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Abstract

We consider a topological superconducting wire and use the string order parameter to investigate the
spatiotemporal evolution of the topological order upon a quantum quench across the critical point.
We also analyze the propagation of the initially localized Majorana bound states after the quench, in
order to examine the connection between the topological order and the unpaired Majorana states,
which has been well established at equilibrium but remains illusive in dynamical situations. It is found
that after the quench the string order parameters decay over a finite time and that the decaying
behavior is universal, independent of the wire length and the final value of the chemical potential (the
quenching parameter). Itis also found that the topological order is revived repeatedly although the
amplitude gradually decreases. Further, the topological order can propagate into the region which was
initially in the nontopological state. It is observed that all these behaviors are in parallel and consistent
with the propagation and dispersion of the Majorana wave functions. Finally, we propose local
probing methods which can measure the nonlocal topological order.

1. Introduction

Traditionally, Landau’s symmetry-breaking theory [ 1-3] has long provided a universal paradigm for the states of
matter and their transitions. In this paradigm, continuous phase transitions are driven by the spontaneous
symmetry breaking and naturally described by local order parameters. In recent decades, condensed-matter
physics has witnessed the breakdown of the symmetry-breaking theory in describing symmetry-protected
topological states. One of the most common and earliest examples is the quantum Hall effect [4, 5], where
different quantum Hall states have the same symmetry. Topological phase transitions involve the change in
internal topology rather than symmetry breaking [6, 7]. Necessarily, topological states are classified by
topological quantum numbers. For example, different quantum Hall states are classified by the topological
Chern number [8, 9], and topological insulators and superconductors are characterized by the number of
gapless boundary (surface, edge or endpoint) states [7, 10—12] separated from gapped bulk states.

From the dynamical point of view, the classification in terms of discrete topological quantum numbers puts a
serious limitation. For example, let us ask the question, how long does it take for a topological order to form?
Namely, how does the topological order emerge or disappear temporally when system parameters are quenched
across the critical point? Within Landau’s paradigm, the approach to the corresponding questions is
conceptually clear because the local order parameters take continuous values and their dynamics are governed
by a differential equation of motion, so called the time-dependent Ginzburg-Landau equation [13-15].

Another conceptual difficulty in the dynamical description of topological order arises from the fact that the
topological quantum numbers or similar classifications concern about the ground state(s). In order to describe
the full aspects of the temporal evolution of the topological order, one has to take into account the excited states
as well as the ground states.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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To overcome these issues in the dynamical theory of topological order, a few different approaches have been
carried out previously: in [16], the fidelity of the final state with respect to the initial state has been examined.
Similarly, the survival and revival probabilities [17, 18] or the Loschmidt echo [19] of the Majorana states after
the quench have been also investigated. In particular, the sudden coupling of the localized Majorana state to the
normal metallic (gapless) lead gives rise to universal features in the evolution of the Majorana wave function
[19]. For aladder system studied in [20], the number of excited vortices in plaquettes was inspected. It has also
been suggested to use the Kibble—Zurek mechanism, which was originally put forward to study the cosmological
phase transitions of the early Universe [21, 22] and later extended to classical phase transitions [23, 24]. This
approach is particularly simple and insightful as it is only based on the competition between the internal and
driving time scales. It has been shown that the original Kibble—Zurek scaling form does not hold for the
topological phase transitions [25, 26] but one can generalize it by properly taking into account the multi-level
structure due to the Majorana bound states [27].

However, none of these approaches directly measures the dynamic topological order; they either resort to
the fidelity to the ground state or to the number of topological defects. Here we note that in one spatial
dimension one can draw a close analogy with the conventional order by introducing a continuous parameter for
the topological order [28]. The cost is that unlike the conventional order parameter the so-called string order
parameter for the topological order is nonlocal: it is defined as the the expectation value of a product of
consecutive Majorana operators in a certain range with respect to the dynamical wave function. It naturally
captures the dynamical evolution of the topological order reflected in the wave function, and is considered to be
more suitable for experimental observations [28].

On these grounds, in this work we adopt the string order parameter [29-31] to investigate the
spatiotemporal evolution of the topological order upon a quantum quench across the critical pointina
topological superconducting wire [32—35]. In addition, we separately analyze the propagation of the initially
localized Majorana bound states after quenching. By comparing the propagations of the topological order and
the Majorana states, we examine the connection between them in the dynamical situations. It is stressed that
while the close connection between the topological order and the Majorana bound states has been well
established for the ground state, i.e., at equilibrium [32-35], it is not obvious at all in the dynamical situations,
which involve excited states.

We find that after the quench toward the nontopological phase, the string order parameters decay over a
finite time before they vanish completely. Notably, this early decaying behavior is universal in the sense that it
does not depend on the wire length and the final value of the chemical potential (the quenched parameter). We
also find that the topological order is revived repeatedly although the amplitude gradually decreases. More
interestingly, the topological order propagates into the regions which were initially prepared in the
nontopological state. It is observed that all these behaviors of the dynamical topological order are in parallel and
consistent with the propagation and dispersion of the Majorana wave functions. Finally, we propose alocal
probing method which can measure the topological order which is nonlocal in nature.

The rest of the paper is organized as following: section 2 describes the model Hamiltonian for the topological
superconducting wire and defines the string order parameters. For later use, it summarizes the mathematical
and physical properties of the string order parameters. Section 3 studies the time evolution of the string order
parameter in a uniform wire. It discusses the dynamical aspects of the topological order in terms of the
propagation of the Majorana wave functions. Section 4 investigates the case where only the central part of the
superconducting wire is initially in the topological phase and the outer part is topologically trivial so that the
propagation of the topological order is examined. Section 5 proposes possible experimental methods to observe
our findings. Finally, section 6 concludes the paper.

2. Topological superconducting wires and topological order

2.1.Model

In order to explore the time evolution of topological order under a quench, we consider Kitaev’s spinless p-wave
topological superconducting wire with finite number of sites N and with open ends described by the tight-
binding Hamiltonian [32]

N-14 N |
H(t) = ZE(ACjCj+1 - wc]chH + (h.c)) — Zuj(t)(c}cj - 5), (1a)
s =
iN71 i N
=3 DA + W) ymaic1 + (A — w)mj—17j42] — > Y1 (Y172 (1b)
=1

j=1
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Figure 1. Majorana chain representation of one-dimensional topological superconducting wire. Each pair of Majorana fermions,
i1 and 7,; ina circle forms the site fermion ¢;. The lines connecting Majorana fermions represent the coupling between them in
three special conditions: () w = A = 0and p = 0,(b) A = wand p = 0,and (c) A = —w and p = 0. The nonlocal correlations
(red dotted lines) between otherwise isolated Majorana fermions arise only when the fermion parity condition is imposed.

with the hopping amplitude w > 0, the superconducting gap A, and the site-dependent chemical potential
14; (). The phase of the superconducting order parameter is neglected since it can be always gauged away. The
fermion operator c;on site j can be decomposed into the superposition of two Majorana fermion operators:
¢ = (1 + 1) /2 satisfying v, = fyz and {, Y/} = 26k This system preserves the fermion parity, or Z,
symmetry, defined by
N+ N
P=(=1)X99 =[] (—ivy 17 @)
j=1
since all the terms in equation (1a) either preserve the charge number or change it by even numbers. This system
has a topological invariant, known as the winding number, which takes values +1 and 0. First consider the
uniform and static case with 1, (£) = . For |u| > w;, the fermion parity is not broken and the system is in
nontopological phase with no unpaired Majorana fermions as demonstrated in figure 1(a). On the other hand,
for |u| < wand A = 0, there are topological phases with broken Z, symmetry, and the topological invariant is
1for A > 0or—1for A < 0.Inthe topological phases two unpaired Majorana modes arise at two ends of open
and long chains, as shown figures 1(b) and (¢): for example, for A = w and p = 0, the Majorana fermions
operators <y, and ,; are absent in the Hamiltonian (1), giving two zero-energy modes. Similarly, for A = —w
and p = 0, v, and ~,,,_, areisolated. In these special conditions or for infinitely long chain, the ground state is
doubly degenerate with definite fermion parity P = +1. The two-fold degeneracy coming from the Z,
symmetry cannot be lifted by small local perturbations unless they involve odd number of fermion operators
suchas¢;or ¢ ¢/ c;, which is the reason why the phase is called topological. The phase transition between
topological and nontopological phases occurs at |4] = w, where the system becomes gapless.

2.2. Topological order
In our study we adopt the nonlocal string order parameter proposed by Bahri and Vishwanath [29-31] to
measure the topological order in quench dynamics. The physical meaning of the string order parameter,
especially in the Kitaev model (1b), can be understood in its counterpart spin-1,/2 model. Via the Jordan—
Wigner transformation, the Kitaev model is mapped onto the spin XY model in a transverse magnetic field
described by

N-1 N

H= =% (0505 + ,olo), ) — h. ) o3 (3)

j=1 i=1
with J, = (w + A)/4 > 0, ], = (w — A)/4 > 0,and h, = — /2. The Z, symmetry in spin model
corresponds to the rotation by 7 around the spin z-axis P = H;V: 1 05

Consider the Ising case with w = A (or J, = 0) for simplicity. This system, like its counterpart (1a),

experiences a phase transition at J, = |h,|(thatis, || = w) from the spin ordered phase (J, > |h,|) to the
disordered phase (J; < |h,|). In the spin ordered phase or ferromagnetic phase, the Z, symmetry is broken like
the topological phase in its counterpart. The spin order in the ferromagnetic phase is reflected in the spin-x
correlation between two spins at end points: for sufficiently large N > 1
fok) = {(1 — h2/1%i + O(eN/%), J. > |h,| (spin ordered phase)

= ) 4)
O(e N9, J. < |h,| (spin disordered phase)
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Figure 2. String order parameter Si,p, x for N = 10 (red solid line) and 50 (blue dotted line) topological superconducting wires as a
function of the chemical potential 1 in equilibrium at zero temperature. Here we set w = A = 1. The order parameter exhibits a
second-order-type transition behavior: it is finite in the topological phase (1 < w)and vanishes in the nontopological phase
(> w).

where £ ~ 1/|], — |h,]|| are the correlation length (the inverse of the spectral gap) [36—38]. So the nonvanishing
spin correlation (with the connected correlation decaying exponentially) at long distances implies the existence of
the ferromagnetic order over the whole chain. (Recall that the Wigner—Jordan mapping between spins and
fermions is nonlocal. The correlation function in equation (4), expressed in terms of local spins 0 and oy,
complies with the Lieb—Robinson bound for connected correlations [37-39]. However, the Lieb—Robinson
bound does not apply for the topologically ordered states in the original fermion model [40, 41].) Noting that the
spin order in the spin model corresponds to the topological order in the original model, the spin correlation can
be used to measure the topological order. Indeed, via the Jordan—Wigner transformation, the spin correlation
can be expressed in terms of the Majorana operators as

N-1 N-1
Stop,x: (—i72) H (—i’Yzj—l’Yzj) YoN-1 ) = H (—172j72j+1) . (%)
j=2 =1

This is the string order parameter for the topological order. Note that the order parameter is based on the
nonlocal operator, a string of Majorana operators, reflecting the fact that the topological order is nonlocal
property. On the contrary, its counterpart in the spin model, (o7 o), is defined by local operators. The subscript
x comes from the fact that the string order parameter (5) comes from the spin-x correlation. Clearly, this string
order parameter becomes exactly one for the configuration in figure 1(b) since the Majorana fermions between
neighboringsites, 7,;and ,;  ;, are maximally paired. Figure 2 demonstrates that the string order parameter in
the Ising case displays the second-order transition behavior.

In general, the ferromagnetic ordering can arise along the spin-y direction if the spin XY model (J;, J, = 0)
is taken into account or when the system evolves with time under the transverse magnetic field so that the spins
precess. Specifically, the spin-y correlation between two edge spins, (g} o)), is written via the Jordan—-Wigner
transformation as

N—-1 N-1
Swpy = ( | [T (ivgim1mep) [(van) ) = (DN [ (—imgjmimajen) ) (6)
s =1

Interestingly, this string order parameter vanishes for the configuration in figure 1(b) but becomes one for that
in figure 1(c). Therefore, the spin-x and -y correlations capture two different kinds of topological order for which
the topological invariant is 1 or — 1, respectively. Hence, the sum of two order parameters defines the total
topological order:

Stop = Stop,x + Stop,y (7)

which is no other than the spin correlation (o} o3 + o o)) in the xy plane perpendicular to the transverse field.

From the dynamical point of view, the most fascinating aspect of this string order parameter is that it is
defined with respect to the wave function, not to the Hamiltonian. The so-called topological invariants which are
commonly used to clarify the topological property of the system at equilibrium are basically the properties of the
Hamiltonian. Therefore they are inadequate for the study of the evolution of the topological order triggered by
the change of the Hamiltonian with time such as quench. Quite contrary, the string order parameter Sy, is the
expectation value of Majorana operators with respect to the wave function which evolves with time, so it can
capture the dynamical evolution of the topological order in the wave function.

4
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The string order parameters can be defined over a part of the chain as well as the whole. For later use, we
define the string order parameters for the region from site j, to j as

j271
Stop,x(jp ]2) - < H (_ifYZj'ijJrl) > > (Sa)
j:j1
. . 7 H jz_l .
Stop,y(]p ]2) = (=1Dhr™ H (_172j—172j+2) > (Sb)
j:jl
Stop(jp ]2) = Stop,x(jp ]2) + Stop,y(jp ]2) (SC)

2.3. Time evolution and majorana correlation matrix
In order to calculate the string order parameter, we firstintroduce a 2N x 2N skew-symmetric Majorana
correlation matrix C(f) whose elements are defined by

G (1) = =i({(v O (1)) — o) ©

fork, k" = 1,---,2N. The Hamiltonian (14) is quadratic and one can apply Wick’s theorem to evaluate the string
order parameter. Wick’s theorem tells us that the expectation value of the products of -, is the sum of all the
possible products of the expectation values of pairs. The permutation between operators can change the overall
sign if it happens in an odd number. The results can thus be expressed in terms of Pfaffian of the Majorana
correlation matrix [42, 43]. More explicitly

Stop,x(jp ]2) = Pf[C(x)(jp jz)]) Stop,y(jp ]2) = —Pf[C(y)(jl, jz)]) (10)
where C¥)(j, j,)and CY(j,, j,) are 2(j, — j,) X 2(j, — j,) submatrices of C formed by rows and columns
2, 25, + 1,--4,2j, — 2, 2j, — land 2j;, — 1, 2j, + 1, 2j; + 2,---,2j, — 3, 2j, — 2, 2j,, respectively.
Now we formulate the time evolution of the correlation matrix C(f). The Heisenberg equations of motion for
the Majorana operators lead to the differential equation for Cy (t) = (M Oy ()

i/i di;” = M®HCH) — COM(D) (11
with
[0 -, 0 w0 0 0 0 0 |
@ 0 w2 0 0 0 0 0 0
0 —we 0 —p, 0 w 0 0 0
—W_ Hy 0w 0 0 0 0
0 — 0 — a 0 0
M@) =i e Hs s (12)
—w. 0 puy O 0 0 0
R Uy_y 0w
0 0 0 0 —w 0 puy, 0 wy O
0 0 0 0 0 0 0 —Wy 0 —uy
0 0 0 0 0 0 —w 0 uy 0|
and
wy = At W. (13)
2
By solving the differential equation, we obtain
C(t) =UMCO)U' (1) (14)
with the time evolution matrix
i t
U@t = Texpli—gfo dTM(T)]. (15)
Finally
Ct) = (—)(CH) — 1 = (=)UBCOU () — 1) = UE®CO)U (1) (16)

since U(#) is orthogonal matrix. Note that if C(0) is real, the C(¢) is real for all time #.

In our study the time evolution matrix is numerically calculated. First, the time t is discretized:
0=ty < fy < --<t, =twith At =ty — t_; = t/L where Lis the number of time intervals and chosen to be
sufficiently large. The time evolution matrix is then approximated to

5
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U(t) ~ exp[—;—AtM(tL)] exp[—éAtM(tz)]exp[—;—AtM(tl)]. (17)

Each of the infinitesimal evolution matrices exp[—(i// ) AtM (#;)] can be explicitly calculated by diagonalizing
the matrix M (7).

2.4. General structure of majorana correlation matrix

In general, the wave functions of the two Majorana edge states overlap with each other, giving rise to a finite
energy splitting (although exponentially small for along chain). So the ground state has a definite fermion parity:
In our study we choose P = 1. Note that the fermion parity, equation (2), is no other than the Pfaffian of C:

P = Pf[C]. Therefore, Pf[C] = 1throughout the time evolution. On the other hand, the real 2N x 2N skew-
symmetric matrix can be always block-diagonalized by an orthogonal matrix V: C = VDV" with

N[o A
D ,163 [_ A, 0 ], (18)
where )\, are real. Since Pf[C] = det[V] Pf[D] = Pf[D] = H,ﬁ’:l A, = land the correlation between the
Majorana operators cannot be larger than 1 in magnitude, one can conclude that A, = 1for all n. Itleads to an
interesting physical implication: in a proper basis, each of 2N Majorana fermions forms a pair with another
single Majorana fermion (not a superposition of pairs with different Majorana fermions), resulting in N definite
pairs. The simplest examples are shown in figures 1(b) and (c); with the fermion parity fixed, two edge Majorana
fermions, isolated otherwise, should form a nonlocal pair. It is stressed that for a general dynamical wavefunction
the Majorana fermions are not necessarily localized at one site as in figures 1(b) and (c), but they can move along
the wire or disperse with time. Such propagation and spread of each Majorana fermion are reflected in the time
evolution matrix U(#). In other words, by tracking down the time evolution of each column of U(¥), one can find
that which Majorana fermion forms a pair with which Majorana fermion at each time. Importantly, this
information in turn can be used to interpret the dynamical change of S, with time. For example, Siop,x (ji> )
would be maximal when the Majorana fermions -, i Vg Vaj—2 Yaj—1 strongly form pairs by themselves.
If any of them is bound to that outside the region, then the topological order in that region must decrease.

2.5. Quench dynamics
Throughout the study, for simplicity, we take the Ising limit in which the p-wave superconducting order
parameter A is equal to the hopping amplitude w: wy = w and w_ = 0. The Ising case can reveal the key essence
of the dynamics of the topological order. Since we are interested in the quench dynamics of the system, the
parameters of the system are driven to change in time. Taking into account the feasibility of experimental
realization, the hopping amplitude as well as the superconducting gap is fixed in time and position-independent,
while the position-dependent chemical potential 14; (£)s which can be easily controlled experimentally, is varied
with time so that the whole or a part of the system experience dynamical topological phase transition.

In our study we consider two cases: in the first case, the wire is uniform so that p; (1) = pu () and a quantum
quench isapplied attimet = 0

0, t<O0
O =10 150 (19)

so that the whole wire is driven from the deep topological phase (1+ = 0) to the nontopological phase

W= By > w). In the second case, only the central region with Ny sites (called as the system) is initially
prepared in the topological phase (11; = f,,, = 0) and the side regions (called as the environment) with
Nenv = (N — Nyy5) /2 sites in each side are in the nontopological phase (,uj = [t > W). Attimet = 0, the
system part is driven to the nontopological phase like in the environment:

0, <0
Iusys(t) = Mf’ t>0 and /J'env(t) = /’I’f (20)

For convenience, we set /2 = 1and focus on the zero temperature case.

3. Time evolution of topological order in uniform wire

In this section we consider the quantum quench of a uniform p-wave superconducting wire from the topological
to nontopological phase according to equation (19). Figure 3 displays the time evolution of S, after the
quantum quench att = 0. Here we summarize the two characteristic behaviors of the string order parameter
uncovered in figure 3 (and below we explain them in terms of the motion of Majorana fermions): (i) the
topological orders defined by equations (5)—(7) do not die away immediately after the quench, but instead decay

6
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Figure 3. (a) Time evolution of string order parameter S, for topological superconducting wires with different lengths after the
quench, equation (19), for several values for ,uf/ w: 10 (red solid), 4 (green dotted), 2 (blue dashed), and 1 (black dotted—dashed), (b)
Time-scaled version of the time evolution for Hy Jw =10, and (c) the maximum amplitude of Sy, at the first revival as a function of
the wire length N. Note that the curves for different system size N'in figure (a) are shifted by one. Hereweset w = A = 1.

with time before they vanish completely. Interestingly, the shape of S, (t) during the decay and the decaying
time Z4ecay are quite universal: aslong as I is not too close to the transition point w, we numerically find

Wldecay = T, which is immune to the wire length N'and the final value of the chemical potential e This size-
independence is quite interesting considering that the topological order is based on the nonlocal products of
operators (see equations (5) and (6)). We also find that as long as B> w the overall behavior of S, is
qualitatively same for all values of 1> except additional small oscillations whose amplitude and period decrease
with increasing 4., as seen in figure 3(a). (ii) The topological order is revived repeatedly although the amplitude
gradually decreases. Specifically, the topological order reappearsatt ~ nN/w (n = 1, 2, ---) andiskept fora
duration time which is around 2Z4ec,y, forming peaks centered at t ~ nN /w + fgecay, as seen in figures 3(a) and
(b). The revival period, the time between the peaks in S, (), is definitely related to the system size:

trevival ~ N /w. Surely, the revival is the finite-size effect. Figure 3(c) shows that the maximum amplitude of S,
atits first revival decreases with the system size and that its dependence on Nis immune to the quench strength
aslongas /i is sufficiently larger than w. This observation can be explained in terms of the dispersion of the
Majorana wave function, which will be discussed in greater detail later. Note that a similar kind of revival of
Majorana physics has been reported by examining the survival probability of edge Majorana states in the same
system [17]. In their study the survival of local Majorana wave function is maximal in the quench to the
transition point (1, = w). However, the revival of nonlocal topological order in our study turns out to be quite
robust no mater what value Iy has.

In passing, we examine and compare the time evolutions of different string order parameters, S¢op,/, as well
as S¢op> more closely. Figure 4 shows that unlike S, the string order parameters Sy, ./, 0scillate rapidly in the
anti-synchronized way. The initial oscillation with 7 /2 phase difference between Sy, ./, can be understood in
the spin language. Initially, the ferromagnetic coupling J, = w/2 aligns all the spins in the x direction. Turning
on the transverse magnetic field 1, makes the spins precess in the xy plane, transferring the correlation in the x
direction into that in the y direction and vice versa. The spin precession under the transverse field is responsible
for the oscillation whose period is then inversely proportional to 1 /|h,| o 1 /-

All those aspects of the change of the string order parameter with time can be explained in terms of the time
evolution of Majorana wave function reflected in the matrix U(#), as we discuss in the remaining of the section.
Figure 5 displays the time evolution of Majorana wave function: each row of the density plots corresponds to the

7
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Figure 4. Time evolution of string order parameters S;op, x/y and Sy, for N = 10 topological superconducting wires after the quench,
equation (19) with i /w = 10.
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Figure 5. Density plot of the time evolution matrix |Uy,| for the time evolution of N = 10 topological superconducting wires after the
quench, equation (19) with e /w = 10. The times at which the matrix elements are taken are indicated in figure 4: (a)t = 0,(b) t = 4
when Syop,x = 0 for the first time, (c) £ = #, when Sy, , = 0 for the second time, (d) ¢ = #; when Siopx = 0,(€) t = t4 = fdecay When
Stop vanishes almost, (f) t = t;s when the oscillation of Sy ./, is maximal again, (g) t = tc = N/w,(h) t = t; & N /W + tecay When
Siop is fully restored, and (i) t = 2¢;. The green and red lines connecting rows indicate the pairing between the pairs of Majorana states.
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Figure 6. Time evolution of string order parameter Sy, (j;, /,) for N = 10 topological superconducting wires after the quench,
equation (19) with zi; /w = 10. Each curve s shifted by 1/2.

wave function of the Majorana state ordered in such away thatat t = 0 the nth state (1 < n < 2N)islocalized at
Majoranasite k = n. Hence, according to the initial pairing between Majorana fermions depicted in figure 1(b),
the n = 2jand 2j + 1Majoranastates (j = 1, 2,---,N — 1) are paired and the edge Majorana states (n = 1 and
2N) are also paired due to the fermion parity fixing (see the green and red lines in figure 5(a)). While the wave
functions of the Majorana states change with time, theses pairings are maintained throughout the time
evolution. Turning on the chemical potential couples -, i1 and v, ;S0 that the Majorana fermions hop between
two Majoranasitesinarealsitej. Att = f &~ 7/2 14> the Majorana fermions in a real site exchange between
them (see figure 5(b)) so that the Majorana configuration is almost same as figure 1(c), resulting in Sy, » = 0
and Syopy = LAttt =t ® 7 i the Majorana fermions return to their starting points (see figure 5(c)),
restoring Seop,« & 1almost with Sy, , = 0.

The oscillation is accompanied with the dispersion of the Majorana states, making the pairing between the
bulk and edge Majorana states gradually increasing and accordingly weakening Sy,,. On top of it, each Majorana
wave function (except n = 1, 2N Majorana states) is split into two propagation modes, moving in opposite
directions (see figures 5(d) and (e)). At t = t;, = 7/w (see figure 5(e)), the initial edge Majorana states
(n = 1, 2N) enter into the bulk completely, and the propagation of split Majorana states, initially starting in the
bulk, hits the ends of the chain so that the correlation between the bulk and edge Majorana fermions becomes
maximal, resulting in the vanishing of Sy, «/, and S;,p. Since the decaying of the topological order happens
when the initial edge Majorana states enter into the bulk, the decaying time does not depend on the system size.
Also, noting that the propagation speed of the Majorana states is mainly determined by the hopping amplitude
w, the chemical potential strength does not affect the decaying time fgecay-

Fort < N /w,the topological order parameters S, and Siop, /, remain being suppressed except around
t ~ N /2w inwhich S, » and Sy, , oscillate out of phase. A typical distribution of Majorana states in that
period is shown in figure 5(f). One can see that the Majorana states for n = 8 ~ 13 become mostly localized at
the boundaries and form pairs by themselves: 4, and ,,, and v, and ,,_,, simultaneously. The other
Majorana states inside the bulk are binding by themselves as well. It satisfies the condition to have finite Siop,./y
as shown in figure 4. Note that the pairing inside the bulk is not like those in figures 1(b) or (c), where the
Majorana fermions in neighboring sites form pairs, but instead is more like that in figure 1(a), where the
Majorana fermions in the same site is bound. Hence, it results in the almost perfect cancellation between Sy,
and Syqp,y» making Sy, vanish. In this respect, Sop, N0t Syp,  NOT Sy, 4, is the more adequate order parameter to
measure the topological order.

Att = ts = N /w (seefigure 5(g)), the front part of the initial edge Majorana wave function (n = 1, 2N)
starts to reach the opposite ends, and the bulk Majorana states which was split becomes reunited. That is, apart
from the dispersion of Majorana states, the Majorana configuration starts to be restored to the initial one with
reverse ordering, which accordingly revives the topological order. At t = t; &= N /w + tgecay (see figure 5(h)),
the topological order is maximally restored, restoring the initial Majorana configuration. Note that while the
bulk states are considerably dispersed, the Majorana states for n = 1, 2N, forming a strong pair, are still quite
localized at the edges. This is the reason why the restoration of S, is quite strong. Finally, at t = 2¢; =~ 2 N/w
(see figure 5(1)), the Majorana configuration returns to the initial one with much dispersion, leading to the
second revival of the topological order. Note that our analysis which tracks down the pairing between Majorana
states explains why the revival period of the topological order is N/w, the half of the round-trip period
(=2 N/w) of Majorana states.

Now we examine the time evolution of Sy, (ji, j,) for central segments of the wire from site j; to site
j, = N + 1 — j,. Figure 6 shows that the revival of the topological order happens for all Sy, (i 7,)
simultaneously. It means that the pairing of Majorana fermions is like that in figures 1(b) or (c) in any length
scale, once the order is restored. For the quench in uniform wires, this is the case as can be seen in figures 5(h)
and (i).
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Figure 7. Time evolution of string order parameter (a) Siop,x ( ;> j,) and (b) Siop (jj> j,) for N = 30 topological superconducting wires
with Ny, = 10 central sites initially prepared in topological phase after the quench, equation (20) with p;/w = 10. Each curveis
tagged with the corresponding site interval (j, j, = N + 1 — j,) and is shifted by 1/2 for clarity. The solid and dotted lines are guide
for Majorana fermion propagation which is explained in the text.

Finally, we address interesting relations between the string order parameters Sy, x/, and the elements of the
correlation matrix C. From the observations up to now, itis obvious that Sy, « increases as the Majorana
fermions +, onsites k = 2,---,2N — 1 form strong pairs by themselves. Under the condition that the fermion
parity is fixed, every Majorana fermion should be bound to one of others. Hence, with S, « close to one by
binding v, for k = 2,---,2N — 1,astrong pair between ~, and -, should be formed. It implies that Sy, « and
Ciow are positively correlated. A similar argument also leads to a correlation between Sy, and C on— . In fact,
as proven in appendix, these correlations are exact:

Stop,x - C1,2N) (21{1)
Stopy = —Caan—1 (21b)

(see equations (A.7) and (A.8)). Therefore, the topological order can be obtained simply from the correlations
between edge Majorana fermions. This result may lead to a false understanding that the topological order is in
factlocal since Gy or C, oy arelocal correlations. However, we can argue that the topological order is really
nonlocal in two ways: (i) these relations, equations (21a) and (21b) are based on the assumption that the fermion
parity is fixed. However, as pointed out in [31], the string order parameter is insensitive to the linear combination
of degenerate ground states with different parities. So even when the relations between the string order
parameter and the edge Majorana correlation are not valid, the nonlocal string order parameter is still
unambiguously defined. (ii) The derivation leading to equations (21a) and (21b) states that the string order
parameter over a part of the system is related to the correlation outside the part (see equation (A.9)).

Equations (21a) and (21b) are special cases where the remaining part consists of only two (edge) Majorana
fermions. So the topological order is truly global property of the system, reflecting the correlations all over the
system.

4. Propagation of topological order into nontopological regions

Now we consider the case in which only a central part (‘system’ with Ny sites) of the superconducting wire is
initially in topological phase and the outer part (‘environment’ with Ny, sites on the left and another N,,,, sites
on the right) is in nontopological phase, according to equation (20). Figure 7 shows the time evolution of

Stop,x Ups Jo) and Sip (i, 1) for every (centered) region (we take j; and j, symmetrically so that j, = N 4 1 — j)
of the wire with N' = 30 and Ny, = 10 (accordingly, N, = 10) after a sudden quench. At¢ = 0, the system
partis in topological phase so that Sop « (jij> j,) = Stop (jp J,) = 1for Nepy < j; < N /2. However, the string
order parameters for larger regions which extend into the environment part are initially zero: Siop, » (jj> j,) = 0
for ji < Nepy since v, At site j; in the environment region form a strong pair with ~, -1 which is not included in
the string of Majorana operators , i Vi1 g1 for Siop,x (ji> J,) (see equation (8a)).

After quench, Sip, x (j;» j,) and Siop (> j,) in the system part decays with time, which is almost similar to the
decay behavior observed in the uniform case (compare with figure 6). However, very interestingly, the
topological order parameters for larger region, which are initially zero, become finite after some time passes
(follow the solid and dotted lines in figure 8). We find that the time for S, (ji;, 7,) With j; < Neny tobe
maximally increased is approximately (Neny + 1 — j;)/w: for example, the time when Sy, (1, N) becomes
maximal is around N,,,,/w. These findings strongly suggest that the topological order propagates into the
nontopological region with a constant velocity after the quench.
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Figure 8. Density plot of the time evolution matrix | U,| for the time evolution of N = 30 and Ny, = 10 topological superconducting
wires initially prepared as described in figure 7. The times at which the matrix elements are taken are indicated in figure 7: (a) t = t3
when Sy, (5, 26) becomes maximal for the first time, (b) t = t9 when Sy, (1, 30) becomes maximal for the first time, and (c) t = #,
when Siop, (11, 20) is fully revived for the first time. In all cases, Sy, == 0. The green and red lines connecting rows (in the right side of
the figures) indicates the pairing between the pairs of Majorana states. The red vertical lines indicate the regions in which the
topological order is measured. The blue small circles and (solid and dotted) lines connecting them pick the Majorana pairs which
mostly contributes to the corresponding Siop, -

The mechanism for the propagation of the topological order can be understood in terms of the time

evolution of Majorana wave functions, as in the uniform case. Figure 8(a) shows the snapshot of Majorana wave
functionat t = tgwhen S, (jj, j,) for j; = 5is maximal with Siop x (ji> 7,) & Stop (s o) and Seop,, (jips 7,) = 0

as marked in figure 7(b). The Majorana fermions which are initially inside the system part and form the

topological pairing are split and propagate into either direction. At t = fg, the main part of the Majorana wave
functions covers the whole region of Majorana sites for S, (i, j,) With j; = 5 as marked by red vertical lines in
figure 8(a). It clearly reveals that the propagation of the topological order is connected to that of the Majorana
wave functions, which determines the propagation speed. The blue circles and lines connecting them in the
figure pick some of the Majorana pairings which make finite contribution to Sy, , and S;,p,. Moreover, since the

Majorana wave function has been spatially split, the pairing of Majorana fermions contributing to the

topological order is now nonlocal: the Majorana fermions are bound not only to the nearest neighboring one but
also to that moving in the opposite direction with increasing distance between them (see the connections with
dotted lines). Note that this nonlocal pairing leads to the vanishing of S, ( jI', ]2' ) for almost all j{ > j,: while the
topological order arises in the region (j;, j,) for j, = 5att = fg, it does not for smaller region. The reason is that
the pairing of Majorana fermions inside the smaller region is not closed by themselves due to the nonlocal
pairing. Some of Majorana fermions are bound to those outside the region. It is quite different from the uniform
case in which the topological order is revived in all scales. On the other hand, we would like to point out that even
when S, (i, j,) is maximal its value is rather small: for example, S, (i, j,) & 0.2 for j; = 5.Itis because the
nontopological pairing of Majorana fermions starting from the environment part is also propagating into that
region (j;, j,).
The topological order eventually covers the whole wire, which occurs at # = to as seen in figure 7. At this
time, the Majorana fermions forming the topological pairing reach their outermost boundaries which are k = 2
and 2N — 1for Sy, (see the red vertical lines in figure 8(b)). So, although not perfect, the Majorana pairings
become similar to those in figure 1(b) with additional nonlocal pairings. After ¢ = t9, the Majorana fermions
maintaining the topological pairing are reflected at the boundaries and some of them going inside the wire so
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Figure 10. Comparison between the time evolution of Sip,x (i, j,) and Cyj, —1,, for the quench used in figure 7. The shaded boxes
mark the time interval in which those two quantities are in perfect or good agreement with each other.

that the region having the topological order shrinks (follow the solid lines in figure 7). As the Majorana wave
functions propagate, the topological region should repeat expanding and shrinking. However, the dispersion of
the Majorana wave function causes topological order to gradually decay.

While the topological region is determined mainly by the outermost boundaries of Majorana wave function
with topological paring, the inner boundaries of Majorana fermions can also define the topological region.
Figure 8(c) shows the Majorana wave function at t = o when S, (i, j,) for the system part (j, = 11)is
revived. While this revival is not due to the recombination of split Majorana wave function as happens in
figure 5(g), it can be also explained in terms of the time evolution of Majorana wave functions. First, consider the
initial edge Majorana fermions, 7, . ;, _; and -, ,, for the topological system part, connected by the red dotted
line in figure 8. After the quench, they are split and the two parts of each of them move outward and inward,
respectively. So after some time passes (around t = #,(/2) the inner parts of their split Majorana wave functions
cross each other. After that, they define the boundaries of another topological region in which the topological
pairing is significant as shown in figure 8(c). Such a revival of the topological order happens along the dotted
lines in figure 7. Since the boundary of the topological region is moving with time, this topological order also
propagates along the wire.

Since the propagation of the Majorana wave function is accompanied with its dispersion, the topological
order when it covers the whole wire should be weaker for longer wires. Figure 9 clearly confirms this expectation:
Siop atits first maximum decreases monotonically with increasing Ne.,,, except small additional oscillations
observed for 4, close to w. It shows thatas longas /i is large enough the value of 11, does not affect the
propagation of the topological order as observed in the uniform case (compare with figure 3(c)).

In the previous section, we observed interesting relations between the string order parameters and the
elements of the Majorana correlation matrix, such as equations (21a) and (210), for the uniform wire. Here we
demonstrate that similar relations hold in the nonuniform case as well. First, as seen in figure 10, the nonlocal
topological order for the whole system, Siop,« = Siop,x (1, 2N) is exactly equal to the correlation C; ;5 between
Majorana fermions at the ends of wire, which in fact comes from the exact identity, see equation (21a). Then,
one may question if a similar relation such as Siop x (j;, j,) = Caj —1,2j, can hold for a part of the system. As shown
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in appendix, there is no such equation identity. However, figure 10 demonstrates that the relation can be valid at
least for a finite time after the quench. The temporary agreement between Sy« (j;, j,) and Cy; 1 5; canbe
understood in terms of the general relation, equation (A.9). Until the topological order spreads over the region
(Jp» J,)» one can assume that the outer region remains strictly in the nontopological phase so that the Majorana
fermions in that region form the nontopological pairings like in figure 1(a) and the string order parameters
<H;g L (=i, 1)) and <H§\]: o1 G ;)) for theleft- and right-side environments are one. Therefore,
together with equation (A.9), we obtain

Stopex (i Jo) = PFIC7,71 = Coj 1, (22)

since only 7, i1 and v, j,in J are not forming the nontopological pairing. The assumption leading to
equation (22) is broken once the topological order spreads beyond the region (j, j,).

5. Experimental detection of topological order

While from the theoretical point of view the notion of the topological order is interesting and useful in
understanding new quantum states of matter, its direct measurement is highly nontrivial even at the conceptual
level since it is a nonlocal property. In this respect, the existence of the string order parameter is encouraging
because (although nonlocal) it is suitable with current technology for experimental measurement [28].

Here we propose an experimental method to probe the topological order locally and directly. It is based on
the relations between the string order parameters Sy, </, and the elements of the correlation matrix C (see
equations (21a) and (21b)) discussed in sections 3 and 4. First, note that the relations (21a) and (21b) allows us to
rewrite the string order parameter S, into

Stop = Cian — Coan-1 = —2(cf o + cha) = 2((cle-) — (cley)), (23)

where ¢ = (¢ £ cy)/~/2 are the fermion operators on the hybridized fermionic states between two end sites.
Therefore, the string order parameter can be measured by probing the occupancy of the hybridized state c
between the two end-site electrons ¢; and cy.

Figure 11 shows the schematics of two experimental setups to probe the hybridized states c... The quantum
dot (the orange disc in figure 11) is tunnel coupled to the end sites 1 and N of the topological superconducting
wire. Itis described by the Hamiltonian of the standard form

Hprope = —wp d¥ (el ®0¢ 4+ ¢y) + hc,, (24)

where w, is the coupling strength (assumed to be the same for ¢; and ¢y for simplicity), d and d* are quantum dot
electron operators, ® is the additional flux through the loop (the brown arrow in figure 11) formed by the wire
and the quantum dot, and ®;, = h/e is the magnetic flux quantum. When ®/®, = 0, the hybridized electron
¢y (c2) can (cannot) tunnel onto the quantum dot because of the constructive (destructive) interference. For

& /Py = m,itis the other way around. Therefore, by monitoring the excess electrons on the quantum dot, one
can selectively detect the occupancies (c] c4).

To monitor the excess charge on the quantum dot, there are several schemes available in the present state-of-
the-art technology. Here we consider two different schemes. The first scheme (figure 11(a)) is, in spirit, the same
as the quantum optical method of detecting the occupancy of excited atomic levels by observing the emitted
photons [44] as no photon is emitted by a ground-state atom. Operationally, it is similar to the on-demand
single-electron emitter [45—47]: an excess electron on the dot is taken out to an additional normal lead L attached
to the dot by temporally manipulating the dot energy level ¢, (¢). The dot-lead coupling is characterized by the
level-broadening parameter I7. Throughout the measurement procedure, a bias voltage is applied so that
t; < pt, where pi; and poare the chemical potentials of the normal lead and the system, respectively. Initially, €4
is set higher than y so that no electron can tunnel into the quantum dot. At the desired moment of
measurement, ¢, is lowered and tuned between y; and p (11; < €z < ). The electron (if any) occupying the
hybridized state c. will tunnel into the quantum dot and then to the normal lead. After a certain period 7, of
time, ¢, is pushed back higher than pi. This procedure is repeated with interval 7, (1/7;, is typically in the GHz
range [45—47]) many times enough for the electric current resolution. When the system is in the topological
state, the Majorana states at the ends of the wire are expected to be true bound states, the current is estimated to
be

2 2
w €T
8—2p 1 — exp| — Adrile (w, < 1) (25)
€5 I; )

if the hybridized state ¢, is occupied; the current vanishes otherwise.
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Figure 11. Two schemes for measuring the occupancy of the hybridized states, c. = (g + cv)/~/2, between the two end-site
electrons ¢; and cy. The wire (red) in the proximity to the conventional superconductor (green) and under the inplane magnetic field
(black arrows) forms the topological superconductor. The two end-sites ¢; and cyare coupled to a quantum dot (orange disc).
Depending on the additional flux ® (brown arrow at the center) through the loop, either ¢, (®/®y = 0)or c_ (®/Py = 7) electron
can tunnel to the quantum dot. (a) The excess electron on the quantum dot is probed by taking it out to an additional normal lead
(orange bar) attached to the dot. (b) The excess electron is probed by continuously monitoring the current through the nearby
quantum point contact (orange pinched bar).

In the second scheme (figure 11(b)), the excess electron on the quantum dot is probed by continuously
monitoring the current through a nearby quantum point contact [48—51]. It is possible because the dot electron
casts an additional Coulomb potential and reduces the transmission probability from Tiypc to Tépc (hence the

current from Igpc to Ijpe) through the quantum point contact. The change in the current is given by

2
e
Igpc — Igpe = Z(TQPC — Tape) Vapes (26)

where Vipc is the voltage bias applied across the quantum point contact. Note that the continuous monitoring
affects the tunneling between the hybridized state ¢ and the dot. For example, when the system is in the

topological state, the coherent oscillation of frequency ,/ €3 + 4w§ between cy and dis subject to the dephasing
ofrate I}, = (Tope — T épc )? and the gradual relaxation of rate
4W§ F¢

- (27)
ei+ T3

mix —

if the hybridized state c. is initially occupied; the oscillation is missing otherwise. The quantum point contact is
often replaced with a single-electron transistor [52—54]. In either case, the change in charge on the quantum dot
can be monitored as fast as the radio-frequency range. More detailed analyses including the effects of back-
action noise are referred to [55] and references therein.

The methods described above are based on the coherent transition (if any) from c.. to d. Such a transition
changes the fermion parity of the system; indeed, it involves the two degenerate ground states with distinct
fermion parities. On that account, our methods can only probe the topological order in the ‘initial’ (right-
before-the-measurement) ground state with definite fermion parity, which is the prerequisite for the
relations (21a) and (21b). The latter situation is common in typical experiments. An important exceptional case
is when the initial state contains a coherent superposition of two ground states with distinct parities, such as in
topological quantum computation.
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6. Conclusion

We have considered a wire of topological superconductor and studied the temporal evolution of the topological
order upon a quantum quench across the critical point in terms of the string order parameter. Unlike topological
quantum numbers, which are commonly used to describe the equilibrium topological order, the string order
parameter is defined with respect to the full dynamical wave function and naturally captures the dynamical
evolution of the topological order reflected in the wave function. It is considered to be more suitable for
experimental observations [28]. We have found that the topological orders vanish with a finite decaying time and
that the initial decaying behavior is universal in the sense that it does not depend on the wire length and the final
value of the chemical potential (the quenching parameter). The revival of the topological order in finite-size
wires and the propagation of the topological order into the region which was initially in the nontopological state
have been observed and explained in terms of the propagation and dispersion of the Majorana wave functions.
Finally, we have found the exact relations between the string order parameters and some local correlations,
which are valid as long as the fermion parity is well defined. Based on these relations we have proposed local
probing methods which allows to measure the topological order which is supposed to be nonlocal.
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Apppendix. Majorana correlation matrix and topological order

In this appendix we prove that the string order parameter over a part of the system is ultimately related to the
correlation outside of that region and find the exact relation between them.

The Majorana correlation matrix C(#) defined in equation (9) has the following properties as stated in the
main text:

(i) Itis 2N x 2N real skew-symmetric matrix.
(ii) Pf[C] = 1dueto the fixing of fermion parity.

(iii) Ithas eigenvalues of either +ior —i. In other words, C = VDV* where Vis an orthogonal matrix and
N
_XTo 1
D= ,,6_91[—1 o] (A1)

From the property (iii), one can derive
C'=VvD W' =V(-D)V'=-C. (A2)
Now we recall the generalized Cramer’s rule [56]: for anonsingular n x #n matrix Aandn x m matrices X
and Bsatisfying AX = B,
_ detAp(Z, )

detX_’[,j = W, (AS)

where 7 = {i, 1, -+, s} and J = {}jj, j,>-*"»J;} are ordered sets of indices (I < 7 < ---< i < nand
1 <j, < --<j, < m), Xgzisthek x ksubmatrix of X with rowsin 7 and columnsin 7, and Ag(Z, J)isthe
n x nmatrix formed by replacing the i;th column of A by the j th columnof Bforall s = 1,---,k.

In equation (A.3), we substitute A = C, X = C~}, B = lyyxan,and J = Z.Then, the Cramer’s rule gives
rise to

detCz 7
detC

since det Ag(Z, Z) = det Cz.7, where 7 (also assumed to be ordered) is complementary to Z . Applying the
properties (i)—(iii) of the Majorana correlation matrix C, we get

detCry = (A.4)

det CI,Z = det ij or Pf[CI,I ]2 = Pf[ij ]2 (A.5)
since Cz7 and Cz 7 are also skew-symmetric. Explicit comparison between Pf[Cz 7] and Pf[Cz 7]leads to
Pf[Cz7] = (—DPDP[Cz 7], (A.6)
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where the P (J) is the number of permutations needed to transform the set of indices {1, 2, ...,2N} to
{i, - iky’ .., — 1,4+ 1, 2Nj}. Equation (A.6) is the Cramer’s rule applied to Majorana

correlation matrix.
Now, we apply equation (A.6) to the Majorana correlation matrix Cand look into its relation with the string
order parameter in two different cases: (case 1) Suppose Z = {1, 2N}. Then, equation (A.6) leads to

Cion (1) = Pf[Cz,z] = Pf[Cz 2] = Siop.x- (A7)
Also,with 7 = {2, 2N — 1}, we obtain
Coon—1(t) = Pf[Cr7] = PE[Cz 7] = —Siop,y- (A.8)

These are very interesting relations. Seemingly, the nonlocal string order parameters are replaced by local
correlations between edge Majorana fermions. However, it does not mean that the topological order can be
local. To the contrary, these relations insist that the topological order is really nonlocal, which will be clarified in
the case (2) below. Note that these relations are valid only when the fermion parity is fixed.

(case 2) Suppose that 7 = {2j;, 2j, + 1,---,2j, — 2, 2j, — 1}. Then

Stop,x (jp ]2) = Pf[CZJ] = Pf[cj,j] (A9)

It states that the string order parameter over a part of the system (for example, from site j; to site j,) is ultimately
related to the correlation outside of the part over which the topological order is examined. This in turn seems to
reflect the fact that the topological order is a global (rather than local) property.
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