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why optimization matters?

People optimize.

Numerical Optimization,
Nocedal and Wright
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optimization problem: abstract construction

An optimization problem consists of the followings:
� a formula '(x),
� a structure U providing a logical semantic of '(x) for

x 2 jUj.



optimization problem: practical construction

In practice, we have
� a set X of variables,
� an ordered set Y,

� an objective function X
f�! Y,

� the formula '(x) = supx2X f (x).



optimization problem: classification

An optimization problem (U ; '(x)) is classified by
� the structure U ,
� the formula '(x).



optimization problem: classification

For an optimization problem (X;Y;X
f�! Y)

� X is explicitly given! unconstrained problem,
� X is implicitly given by constraints ! constrained problem,
� X is a discrete set! discrete problem,
� X is a metric space! continuous problem,
� X is a probability space! stochastic optimization.



optimization problem: classification

For an optimization problem (X;Y;X
f�! Y):

� f is linear! linear problem,
� f is convex! convex problem,
� f is nonlinear! nonlinear problem,
� f is differentiable! differentiable problem, and
� ...(quantum?).
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optimization algorithm

Given an optimization problem ('(x);U), an optimization
algorithm is a Turing machine Topt which accepts sequences on
X having the last element or converging to x� satisfying '(x�).



optimization algorithm: classification

For an optimization algorithm Topt of (X;Y;X
f�! Y):

� supX f (x�)! global optimization,
� supU�X f (x�)! local optimization.
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constrained optimization problem

A constrained optimization is casted into the form of

min
x2X

f (x) subject to

(
cE(x) = 0;
cI(x) � 0:



constrained optimization problem: an illusion?

min
x2R

f (x) subject to

(
x + 1 � 0;
1� x � 0

vs

min
�2R

f (cos �)



constrained system

Relativistic point-particle:

(xa; pa) subject to papa + m2 = 0:

For a massless particle, the mass-shell condition can be solved
by twistors !; � 2 C2:

papa = 0$

8>><
>>:
!A = ixaAB0

a �B0 ;

�!B0

= �ixaAB0

a ��A;

pa
a
AB0 = �A��B0
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unconstrained optimization problem

min
x2X

f (x)

� x� is a global minimizer if f (x�) � f (x); 8x 2 X.
� x� is a local minimizer if there exists an open set

U : x� 2 U such that f (x�) � f (x�); 8x 2 U,
� x� is a strict local minimizer if there exists an open set

U : x� 2 U such that f (x�) < f (x); 8(x 2 U ^ x 6= x�).



NOTATION

@a =
@

@xa ; Xab:::Yac::: =
X

a
Xab:::Yac:::



unconstrained optimization problem: local solution

For a continuous differentiable Rn f�! R

x� is a local minimizer ! @af (x�) = 0

papb@a@bf (x�) � 0

x� is a strict local solution  @af (x�) = 0

papb@a@bf (x�) > 0



convex optimization problem

A convex set is a set C endowed with the addition such that for
any x1; x2 2 C and 0 � � � 1

�x1 + (1� �)x2 2 C:

A convex function is a function C
f�! Y such that

f (�x1 + (1� �)x2) � �f (x1) + (1� �)f (x2):



convex optimization problem: good news

For a convex optimization problem,
� any local minimizer is a global minimizer,
� if @af (x�) = 0, then x� is a global minimizer.
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line search and trust region methods

line search method

min�>0 f (xk + �pk)

step-length �

search direction pk

trust region method

minp f̂ (xk + p)

model function f̂ (x + p)

step p



line search method: steepest descent

For 0 < �� 1,

f (xk + �p) � f (xk) + �pa @

@xa f (xk)

Maximally decreasing if

pa = � @

@xa f (xk)

 @

@xb f (xk)


�1



line search method: Newton direction

Minimize the following:

f (xk + p) � f (xk) + pa @

@xa f (xk) +
1
2

papb @2

@xa@xb f (xk)

The Newton direction

pk
a = �

 
@2

@xa@xb f (xk)

!�1
@

@xa f (xk)



line search method: Newton direction

Require

0 = @af (xk + p) � @

@xa f (xk) + pb @2

@xa@xb f (xk)

while f (xk) � f (xk + p).



line search method: BFGS formula

Observe that near a solution

@

@xa f (xk+1)� @

@xa f (xk) � @2

@xa@xb f (xk)(xk�1 � xk)
b:

Let

sk = (xk+1 � xk); yk =
@

@xa f (xk+1)� @

@xa f (xk):

Approximate the Hessian by

(Bk+1)ab = (Bk)ab +
(yk � Bksk)a(yk � Bksk)b

(yk � Bksk)csc
k

:

(the Broyden-Fletcher-Goldfarb-Shanno formula)


