(2) 10y

(N —1) |0)

(V) 10)

Step 2. Optimize supernet

For t=1; t<T;
t=t+1

Sampled ansatz a l

Update
Parameters

Classical
optimizer

Step 4. Retrain the searched ansatz
U,1(0)

)
)
10)
10)

UL(B) o —,

Update
Parameters

Classical

optimizer

Step 3. Rank K ansatzes
U,(0) U.(6) Uq.(0) UL(6)

Rank 1: _E E ~ Rank K: _E E ~
‘
—E E

Fig. 1 Paradigm of the quantum architecture search scheme (QAS). In Step 1, QAS sets up supernet .4, which defines the ansatze pool S to
be searched and parameterizes each ansatz in S via the specified weight sharing strategy. All possible single-qubit gates are highlighted by
hexagons and two-qubit gates are highlighted by the brown rectangle. The unitary U, refers to the data encoding layer. In Step 2, QAS
optimizes the trainable parameters for all candidate ansatzes. Given the specified learning task £, QAS iteratively samples an ansatz a®¥) € S
from A and optimizes its trainable parameters to minimize L. A correlates parameters among different ansatzes via weight sharing strategy.
After T iterations, QAS moves to Step 3 and exploits the trained parameters 8" and the predefined £ to compare the performance among K
ansatze. The ansatz with the best performance is selected as the output, indicated by a red smiley face. Last, in Step 4, QAS utilizes the

searched ansatz and the parameters 8 to retrain the quantum solver with few iterations.
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Classical fingerprinting associates with each string a shorter string (its fingerprint), such that any
two distinct strings can be distinguished with small error by comparing their fingerprints alone. The
fingerprints cannot be made exponentially smaller than the original strings unless the parties preparing the
fingerprints have access to correlated random sources. We show that fingerprints consisting of quantum
information can be made exponentially smaller than the original strings without any correlations or
entanglement between the parties. This implies an exponential quantum/classical gap for the equality

problem in the simultaneous message passing model of communication complexity.
10) H H measure

1
po = = (1+ (BIY)I)
6) T 2

SWAP pr =5 (1~ {pl)*)

FIG. 1. Quantum circuit to test if |¢p) = [i) or [{P|)| = §.
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