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Abstract
Weconsider a topological superconducting wire and use the string order parameter to investigate the
spatiotemporal evolution of the topological order upon a quantumquench across the critical point.
We also analyze the propagation of the initially localizedMajorana bound states after the quench, in
order to examine the connection between the topological order and the unpairedMajorana states,
which has beenwell established at equilibriumbut remains illusive in dynamical situations. It is found
that after the quench the string order parameters decay over a finite time and that the decaying
behavior is universal, independent of thewire length and the final value of the chemical potential (the
quenching parameter). It is also found that the topological order is revived repeatedly although the
amplitude gradually decreases. Further, the topological order can propagate into the regionwhichwas
initially in the nontopological state. It is observed that all these behaviors are in parallel and consistent
with the propagation and dispersion of theMajoranawave functions. Finally, we propose local
probingmethodswhich canmeasure the nonlocal topological order.

1. Introduction

Traditionally, Landau’s symmetry-breaking theory [1–3] has long provided a universal paradigm for the states of
matter and their transitions. In this paradigm, continuous phase transitions are driven by the spontaneous
symmetry breaking and naturally described by local order parameters. In recent decades, condensed-matter
physics has witnessed the breakdown of the symmetry-breaking theory in describing symmetry-protected
topological states. One of themost common and earliest examples is the quantumHall effect [4, 5], where
different quantumHall states have the same symmetry. Topological phase transitions involve the change in
internal topology rather than symmetry breaking [6, 7]. Necessarily, topological states are classified by
topological quantumnumbers. For example, different quantumHall states are classified by the topological
Chern number [8, 9], and topological insulators and superconductors are characterized by the number of
gapless boundary (surface, edge or endpoint) states [7, 10–12] separated from gapped bulk states.

From the dynamical point of view, the classification in terms of discrete topological quantumnumbers puts a
serious limitation. For example, let us ask the question, how long does it take for a topological order to form?
Namely, howdoes the topological order emerge or disappear temporally when systemparameters are quenched
across the critical point?Within Landau’s paradigm, the approach to the corresponding questions is
conceptually clear because the local order parameters take continuous values and their dynamics are governed
by a differential equation ofmotion, so called the time-dependent Ginzburg–Landau equation [13–15].

Another conceptual difficulty in the dynamical description of topological order arises from the fact that the
topological quantumnumbers or similar classifications concern about the ground state(s). In order to describe
the full aspects of the temporal evolution of the topological order, one has to take into account the excited states
as well as the ground states.
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To overcome these issues in the dynamical theory of topological order, a few different approaches have been
carried out previously: in [16], the fidelity of the final statewith respect to the initial state has been examined.
Similarly, the survival and revival probabilities [17, 18] or the Loschmidt echo [19] of theMajorana states after
the quench have been also investigated. In particular, the sudden coupling of the localizedMajorana state to the
normalmetallic (gapless) lead gives rise to universal features in the evolution of theMajoranawave function
[19]. For a ladder system studied in [20], the number of excited vortices in plaquettes was inspected. It has also
been suggested to use theKibble–Zurekmechanism,whichwas originally put forward to study the cosmological
phase transitions of the earlyUniverse [21, 22] and later extended to classical phase transitions [23, 24]. This
approach is particularly simple and insightful as it is only based on the competition between the internal and
driving time scales. It has been shown that the original Kibble–Zurek scaling formdoes not hold for the
topological phase transitions [25, 26] but one can generalize it by properly taking into account themulti-level
structure due to theMajorana bound states [27].

However, none of these approaches directlymeasures the dynamic topological order; they either resort to
thefidelity to the ground state or to the number of topological defects. Herewe note that in one spatial
dimension one can draw a close analogywith the conventional order by introducing a continuous parameter for
the topological order [28]. The cost is that unlike the conventional order parameter the so-called string order
parameter for the topological order is nonlocal: it is defined as the the expectation value of a product of
consecutiveMajorana operators in a certain rangewith respect to the dynamical wave function. It naturally
captures the dynamical evolution of the topological order reflected in thewave function, and is considered to be
more suitable for experimental observations [28].

On these grounds, in this workwe adopt the string order parameter [29–31] to investigate the
spatiotemporal evolution of the topological order upon a quantumquench across the critical point in a
topological superconducting wire [32–35]. In addition, we separately analyze the propagation of the initially
localizedMajorana bound states after quenching. By comparing the propagations of the topological order and
theMajorana states, we examine the connection between them in the dynamical situations. It is stressed that
while the close connection between the topological order and theMajorana bound states has beenwell
established for the ground state, i.e., at equilibrium [32–35], it is not obvious at all in the dynamical situations,
which involve excited states.

Wefind that after the quench toward the nontopological phase, the string order parameters decay over a
finite time before they vanish completely. Notably, this early decaying behavior is universal in the sense that it
does not depend on thewire length and the final value of the chemical potential (the quenched parameter).We
alsofind that the topological order is revived repeatedly although the amplitude gradually decreases.More
interestingly, the topological order propagates into the regionswhichwere initially prepared in the
nontopological state. It is observed that all these behaviors of the dynamical topological order are in parallel and
consistent with the propagation and dispersion of theMajoranawave functions. Finally, we propose a local
probingmethodwhich canmeasure the topological orderwhich is nonlocal in nature.

The rest of the paper is organized as following: section 2 describes themodelHamiltonian for the topological
superconductingwire and defines the string order parameters. For later use, it summarizes themathematical
and physical properties of the string order parameters. Section 3 studies the time evolution of the string order
parameter in a uniformwire. It discusses the dynamical aspects of the topological order in terms of the
propagation of theMajoranawave functions. Section 4 investigates the case where only the central part of the
superconductingwire is initially in the topological phase and the outer part is topologically trivial so that the
propagation of the topological order is examined. Section 5 proposes possible experimentalmethods to observe
ourfindings. Finally, section 6 concludes the paper.

2. Topological superconductingwires and topological order

2.1.Model
In order to explore the time evolution of topological order under a quench, we consider Kitaev’s spinless p-wave
topological superconducting wirewithfinite number of sitesN andwith open ends described by the tight-
bindingHamiltonian [32]
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with the hopping amplitude >w 0, the superconducting gapΔ, and the site-dependent chemical potential
( )m tj . The phase of the superconducting order parameter is neglected since it can be always gauged away. The

fermion operator cj on site j can be decomposed into the superposition of twoMajorana fermion operators:
( )g g= +-c i 2j j j2 1 2 , satisfying †g g=k k

and { }g g d=¢ ¢, 2k k kk . This systempreserves the fermion parity, or 2

symmetry, defined by

( ) ( ) ( )
†

 g g= - = -å
=

-=P 1 i 2c c

j

N

j j
1

2 1 2j

N
j j1

since all the terms in equation (1a) either preserve the charge number or change it by even numbers. This system
has a topological invariant, known as thewinding number, which takes values±1 and 0. First consider the
uniform and static case with ( )m m=tj . For ∣ ∣m > w , the fermion parity is not broken and the system is in
nontopological phase with no unpairedMajorana fermions as demonstrated infigure 1(a). On the other hand,
for ∣ ∣m < w andD ¹ 0, there are topological phases with broken 2 symmetry, and the topological invariant is
1 forD > 0 or−1 forD < 0. In the topological phases two unpairedMajoranamodes arise at two ends of open
and long chains, as shownfigures 1(b) and (c): for example, forD = w and m = 0, theMajorana fermions
operators g1 and g N2 are absent in theHamiltonian (1b), giving two zero-energymodes. Similarly, forD = -w
and m g= 0, 2 and g -N2 1 are isolated. In these special conditions or for infinitely long chain, the ground state is
doubly degenerate with definite fermion parity = P 1. The two-fold degeneracy coming from the 2

symmetry cannot be lifted by small local perturbations unless they involve odd number of fermion operators
such as cj or

†c c cj k i, which is the reasonwhy the phase is called topological. The phase transition between
topological and nontopological phases occurs at ∣ ∣m = w , where the systembecomes gapless.

2.2. Topological order
In our studywe adopt the nonlocal string order parameter proposed byBahri andVishwanath [29–31] to
measure the topological order in quench dynamics. The physicalmeaning of the string order parameter,
especially in theKitaevmodel (1b), can be understood in its counterpart spin-1/2model. Via the Jordan–
Wigner transformation, the Kitaevmodel ismapped onto the spinXYmodel in a transversemagnetic field
described by
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with ( ) ( )= + D > = - D >J w J w4 0, 4 0x y , and m= -h 2z . The 2 symmetry in spinmodel

corresponds to the rotation byπ around the spin z-axis s=  =P j
N

j
z

1 .

Consider the Ising case with = Dw (or Jy=0) for simplicity. This system, like its counterpart (1a),
experiences a phase transition at ∣ ∣=J hx z (that is, ∣ ∣m = w) from the spin ordered phase ( ∣ ∣>J hx z ) to the
disordered phase ( ∣ ∣<J hx z ). In the spin ordered phase or ferromagnetic phase, the 2 symmetry is broken like
the topological phase in its counterpart. The spin order in the ferromagnetic phase is reflected in the spin-x
correlation between two spins at end points: for sufficiently large N 1
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Figure 1.Majorana chain representation of one-dimensional topological superconductingwire. Each pair ofMajorana fermions,
g -j2 1 and g j2 in a circle forms the site fermion cj. The lines connectingMajorana fermions represent the coupling between them in
three special conditions: (a) = D =w 0 and m ¹ 0, (b) D = w and m = 0, and (c)D = -w and m = 0. The nonlocal correlations
(red dotted lines) between otherwise isolatedMajorana fermions arise only when the fermion parity condition is imposed.
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where ∣ ∣ ∣∣x ~ -J h1 x z are the correlation length (the inverse of the spectral gap) [36–38]. So the nonvanishing
spin correlation (with the connected correlation decaying exponentially) at long distances implies the existence of
the ferromagnetic order over thewhole chain. (Recall that theWigner–Jordanmapping between spins and
fermions is nonlocal. The correlation function in equation (4), expressed in terms of local spins s1 and sN ,
complies with the Lieb–Robinson bound for connected correlations [37–39]. However, the Lieb–Robinson
bound does not apply for the topologically ordered states in the original fermionmodel [40, 41].)Noting that the
spin order in the spinmodel corresponds to the topological order in the originalmodel, the spin correlation can
be used tomeasure the topological order. Indeed, via the Jordan–Wigner transformation, the spin correlation
can be expressed in terms of theMajorana operators as
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This is the string order parameter for the topological order. Note that the order parameter is based on the
nonlocal operator, a string ofMajorana operators, reflecting the fact that the topological order is nonlocal
property. On the contrary, its counterpart in the spinmodel, s sá ñx

N
x

1 , is defined by local operators. The subscript
x comes from the fact that the string order parameter (5) comes from the spin-x correlation. Clearly, this string
order parameter becomes exactly one for the configuration infigure 1(b) since theMajorana fermions between
neighboring sites, g j2 and g +j2 1, aremaximally paired. Figure 2 demonstrates that the string order parameter in
the Ising case displays the second-order transition behavior.

In general, the ferromagnetic ordering can arise along the spin-y direction if the spinXYmodel ( ¹J J, 0x y )
is taken into account orwhen the system evolves with time under the transversemagnetic field so that the spins
precess. Specifically, the spin-y correlation between two edge spins, s sá ñy

N
y

1 , is written via the Jordan–Wigner
transformation as
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Interestingly, this string order parameter vanishes for the configuration infigure 1(b) but becomes one for that
infigure 1(c). Therefore, the spin-x and -y correlations capture two different kinds of topological order forwhich
the topological invariant is 1 or−1, respectively. Hence, the sumof two order parameters defines the total
topological order:

( )= +S S S 7x ytop top, top,

which is no other than the spin correlation s s s sá + ñx
N
x y

N
y

1 1 in the xy plane perpendicular to the transverse field.
From the dynamical point of view, themost fascinating aspect of this string order parameter is that it is

definedwith respect to thewave function, not to theHamiltonian. The so-called topological invariants which are
commonly used to clarify the topological property of the system at equilibrium are basically the properties of the
Hamiltonian. Therefore they are inadequate for the study of the evolution of the topological order triggered by
the change of theHamiltonianwith time such as quench.Quite contrary, the string order parameter Stop is the
expectation value ofMajorana operators with respect to thewave functionwhich evolveswith time, so it can
capture the dynamical evolution of the topological order in thewave function.

Figure 2. String order parameter S xtop, forN=10 (red solid line) and 50 (blue dotted line) topological superconductingwires as a
function of the chemical potentialμ in equilibrium at zero temperature. Herewe set = D =w 1. The order parameter exhibits a
second-order-type transition behavior: it isfinite in the topological phase (m < w) and vanishes in the nontopological phase
(m > w).
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The string order parameters can be defined over a part of the chain as well as thewhole. For later use, we
define the string order parameters for the region from site j1 to j2 as
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2.3. Time evolution andmajorana correlationmatrix
In order to calculate the string order parameter, wefirst introduce a ´N N2 2 skew-symmetricMajorana
correlationmatrixC(t)whose elements are defined by

( ) ( ( ) ( ) ) ( )g g d= - á ñ -¢ ¢ ¢C t t ti 9kk k k kk

for ¢ =k k N, 1, , 2 . TheHamiltonian (1a) is quadratic and one can applyWick’s theorem to evaluate the string
order parameter.Wick’s theorem tells us that the expectation value of the products of gk is the sumof all the
possible products of the expectation values of pairs. The permutation between operators can change the overall
sign if it happens in an odd number. The results can thus be expressed in terms of Pfaffian of theMajorana
correlationmatrix [42, 43].More explicitly
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+ - -j j j j2 , 2 1, , 2 2, 2 11 1 2 2 and - + + - -j j j j j j2 1, 2 1, 2 2, , 2 3, 2 2, 21 1 1 2 2 2, respectively.

Nowwe formulate the time evolution of the correlationmatrixC(t). TheHeisenberg equations ofmotion for
theMajorana operators lead to the differential equation for ( ) ( ) ( ) g g= á ñ¢ ¢C t t tkk k k :
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By solving the differential equation, we obtain

( ) ( ) ( ) ( ) ( ) =C t U t C U t0 14t

with the time evolutionmatrix
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Finally

( ) ( )( ( ) ) ( )( ( ) ( ) ( ) ) ( ) ( ) ( ) ( ) = - - = - - =C t C t U t C U t U t C U ti 1 i 0 1 0 16t t

sinceU(t) is orthogonalmatrix. Note that ifC(0) is real, theC(t) is real for all time t.
In our study the time evolutionmatrix is numerically calculated. First, the time t is discretized:

= < < < =t t t t0 L0 1 withD º - =-t t t t Ll l 1 where L is the number of time intervals and chosen to be
sufficiently large. The time evolutionmatrix is then approximated to
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Each of the infinitesimal evolutionmatrices [ ( ) ( )]- DtM texp i l can be explicitly calculated by diagonalizing
thematrix ( )M tl .

2.4. General structure ofmajorana correlationmatrix
In general, thewave functions of the twoMajorana edge states overlapwith each other, giving rise to afinite
energy splitting (although exponentially small for a long chain). So the ground state has a definite fermion parity:
In our studywe choose P=1.Note that the fermion parity, equation (2), is no other than the Pfaffian ofC :

[ ]=P CPf . Therefore, [ ] =CPf 1 throughout the time evolution. On the other hand, the real ´N N2 2 skew-
symmetricmatrix can be always block-diagonalized by an orthogonalmatrixV : =C VDV t with
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where ln are real. Since [ ] [ ] [ ] [ ] l= = =  ==C V D DPf det Pf Pf 1n
N

n1 and the correlation between the
Majorana operators cannot be larger than 1 inmagnitude, one can conclude that l = 1n for all n. It leads to an
interesting physical implication: in a proper basis, each of N2 Majorana fermions forms a pair with another
singleMajorana fermion (not a superposition of pairs with differentMajorana fermions), resulting inN definite
pairs. The simplest examples are shown infigures 1(b) and (c); with the fermion parityfixed, two edgeMajorana
fermions, isolated otherwise, should form anonlocal pair. It is stressed that for a general dynamical wavefunction
theMajorana fermions are not necessarily localized at one site as infigures 1(b) and (c), but they canmove along
thewire or dispersewith time. Such propagation and spread of eachMajorana fermion are reflected in the time
evolutionmatrixU(t). In otherwords, by tracking down the time evolution of each columnofU(t), one can find
thatwhichMajorana fermion forms a pair withwhichMajorana fermion at each time. Importantly, this
information in turn can be used to interpret the dynamical change of Stop with time. For example, ( )S j j,xtop, 1 2
would bemaximal when theMajorana fermions g g g g+ - -, , , ,j j j j2 2 1 2 2 2 11 1 2 2

strongly formpairs by themselves.

If any of them is bound to that outside the region, then the topological order in that regionmust decrease.

2.5.Quench dynamics
Throughout the study, for simplicity, we take the Ising limit inwhich the p-wave superconducting order
parameterΔ is equal to the hopping amplitudew: =+w w and =-w 0. The Ising case can reveal the key essence
of the dynamics of the topological order. Sincewe are interested in the quench dynamics of the system, the
parameters of the system are driven to change in time. Taking into account the feasibility of experimental
realization, the hopping amplitude aswell as the superconducting gap isfixed in time and position-independent,
while the position-dependent chemical potential ( )m tj , which can be easily controlled experimentally, is varied
with time so that thewhole or a part of the system experience dynamical topological phase transition.

In our studywe consider two cases: in the first case, thewire is uniform so that ( ) ( )m m=t tj and a quantum
quench is applied at time t=0

( ) ( )m m=
<
>

⎧⎨⎩t
t
t

0, 0
, 0 19

f

so that thewhole wire is driven from the deep topological phase (m = 0) to the nontopological phase
(m m= > wf ). In the second case, only the central regionwithNsys sites (called as the system) is initially
prepared in the topological phase (m m= = 0j sys ) and the side regions (called as the environment)with

( )º -N N N 2env sys sites in each side are in the nontopological phase (m m= > wj env ). At time t=0, the
systempart is driven to the nontopological phase like in the environment:

( ) ( ) ( )m m m m=
<
> =

⎧⎨⎩t
t
t t

0, 0
, 0 and . 20

f
fsys env

For convenience, we set  = 1and focus on the zero temperature case.

3. Time evolution of topological order in uniformwire

In this sectionwe consider the quantumquench of a uniform p-wave superconducting wire from the topological
to nontopological phase according to equation (19). Figure 3 displays the time evolution of Stop after the
quantumquench at t=0.Herewe summarize the two characteristic behaviors of the string order parameter
uncovered infigure 3 (and belowwe explain them in terms of themotion ofMajorana fermions): (i) the
topological orders defined by equations (5)–(7) do not die away immediately after the quench, but instead decay
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with time before they vanish completely. Interestingly, the shape of ( )S ttop during the decay and the decaying
time tdecay are quite universal: as long as mf is not too close to the transition pointw, we numerically find

p»wtdecay , which is immune to thewire lengthN and thefinal value of the chemical potential mf . This size-
independence is quite interesting considering that the topological order is based on the nonlocal products of
operators (see equations (5) and (6)).We alsofind that as long as m > wf the overall behavior of Stop is
qualitatively same for all values of mf , except additional small oscillations whose amplitude and period decrease
with increasing mf , as seen infigure 3(a). (ii)The topological order is revived repeatedly although the amplitude

gradually decreases. Specifically, the topological order reappears at »t nN w ( =n 1, 2, ) and is kept for a
duration timewhich is around t2 decay , forming peaks centered at » +t nN w tdecay , as seen infigures 3(a) and
(b). The revival period, the time between the peaks in ( )S ttop , is definitely related to the system size:

~t N wrevival . Surely, the revival is thefinite-size effect. Figure 3(c) shows that themaximumamplitude of Stop
at itsfirst revival decreases with the system size and that its dependence onN is immune to the quench strength
as long as mf is sufficiently larger thanw. This observation can be explained in terms of the dispersion of the
Majoranawave function, whichwill be discussed in greater detail later. Note that a similar kind of revival of
Majorana physics has been reported by examining the survival probability of edgeMajorana states in the same
system [17]. In their study the survival of localMajoranawave function ismaximal in the quench to the
transition point (m = wf ). However, the revival of nonlocal topological order in our study turns out to be quite
robust nomater what value mf has.

In passing, we examine and compare the time evolutions of different string order parameters, S x ytop, aswell
as Stop,more closely. Figure 4 shows that unlike Stop the string order parameters S x ytop, oscillate rapidly in the
anti-synchronizedway. The initial oscillationwith p 2 phase difference between S x ytop, can be understood in
the spin language. Initially, the ferromagnetic coupling =J w 2x aligns all the spins in the x direction. Turning
on the transversemagnetic field hzmakes the spins precess in the xy plane, transferring the correlation in the x
direction into that in the y direction and vice versa. The spin precession under the transverse field is responsible
for the oscillationwhose period is then inversely proportional to ∣ ∣ mµh1 1z f .

All those aspects of the change of the string order parameter with time can be explained in terms of the time
evolution ofMajoranawave function reflected in thematrixU(t), as we discuss in the remaining of the section.
Figure 5 displays the time evolution ofMajoranawave function: each rowof the density plots corresponds to the

Figure 3. (a)Time evolution of string order parameter Stop for topological superconductingwires with different lengths after the
quench, equation (19), for several values for m wf : 10 (red solid), 4 (green dotted), 2 (blue dashed), and 1 (black dotted–dashed), (b)
Time-scaled version of the time evolution for m =w 10f , and (c) themaximumamplitude of Stop at thefirst revival as a function of
the wire lengthN. Note that the curves for different system sizeN infigure (a) are shifted by one.Herewe set = D =w 1.
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Figure 4.Time evolution of string order parameters S x ytop, and Stop forN=10 topological superconductingwires after the quench,
equation (19)with m =w 10f .

Figure 5.Density plot of the time evolutionmatrix ∣ ∣Ukn for the time evolution ofN=10 topological superconductingwires after the
quench, equation (19)with m =w 10f . The times at which thematrix elements are taken are indicated infigure 4: (a) t=0, (b) =t t1
when =S 0xtop, for thefirst time, (c) =t t2 when =S 0ytop, for the second time, (d) =t t3 when =S 0xtop, , (e) = »t t t4 decay when
Stop vanishes almost, (f) =t t5 when the oscillation of S x ytop, ismaximal again, (g) = =t t N w6 , (h) = » +t t N w t7 decay when
Stop is fully restored, and (i) =t t2 7. The green and red lines connecting rows indicate the pairing between the pairs ofMajorana states.
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wave function of theMajorana state ordered in such away that at t=0 the nth state (  n N1 2 ) is localized at
Majorana site k=n. Hence, according to the initial pairing betweenMajorana fermions depicted infigure 1(b),
the =n j2 and +j2 1Majorana states ( = -j N1, 2, , 1) are paired and the edgeMajorana states (n= 1 and
N2 ) are also paired due to the fermion parity fixing (see the green and red lines infigure 5(a)).While thewave
functions of theMajorana states changewith time, theses pairings aremaintained throughout the time
evolution. Turning on the chemical potential couples g -j2 1 and g j2 so that theMajorana fermions hop between

twoMajorana sites in a real site j. At p m= »t t 2 f1 , theMajorana fermions in a real site exchange between
them (see figure 5(b)) so that theMajorana configuration is almost same asfigure 1(c), resulting in =S 0xtop,

and »S 1ytop, . At p m= »t t f2 , theMajorana fermions return to their starting points (see figure 5(c)),
restoring »S 1xtop, almost with =S 0ytop, .

The oscillation is accompaniedwith the dispersion of theMajorana states,making the pairing between the
bulk and edgeMajorana states gradually increasing and accordingly weakening Stop. On top of it, eachMajorana
wave function (except =n N1, 2 Majorana states) is split into two propagationmodes,moving in opposite
directions (see figures 5(d) and (e)). At p= »t t w4 (see figure 5(e)), the initial edgeMajorana states
( =n N1, 2 ) enter into the bulk completely, and the propagation of splitMajorana states, initially starting in the
bulk, hits the ends of the chain so that the correlation between the bulk and edgeMajorana fermions becomes
maximal, resulting in the vanishing of S x ytop, and Stop. Since the decaying of the topological order happens
when the initial edgeMajorana states enter into the bulk, the decaying time does not depend on the system size.
Also, noting that the propagation speed of theMajorana states ismainly determined by the hopping amplitude
w, the chemical potential strength does not affect the decaying time tdecay.

For t N w, the topological order parameters Stop and S x ytop, remain being suppressed except around
~t N w2 in which S xtop, and S ytop, oscillate out of phase. A typical distribution ofMajorana states in that

period is shown infigure 5(f). One can see that theMajorana states for = ~n 8 13 becomemostly localized at
the boundaries and formpairs by themselves: g1 and g N2 , and g2 and g -N2 1, simultaneously. The other
Majorana states inside the bulk are binding by themselves as well. It satisfies the condition to havefinite S x ytop,

as shown infigure 4.Note that the pairing inside the bulk is not like those infigures 1(b) or (c), where the
Majorana fermions in neighboring sites formpairs, but instead ismore like that in figure 1(a), where the
Majorana fermions in the same site is bound.Hence, it results in the almost perfect cancellation between S xtop,

and S ytop, , making Stop vanish. In this respect, Stop, not S xtop, nor S ytop, , is themore adequate order parameter to
measure the topological order.

At = =t t N w6 (seefigure 5(g)), the front part of the initial edgeMajoranawave function ( )=n N1, 2
starts to reach the opposite ends, and the bulkMajorana states whichwas split becomes reunited. That is, apart
from the dispersion ofMajorana states, theMajorana configuration starts to be restored to the initial onewith
reverse ordering, which accordingly revives the topological order. At = » +t t N w t7 decay (seefigure 5(h)),
the topological order ismaximally restored, restoring the initialMajorana configuration.Note that while the
bulk states are considerably dispersed, theMajorana states for =n N1, 2 , forming a strong pair, are still quite
localized at the edges. This is the reasonwhy the restoration of Stop is quite strong. Finally, at = »t t N w2 27

(see figure 5(i)), theMajorana configuration returns to the initial onewithmuch dispersion, leading to the
second revival of the topological order. Note that our analysis which tracks down the pairing betweenMajorana
states explains why the revival period of the topological order isN/w, the half of the round-trip period
(= N w2 ) ofMajorana states.

Nowwe examine the time evolution of ( )S j j,top 1 2 for central segments of thewire from site j1 to site
= + -j N j12 1. Figure 6 shows that the revival of the topological order happens for all ( )S j j,top 1 2

simultaneously. Itmeans that the pairing ofMajorana fermions is like that infigures 1(b) or (c) in any length
scale, once the order is restored. For the quench in uniformwires, this is the case as can be seen infigures 5(h)
and (i).

Figure 6.Time evolution of string order parameter ( )S j j,top 1 2 forN=10 topological superconductingwires after the quench,
equation (19)with m =w 10f . Each curve is shifted by 1/2.
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Finally, we address interesting relations between the string order parameters S x ytop, and the elements of the
correlationmatrixC. From the observations up to now, it is obvious that S xtop, increases as theMajorana
fermions gk on sites = -k N2, , 2 1 form strong pairs by themselves. Under the condition that the fermion
parity is fixed, everyMajorana fermion should be bound to one of others. Hence, with S xtop, close to one by
binding gk for = -k N2, , 2 1, a strong pair between g1 and g N2 should be formed. It implies that S xtop, and
C N1,2 are positively correlated. A similar argument also leads to a correlation between S ytop, and -C N2,2 1. In fact,
as proven in appendix, these correlations are exact:

( )=S C a, 21x Ntop, 1,2

( )= - -S C b21y Ntop, 2,2 1

(see equations (A.7) and (A.8)). Therefore, the topological order can be obtained simply from the correlations
between edgeMajorana fermions. This resultmay lead to a false understanding that the topological order is in
fact local since C N1,2 or -C N2,2 1 are local correlations.However, we can argue that the topological order is really
nonlocal in twoways: (i) these relations, equations (21a) and (21b) are based on the assumption that the fermion
parity isfixed.However, as pointed out in [31], the string order parameter is insensitive to the linear combination
of degenerate ground states with different parities. So evenwhen the relations between the string order
parameter and the edgeMajorana correlation are not valid, the nonlocal string order parameter is still
unambiguously defined. (ii)The derivation leading to equations (21a) and (21b) states that the string order
parameter over a part of the system is related to the correlation outside the part (see equation (A.9)).
Equations (21a) and (21b) are special cases where the remaining part consists of only two (edge)Majorana
fermions. So the topological order is truly global property of the system, reflecting the correlations all over the
system.

4. Propagation of topological order into nontopological regions

Nowwe consider the case inwhich only a central part (‘system’withNsys sites) of the superconducting wire is
initially in topological phase and the outer part (‘environment’withNenv sites on the left and anotherNenv sites
on the right) is in nontopological phase, according to equation (20). Figure 7 shows the time evolution of

( )S j j,xtop, 1 2 and ( )S j j,top 1 2 for every (centered) region (we take j1 and j2 symmetrically so that = + -j N j12 1)
of thewirewithN=30 and =N 10sys (accordingly, =N 10env ) after a sudden quench. At t=0, the system
part is in topological phase so that ( ) ( )= =S j j S j j, , 1xtop, 1 2 top 1 2 for <N j N 2env 1 . However, the string
order parameters for larger regionswhich extend into the environment part are initially zero: ( ) =S j j, 0xtop, 1 2
for j N1 env since g j2 1

at site j1 in the environment region form a strong pair with g -j2 11
which is not included in

the string ofMajorana operators g g g+ -j j j2 2 1 2 11 1 2
for ( )S j j,xtop, 1 2 (see equation (8a)).

After quench, ( )S j j,xtop, 1 2 and ( )S j j,top 1 2 in the systempart decays with time, which is almost similar to the
decay behavior observed in the uniform case (compare withfigure 6). However, very interestingly, the
topological order parameters for larger region, which are initially zero, becomefinite after some time passes
(follow the solid and dotted lines infigure 8).Wefind that the time for ( )S j j,top 1 2 with j N1 env to be
maximally increased is approximately ( )+ -N j w1env 1 : for example, the timewhen ( )S N1,top becomes
maximal is around N wenv . Thesefindings strongly suggest that the topological order propagates into the
nontopological regionwith a constant velocity after the quench.

Figure 7.Time evolution of string order parameter (a) ( )S j j,xtop, 1 2 and (b) ( )S j j,top 1 2 forN=30 topological superconductingwires
with =N 10sys central sites initially prepared in topological phase after the quench, equation (20)with m =w 10f . Each curve is
taggedwith the corresponding site interval ( )= + -j j N j, 11 2 1 and is shifted by 1/2 for clarity. The solid and dotted lines are guide
forMajorana fermion propagationwhich is explained in the text.
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Themechanism for the propagation of the topological order can be understood in terms of the time
evolution ofMajoranawave functions, as in the uniform case. Figure 8(a) shows the snapshot ofMajoranawave
function at =t t8 when ( )S j j,top 1 2 for =j 51 ismaximal with ( ) ( )»S j j S j j, ,xtop, 1 2 top 1 2 and ( ) »S j j, 0ytop, 1 2
asmarked infigure 7(b). TheMajorana fermionswhich are initially inside the systempart and form the
topological pairing are split and propagate into either direction. At =t t8, themain part of theMajoranawave
functions covers thewhole region ofMajorana sites for ( )S j j,top 1 2 with =j 51 asmarked by red vertical lines in
figure 8(a). It clearly reveals that the propagation of the topological order is connected to that of theMajorana
wave functions, which determines the propagation speed. The blue circles and lines connecting them in the
figure pick some of theMajorana pairings whichmakefinite contribution to S xtop, and Stop.Moreover, since the
Majoranawave function has been spatially split, the pairing ofMajorana fermions contributing to the
topological order is nownonlocal: theMajorana fermions are bound not only to the nearest neighboring one but
also to thatmoving in the opposite directionwith increasing distance between them (see the connections with
dotted lines). Note that this nonlocal pairing leads to the vanishing of ( )¢ ¢S j j,top 1 2

for almost all ¢ >j j
1 1: while the

topological order arises in the region ( )j j,1 2 for =j 51 at =t t8, it does not for smaller region. The reason is that
the pairing ofMajorana fermions inside the smaller region is not closed by themselves due to the nonlocal
pairing. Some ofMajorana fermions are bound to those outside the region. It is quite different from the uniform
case inwhich the topological order is revived in all scales. On the other hand, wewould like to point out that even
when ( )S j j,top 1 2 ismaximal its value is rather small: for example, ( ) »S j j, 0.2top 1 2 for =j 51 . It is because the
nontopological pairing ofMajorana fermions starting from the environment part is also propagating into that
region ( )j j,1 2 .

The topological order eventually covers thewholewire, which occurs at =t t9 as seen infigure 7. At this
time, theMajorana fermions forming the topological pairing reach their outermost boundaries which are k=2
and -N2 1 for S xtop, (see the red vertical lines infigure 8(b)). So, although not perfect, theMajorana pairings
become similar to those infigure 1(b)with additional nonlocal pairings. After =t t9, theMajorana fermions
maintaining the topological pairing are reflected at the boundaries and some of themgoing inside thewire so

Figure 8.Density plot of the time evolutionmatrix ∣ ∣Ukn for the time evolution ofN=30 and =N 10sys topological superconducting
wires initially prepared as described in figure 7. The times at which thematrix elements are taken are indicated infigure 7: (a) =t t8

when ( )S 5, 26top becomesmaximal for the first time, (b) =t t9 when ( )S 1, 30top becomesmaximal for thefirst time, and (c) =t t10

when ( )S 11, 20top is fully revived for thefirst time. In all cases, »S 0ytop, . The green and red lines connecting rows (in the right side of
the figures) indicates the pairing between the pairs ofMajorana states. The red vertical lines indicate the regions inwhich the
topological order ismeasured. The blue small circles and (solid and dotted) lines connecting thempick theMajorana pairs which
mostly contributes to the corresponding S xtop, .
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that the region having the topological order shrinks (follow the solid lines infigure 7). As theMajoranawave
functions propagate, the topological region should repeat expanding and shrinking.However, the dispersion of
theMajoranawave function causes topological order to gradually decay.

While the topological region is determinedmainly by the outermost boundaries ofMajoranawave function
with topological paring, the inner boundaries ofMajorana fermions can also define the topological region.
Figure 8(c) shows theMajoranawave function at =t t10 when ( )S j j,top 1 2 for the systempart ( =j 111 ) is
revived.While this revival is not due to the recombination of splitMajoranawave function as happens in
figure 5(g), it can be also explained in terms of the time evolution ofMajoranawave functions. First, consider the
initial edgeMajorana fermions, g ´ -2 11 1 and g ´2 20 for the topological systempart, connected by the red dotted
line infigure 8. After the quench, they are split and the two parts of each of themmove outward and inward,
respectively. So after some time passes (around =t t 210 ) the inner parts of their splitMajoranawave functions
cross each other. After that, they define the boundaries of another topological region inwhich the topological
pairing is significant as shown infigure 8(c). Such a revival of the topological order happens along the dotted
lines infigure 7. Since the boundary of the topological region ismovingwith time, this topological order also
propagates along thewire.

Since the propagation of theMajoranawave function is accompaniedwith its dispersion, the topological
orderwhen it covers thewhole wire should beweaker for longer wires. Figure 9 clearly confirms this expectation:
Stop at itsfirstmaximumdecreasesmonotonically with increasingNenv, except small additional oscillations
observed for mf close tow. It shows that as long as mf is large enough the value of mf does not affect the

propagation of the topological order as observed in the uniform case (comparewithfigure 3(c)).
In the previous section, we observed interesting relations between the string order parameters and the

elements of theMajorana correlationmatrix, such as equations (21a) and (21b), for the uniformwire.Here we
demonstrate that similar relations hold in the nonuniform case aswell. First, as seen infigure 10, the nonlocal
topological order for thewhole system, ( )=S S N1, 2x xtop, top, is exactly equal to the correlation C N1,2 between
Majorana fermions at the ends of wire, which in fact comes from the exact identity, see equation (21a). Then,
onemay question if a similar relation such as ( ) = -S j j C,x j jtop, 1 2 2 1,21 2

can hold for a part of the system. As shown

Figure 9.Maximumvalue of Stop when the topological order propagates over the entire wire at thefirst time as a function ofNenv for
different values of mf . Here we use =N 10sys .

Figure 10.Comparison between the time evolution of ( )S j j,xtop, 1 2 and -C j j2 1,21 2
for the quench used infigure 7. The shaded boxes

mark the time interval inwhich those two quantities are in perfect or good agreement with each other.
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in appendix, there is no such equation identity. However,figure 10 demonstrates that the relation can be valid at
least for afinite time after the quench. The temporary agreement between ( )S j j,xtop, 1 2 and -C j j2 1,21 2

can be
understood in terms of the general relation, equation (A.9). Until the topological order spreads over the region
( )j j,1 2 , one can assume that the outer region remains strictly in the nontopological phase so that theMajorana
fermions in that region form the nontopological pairings like infigure 1(a) and the string order parameters

( )g gá - ñ=
-

-ij
j

j j1
1

2 1 2
1 and ( )g gá - ñ= - -ij j

N
j j1 2 1 22

for the left- and right-side environments are one. Therefore,

togetherwith equation (A.9), we obtain

( ) [ ] ( )¯ ¯ = = -S j j C C, Pf 22x j jtop, 1 2 , 2 1,21 2

since only g -j2 11
and g j2 2

in ̄ are not forming the nontopological pairing. The assumption leading to

equation (22) is broken once the topological order spreads beyond the region ( )j j,1 2 .

5. Experimental detection of topological order

While from the theoretical point of view the notion of the topological order is interesting and useful in
understanding newquantum states ofmatter, its directmeasurement is highly nontrivial even at the conceptual
level since it is a nonlocal property. In this respect, the existence of the string order parameter is encouraging
because (although nonlocal) it is suitable with current technology for experimentalmeasurement [28].

Here we propose an experimentalmethod to probe the topological order locally and directly. It is based on
the relations between the string order parameters S x ytop, and the elements of the correlationmatrixC (see
equations (21a) and (21b)) discussed in sections 3 and 4. First, note that the relations (21a) and (21b) allows us to
rewrite the string order parameter Stop into

( ) ( )† † † †= - = - á + ñ = á ñ - á ñ- - - + +S C C c c c c c c c c2 2 , 23N N N Ntop 1,2 2,2 1 1 1

where ( )= c c c 2N1 are the fermion operators on the hybridized fermionic states between two end sites.
Therefore, the string order parameter can bemeasured by probing the occupancy of the hybridized state c
between the two end-site electrons c1 and cN.

Figure 11 shows the schematics of two experimental setups to probe the hybridized states c . The quantum
dot (the orange disc infigure 11) is tunnel coupled to the end sites 1 andN of the topological superconducting
wire. It is described by theHamiltonian of the standard form

( ) ( )†= - + +F FH w d c ce h.c., 24p Nprobe
i

1
0

wherewp is the coupling strength (assumed to be the same for c1 and cN for simplicity), d and †d are quantumdot
electron operators,Φ is the additional flux through the loop (the brown arrow infigure 11) formed by thewire
and the quantumdot, and F = h e0 is themagnetic flux quantum.When F F = 00 , the hybridized electron

+c ( -c ) can (cannot) tunnel onto the quantumdot because of the constructive (destructive) interference. For
pF F =0 , it is the otherway around. Therefore, bymonitoring the excess electrons on the quantumdot, one

can selectively detect the occupancies †á ñ c c .
Tomonitor the excess charge on the quantumdot, there are several schemes available in the present state-of-

the-art technology.Herewe consider two different schemes. Thefirst scheme (figure 11(a)) is, in spirit, the same
as the quantumopticalmethod of detecting the occupancy of excited atomic levels by observing the emitted
photons [44] as no photon is emitted by a ground-state atom.Operationally, it is similar to the on-demand
single-electron emitter [45–47]: an excess electron on the dot is taken out to an additional normal lead L attached
to the dot by temporallymanipulating the dot energy level ( ) td . The dot-lead coupling is characterized by the
level-broadening parameter GL. Throughout themeasurement procedure, a bias voltage is applied so that
m m<L , where mL andμ are the chemical potentials of the normal lead and the system, respectively. Initially, d

is set higher thanμ so that no electron can tunnel into the quantumdot. At the desiredmoment of
measurement, d is lowered and tuned between mL andμ ( m m< <L d ). The electron (if any) occupying the
hybridized state c will tunnel into the quantumdot and then to the normal lead. After a certain period tp of
time, d is pushed back higher thanμ. This procedure is repeatedwith interval tr ( t1 r is typically in theGHz
range [45–47])many times enough for the electric current resolution.When the system is in the topological
state, theMajorana states at the ends of thewire are expected to be true bound states, the current is estimated to
be

( ) ( )


w t

t
- -

G
G

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤
⎦
⎥⎥

e
w8 1 exp 2 25

p

d

d p

L p
p L

2

2

2

if the hybridized state c is occupied; the current vanishes otherwise.
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In the second scheme (figure 11(b)), the excess electron on the quantumdot is probed by continuously
monitoring the current through a nearby quantumpoint contact [48–51]. It is possible because the dot electron
casts an additional Coulombpotential and reduces the transmission probability fromTQPC to ¢TQPC (hence the
current from IQPC to ¢IQPC) through the quantumpoint contact. The change in the current is given by

( ) ( )- ¢ = - ¢I I
e

h
T T V , 26QPC QPC

2

QPC QPC QPC

whereVQPC is the voltage bias applied across the quantumpoint contact. Note that the continuousmonitoring
affects the tunneling between the hybridized state c and the dot. For example, when the system is in the

topological state, the coherent oscillation of frequency  + w4d p
2 2 between c and d is subject to the dephasing

of rate ( )G º - ¢f T TQPC QPC
2 and the gradual relaxation of rate

( )


G =
G

+ G
f

f

w4
27

p

d
mix

2

2 2

if the hybridized state c is initially occupied; the oscillation ismissing otherwise. The quantumpoint contact is
often replacedwith a single-electron transistor [52–54]. In either case, the change in charge on the quantumdot
can bemonitored as fast as the radio-frequency range.More detailed analyses including the effects of back-
action noise are referred to [55] and references therein.

Themethods described above are based on the coherent transition (if any) from c to d. Such a transition
changes the fermion parity of the system; indeed, it involves the two degenerate ground states with distinct
fermion parities. On that account, ourmethods can only probe the topological order in the ‘initial’ (right-
before-the-measurement) ground state with definite fermion parity, which is the prerequisite for the
relations(21a) and (21b). The latter situation is common in typical experiments. An important exceptional case
is when the initial state contains a coherent superposition of two ground states with distinct parities, such as in
topological quantum computation.

Figure 11.Two schemes formeasuring the occupancy of the hybridized states, ( )= c c c 2N1 , between the two end-site
electrons c1 and cN. Thewire (red) in the proximity to the conventional superconductor (green) and under the inplanemagneticfield
(black arrows) forms the topological superconductor. The two end-sites c1 and cN are coupled to a quantumdot (orange disc).
Depending on the additional fluxΦ (brown arrow at the center) through the loop, either +c (F F = 00 ) or -c ( pF F =0 ) electron
can tunnel to the quantumdot. (a)The excess electron on the quantumdot is probed by taking it out to an additional normal lead
(orange bar) attached to the dot. (b)The excess electron is probed by continuouslymonitoring the current through the nearby
quantumpoint contact (orange pinched bar).
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6. Conclusion

Wehave considered awire of topological superconductor and studied the temporal evolution of the topological
order upon a quantumquench across the critical point in terms of the string order parameter. Unlike topological
quantumnumbers, which are commonly used to describe the equilibrium topological order, the string order
parameter is definedwith respect to the full dynamical wave function and naturally captures the dynamical
evolution of the topological order reflected in thewave function. It is considered to bemore suitable for
experimental observations [28].We have found that the topological orders vanishwith afinite decaying time and
that the initial decaying behavior is universal in the sense that it does not depend on thewire length and the final
value of the chemical potential (the quenching parameter). The revival of the topological order infinite-size
wires and the propagation of the topological order into the regionwhichwas initially in the nontopological state
have been observed and explained in terms of the propagation and dispersion of theMajoranawave functions.
Finally, we have found the exact relations between the string order parameters and some local correlations,
which are valid as long as the fermion parity is well defined. Based on these relationswe have proposed local
probingmethodswhich allows tomeasure the topological order which is supposed to be nonlocal.
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Apppendix.Majorana correlationmatrix and topological order

In this appendixwe prove that the string order parameter over a part of the system is ultimately related to the
correlation outside of that region and find the exact relation between them.

TheMajorana correlationmatrixC(t) defined in equation (9) has the following properties as stated in the
main text:

(i) It is ´N N2 2 real skew-symmetricmatrix.

(ii) [ ] =CPf 1due to thefixing of fermion parity.

(iii) It has eigenvalues of either+i or−i. In otherwords, =C VDV t whereV is an orthogonalmatrix and

⨁ ( )=
-=

⎡
⎣⎢

⎤
⎦⎥D 0 1

1 0
. A.1

n

N

1

From the property (iii), one can derive

( ) ( )= = - = -- -C VD V V D V C. A.2t t1 1

Nowwe recall the generalizedCramer’s rule [56]: for a nonsingular n×nmatrixA and n×mmatricesX
andB satisfyingAX=B,

( ) ( ) 
  =X

A

A
det

det ,

det
, A.3B

,

where { } = i i i, , , k1 2 and { } = j j j, , , k1 2 are ordered sets of indices (    i i n1 k1 and
   j j m1 k1 ),  X , is the k×k submatrix ofXwith rows in  and columns in , and ( ) A ,B is the

n×nmatrix formed by replacing the i ths columnofA by the j ths columnofB for all =s k1, , .
In equation (A.3), we substitute = = =-

´A C X C B, , 1 N N
1

2 2 , and = . Then, theCramer’s rule gives
rise to

( )¯ ¯
 

 =-C
C

C
det

det

det
A.4,

1 ,

since ( ) ¯ ¯   =A Cdet , detB , , where ̄ (also assumed to be ordered) is complementary to  . Applying the
properties (i)–(iii) of theMajorana correlationmatrixC, we get

[ ] [ ] ( )¯ ¯ ¯ ¯       = =C C C Cdet det or Pf Pf A.5, , ,
2

,
2

since  C , and ¯ ¯ C , are also skew-symmetric. Explicit comparison between [ ] CPf , and [ ]¯ ¯ CPf , leads to

[ ] ( ) [ ] ( )( ) ¯ ¯ 


 = -C CPf 1 Pf , A.6P
, ,
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where the ( )P is the number of permutations needed to transform the set of indices { }¼ N1, 2, , 2 to
{ }

¯
      

¼ - +i i i i i N, , , , 1, , 1, 1, , 2k1 2 1 1 . Equation (A.6) is the Cramer’s rule applied toMajorana

correlationmatrix.
Now,we apply equation (A.6) to theMajorana correlationmatrixC and look into its relationwith the string

order parameter in two different cases: (case 1) Suppose { } = N1, 2 . Then, equation (A.6) leads to

( ) [ ] [ ] ( )¯ ¯   = = =C t C C SPf Pf . A.7N x1,2 , , top,

Also, with { } = -N2, 2 1 , we obtain

( ) [ ] [ ] ( )¯ ¯   = = = --C t C C SPf Pf . A.8N y2,2 1 , , top,

These are very interesting relations. Seemingly, the nonlocal string order parameters are replaced by local
correlations between edgeMajorana fermions. However, it does notmean that the topological order can be
local. To the contrary, these relations insist that the topological order is really nonlocal, whichwill be clarified in
the case (2) below.Note that these relations are valid only when the fermion parity isfixed.

(case 2) Suppose that { } = + - -j j j j2 , 2 1, , 2 2, 2 11 1 2 2 . Then

( ) [ ] [ ] ( )¯ ¯   = =S j j C C, Pf Pf . A.9xtop, 1 2 , ,

It states that the string order parameter over a part of the system (for example, from site j1 to site j2) is ultimately
related to the correlation outside of the part over which the topological order is examined. This in turn seems to
reflect the fact that the topological order is a global (rather than local) property.
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