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Effect of quantum fluctuations in an Ising system on small-world networks
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We study quantum Ising spins placed on small-world networks. A simple model is considered in which the
coupling between any given pair of spins is a nonzero constant if they are linked in the small-world network,
and zero otherwise. By applying a transverse magnetic field, we have investigated the effect of quantum
fluctuations. Our numerical analysis shows that the quantum fluctuations do not alter the universality class at
the ferromagnetic phase transition, which is of the mean-field type. The transition temperature is reduced by
the quantum fluctuations and eventually vanishes at the critical transverse fieldDc . With increasing rewiring
probability,Dc is shown to be enhanced.
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Various phenomena in nature and human society can
understood in terms of dynamical interaction among in
vidual elements on a complex network. The equilibrium a
dynamic properties of such systems depend strongly on
topology of the underlying network as well as how the in
viduals interact with each other. For example, the antifer
magnetic Ising model suffers from frustration effects on
triangular lattice, whereas it has a simple ground state o
square lattice. For the mathematical simplicity, the netw
is often regarded as either completely random or purely re
lar. In reality, however, most of the biological systems, sol
state systems, and human societies lie somewhere bet
these two extremes. Furthermore, it has recently been sh
that such networks, now widely known as ‘‘small-world
networks, exhibit mixed properties. Some of which are co
mon to completely random networks, some common
purely regular networks, and others unique to small-wo
networks@1,2#.

A simple yet inspiring mathematical model for a sma
world network has been proposed by Watts and Strog
~WS! @3#. One starts from a regular network and ‘‘rewire
the links with probabilityp. As p varies from 0 to 1, the
resulting network ‘‘interpolates’’ from a purely regular ne
work to a completely random network. The value of t
model so generated comes from the fact that it captures
portant physics in a wide range of physical systems, wh
can be described by neither a regular nor a random netw

In recent years, many authors have studied scaling p
erties, crossover behavior, percolation behavior@4,5#, the
spread of infectious diseases@6,7#, signal-propagation spee
@3#, computational power, and synchronization@8,9# of
small-world networks. More recently, phase transitions of
Ising model @10–12# and XY model @13# on small-world
networks have also been studied, where the crossover
one-dimensional to mean-field behavior has been found.
though most of the works mentioned above are concer
about classical statistical problems on small-world networ
Zhu and Xiong @14,15# have recently studied th
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localization-delocalization transition of electronic states o
small-world network which allows a quantum mechanic
hopping among sites.

In this work, we adopt a transverse-field Ising model
small-world networks, to investigate effects of the interpl
between the unique topology of small-world networks a
the quantum fluctuations. From the previous works@10–13#,
it is known that the small-world network topology enhanc
the correlation between the spins on the network, and le
to the mean-field behavior of the system. Since the quan
fluctuations, introduced by the transverse field in our mod
tend to destroy correlations, one can anticipate a nontri
competition between the small-world network topology a
the quantum fluctuations.

Another motivation for studying the transverse-field Isi
model on small-world networks is provided by the rece
wide interest in quantum computing. A quantum compu
can be regarded as controllable quantum spins~quantum me-
chanical two-state systems! interacting with each othe
through a network@16#. In realistic circumstances, the con
trol of the spins, which can be achieved by carefully tuni
the local magnetic field at each node and the coupling
tween each pair of spins, is imperfect. The effects of imp
fections on quantum computing have been studied on a c
pletely random network and have been shown to give rise
computation errors, which grow fast~exponentially or poly-
nomially! with the number of quantum bits~or in short, qu-
bits! @17#. It is therefore much worth studying the imperfe
tion effects in terms of qubits on small-world networks. Wi
the transverse field assumed uniform over the whole n
work, the model in our work may not directly represent
realistic quantum computer with imperfect controls, yet o
work might provide a stimulation for studies in th
direction.

We considerN interacting spins in a uniform transvers
magnetic fieldD. We assume that the interaction betwe
spins is Ising type. The Hamiltonian for the system is th
given by

H5Hz1Hx52(
i , j

Ji j s i
zs j

z2D(
i 51

N

s i
x , ~1!
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wheresx, sy, andsz are the Pauli matrices. The couplin
Ji j between the two spins at thei th and j th sites are defined
on a small-world network~see below for the precise way th
network is constructed!. Namely, we regard that the spins a
placed on the small-world network, and thatJi j 5J if i and j
are linked on the network andJi j 50 otherwise@18#. We will
focus on the ferromagnetic case (J.0) in this work. For an
antiferromagnetic interaction, more complications may ar
due to frustration.

The small-world network is constructed in a very simil
way as used by WS. We take a one-dimensional regular
work with 2k nearest neighbors@19# with a periodic bound-
ary condition (s i 1N

l [s i
l ,l 5x,y,z). Among the total ofNk

links, we randomly choosepNk of them. One end of each
chosen link is then rewired to a random site keeping
other end as a pivot point. Among the resulting networks,
discard those with disconnected parts, i.e., we only cons
a network where all the nodes belong to a single cluster

Without going into details, several properties of th
model may be qualitatively understood as follows. In t
classical case (D50), this model is known to undergo
mean-field type ferromagnetic phase transition at a fin
temperature for an arbitrarily smallp.0 @10#. Finite trans-
verse magnetic field introduces quantum fluctuations, wh
compete with the correlations enhanced by the topology
the small-world network. As a consequence, one expectD
to suppress the transition temperatureTc . In the fully quan-
tum mechanical case (T50) on the nearest-neighbor regul
network (k51), the Hamiltonian in Eq.~1! shows a quan-
tum phase transition atDc5J @20#, which belongs to the
universality class of the two-dimensional classical Isi
model on an anisotropic square lattice. For the regular
work with k52, from which our small-world network is
derived, a larger value ofDc is expected.

Below we will calculate the phase boundary, i.e., the tr
sition temperatureTc as a function ofD, using the quantum

FIG. 1. The fourth order Binder cumulantUN is drawn as a
function of temperature for five different system sizesN. The pa-
rameters are given byk52, p50.1, andD/J52. In the time di-
rection, the size was fixed atM530. AsN grows, the crossing poin
converges to one single point, which isT/J52.04 in this graph.
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Monte Carlo simulation@21#. The universality class to which
the phase transition belongs will also be determined fr
various critical exponents. Before we give the results,
summarize the quantum Monte Carlo method specific to
model.

We divide the inverse temperatureb51/kBT into M
pieces with spacinge[b/M . The partition functionZ(b)
5tr exp(2bH) is then approximated by the Trotter produ
tion formula

Z~b!'tr@exp~2eHx!exp~2eHz!#
M, ~2!

the error of which is of the order ofe2 (M→`). We now use
the completeness relation

(
i

(
Si ,t561

uSi ,t&^Si ,tu51, ~3!

whereuSi ,t& is the eigenstates of thes i
z , and put it between

the tth and (t11)th temperature slices in Eq.~2!. We may
then write@22#

Z~b!5 (
$Si ,t%

expF(
i , j

(
t51

M

eJi j Si ,tSj ,t

1A(
i 51

N

(
t51

M

Si ,tSi ,t111NMBG , ~4!

where

A5
1

2
ln coth~eD!, ~5!

B5
1

2
ln@cosh~eD!sinh~eD!#. ~6!

FIG. 2. Phase boundary of the transverse-field Ising model o
small-world network. The small-world network was construct
following Watts and Strogatz starting from the one-dimensio
regular network withk52, and rewiring the links with the prob
ability p50.1 and 0.05.
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Interpreting the temperature slices as imaginary time in
vals, the above equation becomes a classical Ising m
defined on a (111)-dimensional lattice. The coupling in th
spatial direction~indicated by the indexesi and j ) is given

FIG. 3. Universal scaling functions atk52, p50.1, D/J52,
Tc /J52.04, andM530: ~a! specific heat,~b! magnetization, and
~c! susceptibility. Each quantity is measured per site. The legen
~a! is common to all three figures.
05612
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by Ji j , and contains the topology of the small-world ne
work. The coupling in the temporal direction~indicated by
the index t), on the other hand, is a nearest-neighb
coupling.

Due to randomness in the topology of the network, t
problem is naturally suited to a numerical analysis. We ha
thus performed a quantum Monte Carlo analysis using
above partition function. In order to increase efficiency ne
and below the ferromagnetic transition temperature, a clu
algorithm was adopted@23#. Since our model is differen
from a usual regular Ising model, we have developed a n
cluster algorithm that takes into account the small-world n
work topology and the anisotropy between space and t
axes.

The transition temperatureTc(D) has been determine
from the finite size scaling method. By varying temperatu
we computed the fourth order Binder cumulant@24#

UN~T!5
1

2 S 32
@^m4&#

@^m2&2#
D ~7!

for several different values ofN. This quantity varies from
one to zero, while temperature is swept from zero~maximum
order! to infinity ~maximum disorder!. The two different
shapes of brackets,^•••& and@•••#, denote the thermal av
erage and the average over rewiring configurations, res
tively. A typical result is shown in Fig. 1. For largeN, there
is a single crossing pointTc . It is noteworthy that the resul
is independent of the number of time slicesM once it ex-
ceeds a finite lower limitMc , indicating that the correlation
lengthjT in the time direction is a finite fraction ofb. When
T/J*1, the value ofMc is typically ;30 and it increases a
lower temperatures.

Figure 2 shows phase diagrams inT-D space fork52,
and two different rewiring probabilitiesp50.1 and 0.05.
First of all, we findTc.0 in the absence of the transver
field, which agrees with previous results@10–12#. When a
small D is turned on,Tc remains finite although it decrease
with increasingD. At a fixed D, we find thatTc increases
with p, just as in the no field case.

Extrapolating the phase transition line toT50, one may
obtain the quantum critical transverse fieldDc . This is an

in

TABLE I. Critical exponents near the ferromagnetic phase tr
sitions for D,Dc in the transverse-field Ising model on a sma
world network. For a comparison, mean-field~MF! values are also
provided.

Quantity Critical behavior Our result MF value

Specific heat c}uT2Tcu2a a50.0060.02 a50
Magnetization m}(Tc2T)b b50.560.1 b51/2
Susceptibility x}uT2Tcu2g g51.0060.02 g51
Coherence Number Nc}uT2Tcu2 n̄ n̄52.0060.02 n̄52
5-3
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extension of the quantum critical point of the regular Isi
model @20#. From Fig. 2, one can clearly see thatDc in-
creases withp. This implies that the more the Ising system
rewired, the more resilient it is to quantum fluctuations.

We now characterize the ferromagnetic phase transi
by determining the universality class to which it belongs.
the pure classical case (D50), it is known that the phase
transition is mean-field-like@10,11,13#. To address the ques
tion whether this is still the case for finite values of t
transverse fieldD, we investigated the scaling behavior
the phase transition described above. First of all, the Bin
cumulant was fitted to a scaling function of the form

UN~T!5Ũ„~T2Tc!N
1/n̄
…. ~8!

Due to the infinite-range nature of the small-world netwo
the above exponentn̄ describes the divergence of coheren
numberNc instead of the correlation lengthj @13,25#. More
explicitly, we may write

Nc}uT2Tcu2 n̄, ~9!

near the transition.
The other critical exponents have also been obtained f

various physical quantities by fitting them to scaling fun
tions. For example, the specific heat per spin is fitted to

c~T!5Na/ n̄c̃„~T2Tc!N
1/n̄
…. ~10!

Figure 3 shows an example of the scaling functions for~a!
specific heat,~b! magnetization, and~c! susceptibility per
spin. If we choose appropriate exponents, results from
tems of different sizes clearly collapse to one single cu
near Tc . As T moves away from the scaling regime, th
curves deviate. The best fitting values of the exponents
summarized in Table I. It turned out that they are the sam
those of the mean-field transition to a very high precisi
05612
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Therefore, we conclude that the quantum fluctuations in
duced by the transverse field do not alter the universa
class of the ferromagnetic phase transition in the Ising m
els on small-world networks.

So far, we have studied the scaling properties of an Is
system on small-world networks at finite temperatures. Ho
ever, the quantum critical pointDc at T50 is in itself of
much interest, since in general the universality class o
quantum critical point is different from that of classical tra
sitions at finite temperatures@20#. Whether the small-world
network will change the universality class of the quantu
critical point as compared to that in the regular Ising mo
is a highly intriguing question. In order to address this qu
tion, however, one has to use a different technique than th
used above, because the results from the quantum M
Carlo simulations become unreliable nearT50. Therefore,
we leave it as a topic for further study.

In summary, we have used the quantum Monte Ca
simulations to obtain the phase diagram of an Ising sys
on small-world networks in the presence of a transve
magnetic field. The ferromagnetic phase persisted at finiteD,
although the effect of quantum fluctuations introduced by
transverse field was manifested by the decrease ofTc . At a
fixed D, we have also shown thatTc increases with the re
wiring probability p. From various scaling exponents, w
have argued that the ferromagnetic phase transition at fi
field was still of a mean-field type. Eventually,Tc decreases
to zero at a quantum critical point at a finite fieldDc , butDc
increases with increasingp. Since the ferromagnetic regio
increases withp in bothT andD directions, we conclude tha
the small-world topology of the spin system compe
against both thermal and quantum fluctuations, and enha
the correlation and ordering of the spins.
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