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Effect of quantum fluctuations in an Ising system on small-world networks

Hangmo Yt and Mahn-Soo Cho#*
IKorea Institute for Advanced Study, 207-43 Cheongnyangni-dong, Dongdaemun-gu, Seoul 130-722, Korea
°Department of Physics, Korea University, 5-ka 1 Anam-dong Sungbuk-ku, Seoul 136-701, Korea
(Received 17 December 2002; published 23 May 2003

We study quantum Ising spins placed on small-world networks. A simple model is considered in which the
coupling between any given pair of spins is a nonzero constant if they are linked in the small-world network,
and zero otherwise. By applying a transverse magnetic field, we have investigated the effect of quantum
fluctuations. Our numerical analysis shows that the quantum fluctuations do not alter the universality class at
the ferromagnetic phase transition, which is of the mean-field type. The transition temperature is reduced by
the quantum fluctuations and eventually vanishes at the critical transversa fieMVith increasing rewiring
probability, A is shown to be enhanced.
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Various phenomena in nature and human society can blecalization-delocalization transition of electronic states on a
understood in terms of dynamical interaction among indi-small-world network which allows a quantum mechanical
vidual elements on a complex network. The equilibrium andhopping among sites.
dynamic properties of such systems depend strongly on the In this work, we adopt a transverse-field Ising model on
topology of the underlying network as well as how the indi- small-world networks, to investigate effects of the interplay
viduals interact with each other. For example, the antiferrobetween the unique topology of small-world networks and
magnetic Ising model suffers from frustration effects on athe quantum fluctuations. From the previous wdrk8-13,
triangular lattice, whereas it has a simple ground state on 4 IS known that the small-world network topology enhances
square lattice. For the mathematical simplicity, the networkN€ correlation between the spins on the network, and leads
is often regarded as either completely random or purely regut-0 the mea”'_f'e'd behavior of the system. S_mce_ the quantum
lar. In reality, however, most of the biological systems, Sc)“d_fluctuatlons, introduced by the transverse field in our model,

state systems, and human societies lie somewhere betwe%erpd to.Qestroy correlations, one can anticipate a nontrivial
. competition between the small-world network topology and
these two extremes. Furthermore, it has recently been sho

. “He quantum fluctuations.
that such networks, now widely known as “small-world” .

K hibit mixed o S ¢ which Another motivation for studying the transverse-field Ising
networks, exhibit mixed properties. Some of which are comy, 4| on small-world networks is provided by the recent

mon to completely random networks, some commMON 1Qyige interest in quantum computing. A quantum computer
purely regular networks, and others unique to small-world,5 pe regarded as controllable quantum sfiogntum me-
networks[1,2]. chanical two-state systemnsnteracting with each other

A simple yet inspiring mathematical model for a small- through a network16]. In realistic circumstances, the con-
world network has been proposed by Watts and Strogatgol of the spins, which can be achieved by carefully tuning
(WS) [3]. One starts from a regular network and “rewires” the local magnetic field at each node and the coupling be-
the links with probabilityp. As p varies from O to 1, the tween each pair of spins, is imperfect. The effects of imper-
resulting network “interpolates” from a purely regular net- fections on quantum computing have been studied on a com-
work to a completely random network. The value of thepletely random network and have been shown to give rise to
model so generated comes from the fact that it captures imsomputation errors, which grow fagxponentially or poly-
portant physics in a wide range of physical systems, whicihomially) with the number of quantum bit®r in short, qu-
can be described by neither a regular nor a random networlits) [17]. It is therefore much worth studying the imperfec-

In recent years, many authors have studied scaling propion effects in terms of qubits on small-world networks. With
erties, crossover behavior, percolation behaVi)5], the the transverse field assumed uniform over the whole net-
spread of infectious diseasg 7], signal-propagation speed Work, the model in our work may not directly represent a
[3], computational power, and synchronizati¢8,9] of realistic quantum computer with imperfect controls, yet our
small-world networks. More recently, phase transitions of thevork might provide a stimulation for studies in this
Ising model[10—-14 and XY model [13] on small-world  direction.
networks have also been studied, where the crossover from We considerN interacting spins in a uniform transverse
one-dimensional to mean-field behavior has been found. Almagnetic fieldA. We assume that the interaction between
though most of the works mentioned above are concerne8pins is Ising type. The Hamiltonian for the system is then
about classical statistical problems on small-world networksgiven by
Zhu and Xiong [14,159 have recently studied the

N
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function of temperature for five different system si2é¢sThe pa-  Small-world network. The small-world network was constructed
rameters are given blg=2, p=0.1, andA/J=2. In the time di- following Watts and Strogatz starting from the one-dimensional

rection, the size was fixed &t =30. AsN grows, the crossing point  régular network withk=2, and rewiring the links with the prob-
converges to one single point, whichTi$J=2.04 in this graph. ability p=0.1 and 0.05.

where o, o, ando? are the Pauli matrices. The coupling Monte Carlo simulatioi21]. The universality class to which

J;; between the two spins at thth andjth sites are defined the phase transition belongs will also be determined from
on a small-world networksee below for the precise way the Various _crltlcal exponents. Before we give the resglts, we
network is constructédNamely, we regard that the spins are Summarize the quantum Monte Carlo method specific to our
placed on the small-world network, and tiigt=J if i andj model. _ _

are linked on the network anj =0 otherwise[18]. We will ~We divide the inverse temperatuig=1kgT into M
focus on the ferromagnetic cas&0) in this work. For an  Pi€ceés with spacing= /M. The partition functionZ(p)
antiferromagnetic interaction, more complications may arise- I €Xp(~BH) is then approximated by the Trotter produc-

due to frustration. tion formula
The small-world network is constructed in a very similar . M
way as used by WS. We take a one-dimensional regular net- Z(B)~texp(—eHy)exp(—eH,)]", 2

work with 2k nearest neighbors 9] with a periodic bound-
ary condition ¢, y=0!,I=x,y,2). Among the total ofNk
links, we randomly choospNk of them. One end of each
chosen link is then rewired to a random site keeping the

other end as a pivot point. Among the resulting networks, we > > IS.(S=1, (©)
discard those with disconnected parts, i.e., we only consider PoS=l

a network where all the nodes belong to a single cluster. ) _ , _
Without going into details, several properties of thisWhere[S; ) is the eigenstates of the, and put it between

model may be qualitatively understood as follows. In thethe tth and ¢+1)th temperature slices in E(). We may
classical case X=0), this model is known to undergo a then write[22]
mean-field type ferromagnetic phase transition at a finite
temperature for an arbitrarily smahl>0 [10]. Finite trans-
verse magnetic field introduces quantum fluctuations, which Z(IB):{;} exr{izj Z’l €JijSitSi
compete with the correlations enhanced by the topology of *
the small-world network. As a consequence, one exp&cts
to suppress the transition temperatiiite In the fully quan- +AZl tzl SitSit+1T NM B}, 4
tum mechanical casel&0) on the nearest-neighbor regular T
network k=1), the Hamiltonian in Eq(1) shows a quan-
tum phase transition ah.=J [20], which belongs to the
universality class of the two-dimensional classical Ising 1
model on an anisotropic square lattice. For the regular net- A= zIncoth eA), (5)
work with k=2, from which our small-world network is 2
derived, a larger value of is expected. 1

Below we will calculate the phase boundary, i.e., the tran- _ - :
sition temperaturd . as a function ofA, using the quantum B= 2 InfcosfteA)sinf(eA)]. ®)

the error of which is of the order af (M— o). We now use
the completeness relation

M

where

056125-2



EFFECT OF QUANTUM FLUCTUATIONS IN AN ISING . .. PHYSICAL REVIEW B67, 056125 (2003

(a) : | : TABLE I. Critical exponents near the ferromagnetic phase tran-
sitions for A<A_ in the transverse-field Ising model on a small-
x N=200| - world network. For a comparison, mean-fi€MF) values are also

ggg provided.

1600
3200 Quantity Critical behavior ~ Our result ~ MF value

1.5

* 0O+ O

Specific heat cx|T-T™* @=0.00£0.02 a=0
Magnetization me(T,—T)#  B=05+0.1 B=1/2
Susceptibility x*|T-TJ 7 9=100+£0.02 y=1
= Coherence Number Ncoc|T—Tc|—7 =2.00+0.02 p=2

c /Noc/v

0.5

05 ; 5 ; %0 by Jij, and contains the topology of the small-world net-
(T_T)NI/G/J work'. The coupling in the temporal <.j|rect|c(md|cated.by
c the indext), on the other hand, is a nearest-neighbor
coupling.

®) s ; | . Due to randomness in the topology of the network, this
* . problem is naturally suited to a numerical analysis. We have
sb o ¥ thus performed a quantum Monte Carlo analysis using the
above partition function. In order to increase efficiency near
and below the ferromagnetic transition temperature, a cluster
algorithm was adoptedi23]. Since our model is different
from a usual regular Ising model, we have developed a new
cluster algorithm that takes into account the small-world net-
work topology and the anisotropy between space and time
axes.

The transition temperaturé.(A) has been determined
from the finite size scaling method. By varying temperature,
we computed the fourth order Binder cumula24]

-50

(T-T) NY g

1 4
UN(T)=§(3— L ”) Y

©) . . [(m?)?]

for several different values dfl. This quantity varies from
one to zero, while temperature is swept from z@naximum
ordep to infinity (maximum disorder The two different
shapes of brackets; - -) and[ - - -], denote the thermal av-
erage and the average over rewiring configurations, respec-
tively. A typical result is shown in Fig. 1. For lardgé, there
is a single crossing point, . It is noteworthy that the result
is independent of the number of time slicksonce it ex-
ceeds a finite lower limiM, indicating that the correlation
length &5 in the time direction is a finite fraction g8. When
T/J=1, the value oM. is typically ~30 and it increases at
W lower temperatures.

_ (TTYNT/T Figure 2 shows phase diagramsTirA space fork=2,
FIG. 3. Universal scaling functions &t=2, p=0.1, A/J=2,  ang two different rewiring probabilitiep=0.1 and 0.05.
Tc/3=2.04, andM =30: (a) specific heat(b) magnetization, and - Fjrst of all, we findT.>0 in the absence of the transverse

(© _susceptlblllty. Each quar_ltlty is measured per site. The legend Beld, which agrees with previous results0—12. When a
(8 is common fo all three figures. small A is turned on,T, remains finite although it decreases
Interpreting the temperature slices as imaginary time interwith increasingA. At a fixed A, we find thatT, increases
vals, the above equation becomes a classical Ising mod#lith p, just as in the no field case.

defined on a (¥ 1)-dimensional lattice. The coupling in the  Extrapolating the phase transition line Te=0, one may
spatial direction(indicated by the indexelsandj) is given  obtain the quantum critical transverse fiedd. This is an

2 IN"

0.1
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extension of the quantum critical point of the regular IsingTherefore, we conclude that the quantum fluctuations intro-
model [20]. From Fig. 2, one can clearly see that in-  duced by the transverse field do not alter the universality
creases witlp. This implies that the more the Ising system is class of the ferromagnetic phase transition in the Ising mod-
rewired, the more resilient it is to quantum fluctuations. els on small-world networks.

We now characterize the ferromagnetic phase transition So far, we have studied the scaling properties of an Ising
by determining the universality class to which it belongs. Insystem on small-world networks at finite temperatures. How-
the pure classical case\(=0), it is known that the phase ever, the quantum critical poink, at T=0 is in itself of
transition is mean-field-1ik¢10,11,13. To address the ques- ch interest, since in general the universality class of a
tion whether this is still the case for finite values of the 4 antum critical point is different from that of classical tran-
transverse field\, we investigated the scaling behavior of sitions at finite temperaturdg0]. Whether the small-world
the phase trans_ition describe_d above._ First of all, the Bindeﬁetwork will change the universality class of the quantum
cumulant was fitted to a scaling function of the form critical point as compared to that in the regular Ising model
is a highly intriguing question. In order to address this ques-
tion, however, one has to use a different technique than those
used above, because the results from the quantum Monte
Due to the infinite-range nature of the small-world network,carlo simulations become unreliable n@s« 0. Therefore,
the above exponent describes the divergence of coherencewe leave it as a topic for further study.
numberN, instead of the correlation length[13,25. More In summary, we have used the quantum Monte Carlo
explicitly, we may write simulations to obtain the phase diagram of an Ising system
on small-world networks in the presence of a transverse
magnetic field. The ferromagnetic phase persisted at finite
although the effect of quantum fluctuations introduced by the
near the transition. transverse field was manifested by the decreask,ofAt a

The other critical exponents have also been obtained frorf¥€d A, we have also shown that; increases with the re-

various physical quantities by fitting them to scaling func-Wiring probability p. From various scaling exponents, we
tions. For example, the specific heat per spin is fitted to have argued that the ferromagnetic phase transition at finite
’ field was still of a mean-field type. Eventually, decreases

to zero at a quantum critical point at a finite field, butA
increases with increasing Since the ferromagnetic region

) . ) increases witlp in both T andA directions, we conclude that
Figure 3 shows an example of the scaling functions(®r  he small-world topology of the spin system competes
specific heat,(b) magnetization, andc) susceptibility per  ggainst both thermal and quantum fluctuations, and enhances

spin. If we choose appropriate exponents, results from sysye correlation and ordering of the spins.
tems of different sizes clearly collapse to one single curve

nearT.. As T moves away from the scaling regime, the = We thank M. Y. Choi, H. Hong, and B. J. Kim for very
curves deviate. The best fitting values of the exponents areseful discussions. We acknowledge the support from the
summarized in Table I. It turned out that they are the same aSwiss-Korean Outstanding Research Efforts Award program

Un(T)=0((T-TN). ()

Noot |T=T¢| ™, ©)

o(T)=NE(T=TINY). (10)

those of the mean-field transition to a very high precision(SKORE-A).
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