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Semiclassical Fluctuations in the Quantum Phase Model
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We consider the one-dimensional quantum phase model coupled to a thermal bath at finite
temperatures and investigate the competition of quantum and thermal fluctuations. By means of a
variational method, we obtain the effective classical Hamiltonian, which manifests a crossover from
quantum to classical behaviors of the fluctuations. It is also shown that the peculiar nature of the
quantum-phase model restricts the applicability of the otherwise well-working variational method
to a certain range of quantum fluctuations.

I. INTRODUCTION

In a recent breakthrough in our understanding of ultra-
small tunnel junctions and arrays, as well as granu-
lar superconductors, the quantum-phase model (QPM)
has served as a fundamental model, incorporating both
the charging energy and the Josephson-coupling energy
which compete with each other and which bringing about
strong quantum fluctuations at low temperatures [1].
Because of the quantum fluctuations, the QPM is now
well known to exhibit quantum phase transitions at zero
temperature, such as the superconductor-insulator tran-
sitions in Josephson-junction arrays (JJAs) [2–4]. Al-
though, in its precise meaning, the quantum phase tran-
sition, occurs only at zero temperature, quantum fluc-
tuations often survive and play significant roles even
at finite (albeit sufficiently low) temperatures, and
the interplay of the quantum and the thermal fluc-
tuations have already been the source of a number
of experimental and theoretical works [5]. Amongst
them is a semiclassical approach to the QPM based on
the Giachetti-Tognetti-Feynman-Kleinert (GTFK) vari-
ational method [6], addressing the issue of reentrance be-
havior in two-dimensional (2D) JJAs at very low temper-
atures [7]. Unlike previous works, which are essentially
mean-field in nature, this approach has attracted consid-
erable attention, partly because of the great success of
the underlying GTFK method applied to various poten-
tials and partly due to the lack of an adequate method
to account for both the quantum and the thermal fluc-
tuations satisfactorily. Indeed, this approach applied to
2D arrays has predicted transitions of the Berezinskii-
Kosterlitz-Thouless type for weak quantum fluctuations,
which may not be obtained via the mean-field approach,
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and has produced results at low temperatures consistent
with the known zero-temperature results [7].

The purpose of this paper is two fold: On the one
hand, we formulate the GTFK variational method ap-
plied to the QPM more thoroughly than in Ref. [7] (to
be referred to as KKC in the following) and examine the
validity of the method in this particular model, which
was not properly considered in KKC. The motivation is
that the QPM provides an example of a potential that
puts a rather strong restiction on the applicability of
the GTFK method. On the other hand, we investigate
the competition between the quantum and the thermal
fluctuations in the one-dimensional (1D) QPM, having
in mind 1D arrays of ultra-small Josephson junctions at
finite temperature, within the restricted, but still inter-
esting, region of the parameter space where the GTFK
method is valid. Notwithstanding its importance in view
of experiments, there have been few studies of the finite-
temperature effects in the 1D QPM, which contrasts with
the numerous works performed in two dimensions.

To consider the GTFK method from a more funda-
mental point of view, we begin in Sec. with a single
phase variable describing, e.g., a single Josephson junc-
tion. This reveals that the peculiar nature of the QPM
restricts the applicability of the otherwise well-working
variational method to a certain limited range of quantum
fluctuations. Section investigates the finite-temperature
effects in the 1D QPM. It is found that quantum fluc-
tuations survive at sufficiently low, but finite, tempera-
tures and play significant roles, renormalizing the poten-
tial strength substantially. Finally, Sec. concludes the
paper and gives a brief discussion of the experimental
situation as well.

II. SINGLE PHASE VARIABLE
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In this section, we introduce the QPM with a single
phase variable and apply the GTFK variation method,
which leads to the effective classical potential for the sys-
tem. Since the detailed procedure is already well estab-
lished in the literature [8], we here sketch briefly the pro-
cedure, albeit making clear the nature of the approach
and pointing out the peculiarity of the QPM.

In the imaginary-time path-integral formalism, the
QPM with the single phase variable ϕ is described by
the Euclidean action:

S0/h̄ ≡ βJ
∫ h̄β

0

dτ

βh̄

[
1

2ω2
p

ϕ̇(τ)2 − cosϕ(τ)
]
, (1)

where J is the height of the periodic potential and ωp is
the characteristic frequency of the dynamics of the phase
variable. For convenience, we also define α ≡ h̄ωp/J , the
ratio of the energy of the quantum zero-point motion to
the potential energy, which measures the strength of the
quantum fluctuations. In the case of a Josephson junc-
tion, for instance, J is the Josephson-coupling energy,
ωp ≡

√
8ECJ/h̄, with EC being the charging energy, is

the Josephson-plasma frequency of the junction, and α is
given by the ratio of the charging energy to the Joseph-
son energy: α =

√
8EC/J .

When the phase variable is coupled to a thermal bath
at temperature 1/β, on the other hand, there appears an
additional effective dissipative action. In the Caldeira-
Leggett (CL) model [9], the dissipative action reads

SD/h̄ ≡ βJ
∞∑
n=1

(
γωn/ω

2
p

)
|ϕn|2, (2)

where γ is the damping coefficient and ϕn (n =
0, 1, 2, · · ·) is the Fourier component

ϕ(τ) ≡ ϕ0 +
∞∑
n=1

[
ϕne

−iωnτ + c.c.
]

(3)

corresponding to the thermal frequency ωn ≡ 2πn/βh̄.
In general, the physical origin of the dissipation, which
is inevitable at finite temperatures, varies with the de-
tails of the system described by the QPM and with
the actual coupling of the phase variable to the ther-
mal bath. For example, in Josephson-junction systems,
the major source of dissipation is quasiparticle tunnel-
ing whereas the shunt resistance plays a dominant role
in superconducting point contacts or constrictions. Such
details are, however, not essential in the following formu-
lation (see Ref. [10]), and we here adopt for simplicity
the CL model given by Eq. (2), which is widely believed
to describe well Ohmic dissipation. It should also be
pointed out that without such a dissipation, the contri-
butions from the paths with non-zero winding numbers,
ϕ(βh̄) = ϕ(0) + 2π` for ` = 0, 1, 2, · · ·, are crucial [11].
Since the winding number contribution is beyond the
scope of this work, we henceforth put ` = 0 and further
focus on the case of weak dissipation: γ � ω0.

In terms of the Fourier decomposition in Eq. (3) and
the integration measure for the non-zero frequency com-
ponents [8]∫

d{ϕnϕ∗n} ≡
∫ ∞
−∞

∞∏
n=1

[∫
dϕndϕ

∗
n

2πiω2
p/βJω

2
n

]
,

the partition function for the QPM in Eqs. (1) and (2)
takes the form

Z =
∫

dϕ0√
2πβh̄2ω2

p/J
exp[−βHcl(ϕ0)], (4)

where the effective classical Hamiltonian has been de-
fined according to

exp[−βHcl(ϕ0)] ≡
∫
d{ϕnϕ∗n} exp

{
− 1
h̄
S[ϕ(τ)]

}
(5)

with the total action S ≡ S0+SD. Since it is not possible
to compute exactly the effective classical Hamiltonian,
we employ the GTFK approach and choose a trial action
of the form

S1

h̄
=

βJ

2ω2
p

∞∑
n=1

[
ω2
n + γωn + Ω2(ϕ0)

]
|ϕn|2, (6)

which corresponds to the replacement of the cosine po-
tential in Eq. (1) with the harmonic potential

− cos[ϕ(τ)] ≈
[

Ω2(ϕ0)
2ω2

p

]
[ϕ(τ)− ϕ0]2.

The ϕ0-dependent frequency Ω(ϕ0) is to be determined
in a variational manner as follows: The convexity of the
exponential function leads to the Jensen-Peierls inequal-
ity

exp[−βHcl(ϕ0)] ≥exp
{
−βH1

cl(ϕ0)− 1
h̄
〈 S − S1〉S1,ϕ0

}
,

(7)

where exp[−βH1
cl ] ≡

∫
d{ϕnϕ∗n} exp[−S1/h̄] and the av-

erage with respect to the trial action for ϕ0 is defined
by

〈 · · · 〉S1,ϕ0
≡
∫
d{ϕnϕ∗n}e−S1/h̄[· · ·]∫
d{ϕnϕ∗n}e−S1/h̄

.

In other words, we have the upper bound H∗cl(ϕ0) for the
true effective classical Hamiltonian Hcl(ϕ0):

Hcl(ϕ0) ≤ H∗cl(ϕ0) ≡ H1
cl(ϕ0)+

1
h̄β
〈 S − S1 〉S1,ϕ0

.(8)

As a result, we can determine Ω(ϕ0) by minimizing
H∗cl(ϕ0) so that H∗cl(ϕ0) becomes the optimal upper
bound and thus provides a very good approximation to
the true effective classical potential Hcl(ϕ0) over a wide
range of temperatures. This yields the coupled equations
for the variational parameter:

Ω2(ϕ0) = ω2
p exp

[
−a2(ϕ0)/2

]
cosϕ0 (9)
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Fig. 1. Effective classical Hamiltonian Hcl(ϕ) in Eq. (12)
at three different temperatures, βJ = 10, 0, and 1/10, for
α = 1 and γ = 0.05ωp.

and

a2(ϕ0) ≡
2ω2

p

βJ

∞∑
n=1

1
ω2
n + γωn + Ω2(ϕ0)

, (10)

which in turn leads to the optimal upper bound for the
effective classical Hamiltonian

Hcl(ϕ) = −Je−a
2(ϕ)/2

[
1 + a2(ϕ)/2

]
cosϕ

− 1
β

∞∑
n=1

ln
ω2
n

ω2
n + γωn + Ω2(ϕ)

. (11)

Here the asterisk in H∗cl , as well as the subscript 0 in ϕ0,
has been omitted for simplicity. More explicitly, putting
γ = 0 in the weak-dissipation limit (see below), one gets

Hcl(ϕ) = −Je−a
2(ϕ)/2

[
1 + a2(ϕ)/2

]
cosϕ

− 1
β

ln
βh̄Ω(ϕ)/2

sinh[βh̄Ω(ϕ)/2]
, (12)

together with

a2(ϕ) =
1
4
α2βJF [βh̄Ω(ϕ)/2], (13)

where F (x) ≡ x−2(x cothx−1). Figure 1 shows the gen-
eral behavior of the effective classical Hamiltonian as a
function of ϕ at three different temperatures. It can be
observed that quantum fluctuation effects become sig-
nificant as the temperature is lowered, yielding marked
deviations from the cosine-type potential at low temper-
atures (αβJ � 1).

Apart from the additional ϕ-dependence of the front
factor Je−a

2(ϕ)/2[1 + a2(ϕ)/2], the effective classical
Hamiltonian in Eq. (12) is reminiscent of the Hamilto-
nian for a macroscopic (classical) junction. Naturally,
the extent of the ϕ-dependence here depends on the
strength α of the quantum fluctuations. Indeed, in the
high-temperature classical limit (αβJ → 0), it is obvious
that Eq. (12) reduces to

Hcl(ϕ) ' −J cosϕ.

Fig. 2. Optimal values of the variational parameter a2(0)
versus α for γ/ωp = 0.01, 0.1, 5, and 10 at (low) temperature
βJ = 0.001.

In the opposite low-temperature limit (αβJ → ∞),
on the other hand, the effective classical Hamiltonian in
Eq. (12) is ill-behaving, as can be seen from the effective
potential height

∆Ucl ≡ Hcl(π)−Hcl(0)

=


Je−a

2(0)/2

[
1− 2

e

α

αc

]
, α < αc

Je−α
2βJ/24 → 0, α > αc

(14)

with

a2(0) ≈


4
e

α

αc
exp

[
1
e

α

αc

]
, α < αc

1
12
α2βJ →∞ , α > αc ,

(15)

where e ' 2.781 is the natural number and the crossover
value αc is given by αc = 8/e ' 2.943. The effective po-
tential height in Eq. (14) shows a discontinuity at α = αc,
beyond which it vanishes exponentially. Such an expo-
nential decay, as well as the discontinuity, is, however,
an artifact of the GTFK method since the properties
of a single Josephson junction should change smoothly
with α [1]. This discrepancy reflects that the essentially
harmonic approximation cannot be valid for α > αc,
where the energy of the zero-point motion exceeds the
bare potential height J . It is here of interest to compare
the present situation with that of a double-well potential
whose zero-point energy is comparable to the potential
barrier [8]. In the latter case, the outer confining pon-
tential well allows the GTFK method to work even in
the presence of strong quantum fluctuations. On the
other hand, for α sufficiently small compared with αc,
Eq. (14) provides us with quite a good description of the
low-temperature properties.

Even though we have focused on the weak-dissipation
limit (γ = 0) for simplicity, the effects of finite dissipa-
tion (γ 6= 0) can be investigated straightforwardly in the
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same manner. Dissipation tends to suppress quantum
fluctuations, thus making the system behave more clas-
sically. For example, as shown in Fig. 2, the crossover
value αc increases with γ, and a2(ϕ) decreases rapidly
with γ (notice the logarithmic scale in the plot). Similar
effects are also expected in arrays, which are discussed
in the following section.

III. ONE-DIMENSIONAL QUANTUM PHASE
MODEL

We now turn to the QPM with many phase variables
{φj}, in particular, the 1D system:

S0

h̄
= βJ

∫ βh̄

0

dτ

βh̄

∑
j

[
1

2ω2
p

φ̇j(τ)2 − cosϕj(τ)
]
, (16)

where ϕj(τ) ≡ φj(τ)−φj+1(τ). Formally, the variational
procedure is just the same as that in the previous section:
We first approximate the cosine potential for every link,

− cosϕj(τ) ≈
Ω2
j ({ϕj,0})

2ω2
p

[ϕj(τ)− ϕj,0]2 ,

and choose the corresponding trial action

S1

h̄
=

βJ

2ω2
p

∑
ij

∞∑
n=1

Kn;ijφ
∗
i,nφj,n, (17)

where the elements of the matrix Kn are given by

Kn;ij = ω2
nδij + [Ω2

j−1 + Ω2
j ]δij (18)

− Ω2
j−1δi,j+1 − Ω2

jδi,j−1.

Upon optimizing with respect to Ω2
j , one obtains the

coupled equations

Ω2
j ({ϕj,0}) = ω2

p exp
[
−a2

j ({ϕ0})/2
]

cosϕj,0, (19)

where

a2
j ({ϕj,0}) ≡

2ω2
p

βJ

∞∑
n=1

[
K−1
n;jj({φj,0})

+K−1
n;j+1,j+1({φj,0})− 2K−1

n;j,j+1({φj,0})
]
. (20)

The effective classical Hamiltonian takes the form

Hcl({ϕj}) = −J
∑
j

e−a
2
j ({ϕ})/2

[
1 + a2

j ({ϕ})/2
]

cosϕj

− 1
β

∞∑
n=1

ln
ω2
n

detKn({ϕ})
, (21)

which is again reminiscent of the usual Hamiltonian for
a 1D classical JJA. The physics described by Eq. (21)
is highly nontrivial, however, since the variational pa-
rameters a2

j and Ω2
j depends on the configurations of all

the links of the system, not solely of their own link. To

simplify the problem, KKC at this stage adopted the
assumption that Ω2

j is constant over the whole system,
independent of the configuration of the phase variables
and of the link indices. This is, however, equivalent to
the self-consistent harmonic approximation (SCHA) in
spirit (see, e.g., Ref. [12]) and may result in some mean-
field character. In particular, the discontinuous change
of the physical parameters at some critical value of α,
which was pointed out to be an artifact of the mean-
field approach, was not properly noted in KKC.

Here, we provide a slightly improved approximation,
which to some restricted extent accounts for the con-
figuration dependence of the variational parameters:
Ω2
j ({ϕi}) = Ω2(ϕj). This simplifies the expression in

Eq. (20) to give

a2(ϕj) =
1
8
α2βJ{1+F [βh̄Ω(ϕj)/

√
2]G[βh̄Ω(ϕj)/

√
2]}(22)

with G(x) ≡ 2− x cothx. In the low-temperature limit,
the effective potential height is again given by

β∆Ucl '


βJe−a

2(0)/2

[
1− 1√

2
+

2
e

α

αc

]
, α < αc

βJe−α
2βJ/12 → 0, α > αc

(23)

with

a2(0) '


4
e

α

αc
exp

[
1
e

α

αc

]
, α < αc

1
6
α2βJ →∞, α > αc .

(24)

In this case, the crossover value is given by αc =
32/3
√

2e ' 2.775. It appears plausible to interpret the
low-temperature behavior in Eq. (23) as a remnant of the
zero-temperature quantum phase transition at finite, but
very low, temperatures. As already mentioned, however,
this should not be taken too seriously since this behav-
ior has its origin in an artifact arising from the GTFK
variational method being applied to QPM and appears
even in a (zero-dimensional) single-variable QPM. Nev-
ertheless, for α < αc, the GTFK variational construction
in this section provides us with quite accurate physical
quantities at finite temperatures.

IV. CONCLUSION

We have investigated the effects of quantum and
thermal fluctuations in the 1D QPM, which may be
the proper model for use with a 1D array of ultra-
small Josephson-junctions, via the GTFK variational ap-
proach. The effective classical Hamiltonian, where quan-
tum fluctuations are effectively incorporated, is derived
and is shown to exhibit crossovers from classical to quan-
tum behaviors of the fluctuations. In spite of the great
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success of the GTFK method for other shapes of poten-
tials, the same method applied to the QPM has only
restricted application due to the peculiar nature of the
QPM.

Unlike in two dimensions, where a few experimental
studies of JJAs are available, most studies in one di-
mension have been performed on tunnel-junction arrays
with negligible Josephson coupling [13]. With the litho-
graphic techniques already available to fabricate 2D ar-
rays of submicron junctions with a wide range of α, it
should not be difficult to perform similar experiments on
1D arrays.
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