A QUICK TOUR ON NUMERICAL OPTIMIZATION

Seungjin Lee ETRI

24. 07. 2023 and 27. 07. 2023

Part I

optimization problems and optimization algorithms

optimization problems

optimization algorithms

constrained and unconstrained problems

unconstrained optimization problems

why optimization matters?

People optimize.

Numerical Optimization, Nocedal and Wright

optimization problems

optimization algorithms

constrained and unconstrained problems

unconstrained optimization problems

optimization problem: abstract construction

An optimization problem consists of the followings:

- a formula $\varphi(x)$,
- a structure \mathcal{U} providing a logical semantic of $\varphi(x)$ for $x \in |\mathcal{U}|$.

optimization problem: practical construction

In practice, we have

- a set X of variables,
- an ordered set Y,
- an objective function $X \xrightarrow{f} Y$,
- the formula $\varphi(x) = \sup_{x \in X} f(x)$.

optimization problem: classification

An optimization problem $(\mathcal{U}, \varphi(x))$ is classified by

- the structure \mathcal{U} ,
- the formula $\varphi(x)$.

optimization problem: classification

For an optimization problem $(X, Y, X \xrightarrow{f} Y)$

- X is explicitly given \rightarrow unconstrained problem,
- X is implicitly given by *constraints* \rightarrow constrained problem,
- X is a discrete set \rightarrow discrete problem,
- X is a metric space \rightarrow continuous problem,
- X is a probability space \rightarrow stochastic optimization.

optimization problem: classification

For an optimization problem $(X, Y, X \xrightarrow{f} Y)$:

- f is linear \rightarrow linear problem,
- f is convex \rightarrow convex problem,
- f is nonlinear \rightarrow nonlinear problem,
- f is differentiable \rightarrow differentiable problem, and
- ...(quantum?).

optimization problems

optimization algorithms

constrained and unconstrained problems

unconstrained optimization problems

optimization algorithm

Given an optimization problem ($\varphi(x), \mathcal{U}$), an *optimization* algorithm is a Turing machine \mathcal{T}_{opt} which accepts sequences on X having the last element or converging to x^* satisfying $\varphi(x^*)$.

optimization algorithm: classification

For an optimization algorithm \mathcal{T}_{opt} of $(X, Y, X \xrightarrow{f} Y)$:

- $\sup_X f(x^*) \rightarrow \text{global optimization}$,
- $\sup_{U \subset X} f(x^*) \rightarrow \text{local optimization.}$

optimization problems

optimization algorithms

constrained and unconstrained problems

unconstrained optimization problems

constrained optimization problem

A constrained optimization is casted into the form of

$$\min_{x \in X} f(x)$$
 subject to $\begin{cases} c_E(x) = 0, \\ c_I(x) \ge 0. \end{cases}$

constrained optimization problem: an illusion?

$$\min_{x \in \mathbb{R}} f(x) \quad \text{subject to} \quad \begin{cases} x+1 \ge 0, \\ 1-x \ge 0 \end{cases}$$

vs

 $\underset{\theta \in \mathbb{R}}{\min} f(\cos \theta)$

constrained system

Relativistic point-particle:

$$(x^a, p_a)$$
 subject to $p_a p^a + m^2 = 0$.

For a massless particle, the mass-shell condition can be solved by twistors $\omega, \pi \in \mathbb{C}^2$:

$$p_a p^a = 0 \leftrightarrow egin{cases} \omega^A = i x^a \gamma^{AB'}_a \pi_{B'}, \ ar \omega^{B'} = -i x^a \gamma^{AB'}_a ar \pi_A, \ p_a \gamma^a_{AB'} = \pi_A ar \pi_{B'} \end{cases}$$

optimization problems

optimization algorithms

constrained and unconstrained problems

unconstrained optimization problems

unconstrained optimization problem

$$\min_{x\in X} f(x)$$

- x^* is a global minimizer if $f(x^*) \leq f(x)$, $\forall x \in X$.
- x^* is a *local minimizer* if there exists an open set $U: x^* \in U$ such that $f(x^*) \leq f(x^*), \forall x \in U$,
- x^* is a *strict local minimizer* if there exists an open set $U: x^* \in U$ such that $f(x^*) < f(x)$, $\forall (x \in U \land x \neq x^*)$.

NOTATION

$$\partial_a = rac{\partial}{\partial x^a}, \quad X^{ab...}Y_{ac...} = \sum_a X^{ab...}Y_{ac...}$$

unconstrained optimization problem: local solution

For a continuous differentiable $\mathbb{R}^n \xrightarrow{f} \mathbb{R}$ x^* is a local minimizer \rightarrow $\partial_a f(x^*) = 0$ $p^a p^b \partial_a \partial_b f(x^*) \ge 0$ a^* is a strict local solution \leftarrow $a_a f(x^*) = 0$ $p^a p^b \partial_a \partial_b f(x^*) > 0$

A *convex set* is a set *C* endowed with the addition such that for any $x_1, x_2 \in C$ and $0 \leq \theta \leq 1$

$$\theta x_1 + (1-\theta)x_2 \in C.$$

A *convex function* is a function $C \xrightarrow{f} Y$ such that

$$f(\theta x_1 + (1-\theta)x_2) \leq \theta f(x_1) + (1-\theta)f(x_2)$$

convex optimization problem: good news

For a convex optimization problem,

- any local minimizer is a global minimizer,
- if $\partial_a f(x^*) = 0$, then x^* is a global minimizer.

optimization problems

optimization algorithms

constrained and unconstrained problems

unconstrained optimization problems

line search and trust region methods

line search method	$\min_{\alpha>0} f(x_k + \alpha p_k)$
	step-length α
	search direction p_k
trust region method	$\min_p \hat{f}(x_k + p)$
	model function $\hat{f}(x+p)$
	step p

line search method: steepest descent

For $0 < \alpha \ll 1$,

$$f(x_k + \alpha p) \approx f(x_k) + \alpha p^a \frac{\partial}{\partial x^a} f(x_k)$$

Maximally decreasing if

$$p_a = -rac{\partial}{\partial x^a} f(x_k) \left\| rac{\partial}{\partial x^b} f(x_k)
ight\|^{-1}$$

line search method: Newton direction

Minimize the following:

$$f(x_k + p) \approx f(x_k) + p^a \frac{\partial}{\partial x^a} f(x_k) + \frac{1}{2} p^a p^b \frac{\partial^2}{\partial x^a \partial x^b} f(x_k)$$

The Newton direction

$$p_a^k = -\left(rac{\partial^2}{\partial x^a\partial x^b}f(x_k)
ight)^{-1}rac{\partial}{\partial x^a}f(x_k)$$

line search method: Newton direction

Require

$$0 = \partial_a f(x_k + p) \approx \frac{\partial}{\partial x^a} f(x_k) + p^b \frac{\partial^2}{\partial x^a \partial x^b} f(x_k)$$

while $f(x_k) \ge f(x_k + p)$.

line search method: BFGS formula

Observe that near a solution

$$rac{\partial}{\partial x^a}f(x_{k+1})-rac{\partial}{\partial x^a}f(x_k)pprox rac{\partial^2}{\partial x^a\partial x^b}f(x_k)(x_{k-1}-x_k)^b.$$

Let

$$s_k = (x_{k+1} - x_k), \quad y_k = \frac{\partial}{\partial x^a} f(x_{k+1}) - \frac{\partial}{\partial x^a} f(x_k).$$

Approximate the Hessian by

$$(B_{k+1})_{ab} = (B_k)_{ab} + \frac{(y_k - B_k s_k)_a (y_k - B_k s_k)_b}{(y_k - B_k s_k)_c s_k^c}.$$

(the Broyden-Fletcher-Goldfarb-Shanno formula)