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An#bunching	in	an	optomechanical	oscillator	



Mechanical	effects	of	light	

Kepler’s	observa;on	
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Maxwell’s	equa;ons	

Op;cal	forces	were	extremely	feeble	and	seemed	to	be	of	academic	vale. 

Lebedev’s	demonstra;on	

Mechanical	effects	of	light	

Light	mill	configura#on	



Inven#on	of	the	laser	

Theodore	Maiman	made	the	first	laser	operate	on	16	May	1960	at	the	Hughes	Research	
Laboratory	in	California,	by	shining	a	high-power	flash	lamp	on	a	ruby	rod	with	silver-coated	
surfaces.	He	promptly	submiJed	a	short	report	of	the	work	to	the	journal	Physical	Review	
Le/ers,	but	the	editors	turned	it	down.	Some	have	thought	this	was	because	the	Physical	
Review	had	announced	that	it	was	receiving	too	many	papers	on	masers—the	longer-
wavelength	predecessors	of	the	laser—and	had	announced	that	any	further	papers	would	be	
turned	down.	But	Simon	Pasternack,	who	was	an	editor	of	Physical	Review	Le/ers	at	the	#me,	
has	said	that	he	turned	down	this	historic	paper	because	Maiman	had	just	published,	in	June	
1960,	an	ar#cle	on	the	excita#on	of	ruby	with	light,	with	an	examina#on	of	the	relaxa#on	#mes	
between	quantum	states,	and	that	the	new	work	seemed	to	be	simply	more	of	the	same.	
Pasternack's	reac#on	perhaps	reflects	the	limited	understanding	at	the	#me	of	the	nature	of	
lasers	and	their	significance.	Eager	to	get	his	work	quickly	into	publica#on,	Maiman	then	turned	
to	Nature,	usually	even	more	selec#ve	than	Physical	Review	Le/ers,	where	the	paper	was	beJer	
received	and	published	on	6	August.	

The	inven;on	of	the	LASER	became	a	game	changer! 



Op;cal	tweezers Op;cal	laPces 

Op#cal	poten#al	

A.	Ashkin,	Phys.	Rev.	LeJ.	24,	156	(1970)	



Op;cal	Molasses Magneto-Op;cal	trap 

Ultracold	atoms,	Bose-Einstein	condensates,	etc.		 

Would	it	be	possible	to	use	light	to	control	and	manipulate	MACROSCOPIC	objects? 

Laser	cooling	

T.	W.	Hansch	and	A.	L.	Schawlow,	Opt.	Comm.	13,	68	(1975)	



Harmonically	trapped	two-level	atoms 

Laser	cooling	mechanism	
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Radia;on	pressure	force	is	too	weak	to	change	the	dynamics	of	the	mechanics.		
Macroscopic	objects	do	not	have	internal	level	structures	and	thus	no	spontaneous	emission. 

Macroscopic	trapped	objects	

Mechanically	trapped	object	
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Amplifica;on	 Cooling	



Stokes 

Red-detuned	cavity 

An#-Stokes Stokes 

Blue-detuned	cavity 

An#-Stokes 

Amplifica;on	 Cooling	

New	leaking	channel	from	light	fields,	cavity	leaking 
Coherent	many	photons 

Cavity	field	leaking	

Cavity	assisted	configura#on	



Macroscopic	quantum	objects	

M.	Aspelmeyer,	T.	J.	Kippenberg,	and	F.	Marquardt,	Rev.	Mod.	Phys.	86,	1391	(2014)	



Cavity	fields	 Mechanical	
mo#on	

Precision	measurements	of	feeble	forces	and	fields	
:	gravita#onal	wave	detec#on	

Develop	fabrica#on	techniques	for	high	finesse	op#cal	resonators	
and	mechanical	oscillators	with	high	quality	factors		

Photon	number	 Mechanical	displacement	

Radia#on	pressure	force	

Cavity	resonance	

Cavity	optomechanics	

Braginsky	and	A.	B.	Manukin,	JETP	25,	653	(1967)	
Braginsky	et.	al.,	JETP	31,	829	(1970)	

In	high	precision	physical	experiments	with	test	bodies,	it	is	important	to	know	how	
strongly	the	test	body	is	influenced	by	the	op;cal	system	used	to	register	the	small	
displacement.		



Measuring	weak	forces	and	displacements	

LIGO	 Single	spin	detec#on	setup	

Michelson	interferometer	 Atomic	Force	Microscope	

Mechanical	oscillators	+	lasers	make	great	sensors	

D.	Rugar	et.	al.,	Nature	430,	329	(2004)	



Image	courtesy	of	P.	Meystre	

Optomechanical	systems	

Technological	interests:	
Can	couple	to	qubits	and	photons-	
quantum	communica#on	protocols	
	
Make	unprecedented	sensors	for	small	
displacements	and	forces.	

Exhibits	superposi#on	of	
macroscopic	degrees	of	freedom.	

	

Test	of	quantum	mechanics	over	
different	sizes.	

Founda;onal	interests:	



Basic	theory	
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Linearized	radia#on	pressure	force	

Radia#on	pressure	force	

EOMs	of	the	mechanics	
 
!̂b = −iωmb̂ + iFRP −γ b̂ + ξ̂

FRP = g0â
†â

If	the	cavity	field	is	driven	by	a	classical	field,		

FRP = g0 |α |
2 +g0α (â

† + â)+ g0â
†ââ→α + â

FRP ≈ g0 |α |
2 +g(â† + â) Linearized	radia#on	pressure	force	
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Linearized	radia#on	pressure	force	



Mean	radia#on	pressure	force	

Mean	field	

 
!β = −iωmβ + i〈FRP 〉 − γβ

Op#cal	bistability		

Two	stable	equilibrium	posi#ons	

Mechanical	poten#al	
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Op#cal	bistability	

Quantum	

Classical	

Poten#al	
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Fluctua#ng	radia#on	pressure	force	
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!̂b = −iωmb̂ +δFRP −γ b̂ + ξ̂ Radia#on	pressure	force	fluctua#ons	

Dynamic	op#cal	spring	effect	

Radia#on	pressure	cooling		
or	amplifica#on	
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Macroscopic	quantum	objects	

M.	Aspelmeyer,	T.	J.	Kippenberg,	and	F.	Marquardt,	Rev.	Mod.	Phys.	86,	1391	(2014)	



An#bunching	in	an	optomechanical	oscillator	



ω c(x) =
πc
L0 + x

n ≈ω c +G
(2)x2

 H
′
opt = !ω câ

†â + !g0
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Quadra#c	optomechanical	interac#on	

Membrane-in-the-middle	geometry	
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Quadra#c	optomechanical	interac#ons	
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Quadra#c	optomechanical	interac#on	

Membrane-in-the-middle	geometry	
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Master	equa#on	

The	equa#ons	of	mo#on	can	be	highly	nonlinear	and	open.	
	
The	master	equa#on	describing	the	evolu#on	of	the	total	density	operator	is		

 
!"ρ = − i

#
[Ĥopt + Ĥmech + Ĥom, !ρ]+

κ
2
D[â] !ρ + γ

2
nthD[b̂

†] !ρ + γ
2
(nth +1)D[b̂] !ρ

b̂ : Annihila#on	operator	for	the	mechanics	

 D[ô]ρ̂ = 2ôρ̂ô† − ô†ôρ̂ − ρ̂ô†ô : Lindblad	superoperator	describing	dissipa#on	

 !ρ : Density	operator	for	the	optomechanical	system	

κ : Decay	rate	of	the	cavity	field	
γ : Damping	rate	of	the	mechanics	

nth : Thermal	occupa#on	number	of	the	mechanical	heat	bath	



Unitary	transforma#ons	

Introducing	the	unitary	operator	that	transforms	to	a	frame	rota#ng	at	the	driving	
frequency	

Û1 = e
− iωLâ

†ât ,
and	the	unitary	operator	capturing	the	steady-state	mean	amplitude	of	the	cavity	field	
resul#ng	from	the	external	pump	

Û2 = e
(α â†−α*â),

the	master	equa#on	for	the	transformed	density	operator																															then	becomes	 ρ = Û2
†Û1

† !ρÛ1Û2
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†â,ρ]− iωm

′ [b̂†b̂,ρ]− ig0nc[b̂
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ωm
′ :Shijed	frequency	of	the	mechanical	oscillator	

Δc : Detuning	of	the	pump	laser	from	the	cavity	resonance	

nc : Intracavity	photon	number	

g : Enhanced	optomechanical	coupling	strength	



Interac#on	picture	

If	the	external	pump	is	red-detuned	by	twice	the	effec#ve	mechanical	frequency,	invoking	
the	rota#ng	wave	approxima#on	in	the	interac#on	picture	implemented	by	the	unitary	
transforma#on	
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simplifies	the	master	equa#on	as	

Physically	the	Hamiltonian	represen#ng	the	Schroedinger	evolu#on	in	the	master	equa#on	
reads	

 Ĥ = !g(â†b̂2 + b̂†2â)

No#ce	that	it	is	iden#cal	to	the	interac#on	picture	Hamiltonian	describing	a	parametric	
amplifier	in	quantum	op#cs	and	is	well-known	to	generate	two	photons	in	the	
subharmonic	mode	destroying	a	photon	in	the	pump	mode.	It	is	thus	expected	that	two	
phonons	of	the	mechanics	can	be	destroyed	by	crea#ng	a	single	photon	which	is	
eventually	leaked	out	the	op#cal	resonator	by	the	cavity	field	dissipa#on.		



Adiaba#c	elimina#on	of	the	cavity	field	

In	the	regime	where	cavity	dissipa#on	is	the	dominant	source	of	damping,	the	state	of	the	
cavity	field	tends	to	approach	to	a	coherent	state	in	a	#mescale	of									and	thus	the	
density	operator	describing	the	optomechanical	system	can	be	approximated	as	a	product	
state	
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2
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ρ(t) ≈ ρo(t)⊗ ρm (t).

Adiaba#c	elimina#on	of	the	reduced	density	operator	for	the	cavity	field	gives	rise	to	the	
effec#ve	master	equa#on	for	the	mechanics	only,		

1/κ

Γopt : Nonlinear	optomechanical	damping	rate	 Γopt =
8g2

κ

Scaling	#me	to	the	inverse	of	the	mechanical	decay	rate,												,		we	have	
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Compe##on	between	one-	and	two-phonon	processes	

Op#cal	bath	 Mechanical	
bath	

Mechanical	oscillator	

One-phonon	emission	

One-phonon	absorp#on	

Two-phonon	emission	
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Phase-space	methods	

As	is	well-known,	a	nonlinear	quantum	mechanical	problem	can	be	mapped	into	a	
classical	stochas#c	process	by	an	appropriate	phase	space	representa#on.	

Expanding	the	density	operator	for	the	mechanics	as		

ρm = | µ〉〈ν * |
〈ν * | µ〉∫ P(µ,ν )dµdν ,

the	master	equa#on	for	the	mechanics	takes	the	form	of	the	Fokker-Planck	equa#on	
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High	temperature	regime	

The	steady-state	complex	P	distribu#on	in	the	high	temperature	regime	can	be	obtained	as	
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High	temperature	regime	

Second-order	correla#on	

nth = 10
6, 105, 104 , 103

g(2)(0) ≈ 2

g(2)(0) ≈ π
2



Low	temperature	regime	

The	steady-state	complex	P	distribu#on	in	the	low	temperature	regime	can	be	obtained	as	
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Mean	phonon	number	

nth = 40, 20, 10, 1

Mo#onal	ground	state	



Low	temperature	regime	

Second-order	correla#on	
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Phonon	number	distribu#on	

C = 1, 41, 1000
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Thermal	state	

Coherent	state	



Conclusions	

1.	Our	key	result	is	that	the	steady-state	phonon	field	is	chao#c	if	the	mul#photon	
coopera#vity	obeys	C<2nth+1	whereas	it	an#bunched	if	C>2nth+1.		

2.	This	calcula#on	opens	the	door	to	control	of	the	second-order	correla#on	of	the	
mechanical	oscillator	in	the	weak	coupling	regime,	and	the	observa#on	of	phonon	
an#bunching.	


