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Abstract
Wederive an equality for non-equilibrium statisticalmechanics infinite-dimensional quantum
systems. The equality concerns theworst-case work output of a time-dependentHamiltonian
protocol in the presence of aMarkovian heat bath. It has the form ‘worst-case work= penalty—
optimum’. The equality holds for all rates of changing theHamiltonian and can be used to derive the
optimumby setting the penalty to 0. The optimum term contains themax entropy of the initial state,
rather than the vonNeumann entropy, thus recovering recent results from single-shot statistical
mechanics. Energy coherences can arise during the protocol but are assumed not to be present
initially.We apply the equality to an electron box.

1.General introduction

Average values of quantities are not always typical values. In non-equilibriumnano and quantum systems this is
often the case, with, for example, thework output of a protocol having a significant probability of deviating from
the average.Hence, in these important systems, statements about averages have limited usewhen it comes to
predictingwhat will happen in any given trial; the fluctuations need to be discussed explicitly. Two key relations
concerning fluctuations inwork, Crooks’ theorem [1] and Jarzynski’s Equality [2], have been studied extensively
theoretically and experimentally. These theorems hold for any speed of changing theHamiltonian, the
thermalization can be partial or negligible during the protocol. Amongst other things the theorems can be used
to determine free energies of equilibrium states fromnon-equilibrium experiments.

A recently developed alternative approach is single-shot statistical mechanics [3–12], inspired by single-shot
information theory [13, 14]. The focus is on statements that are guaranteed to be true in every trial, rather than
on average behaviors. For example, one can askwhether a process’s work output is guaranteed to exceed some
threshold value (such as an activation energy), or whether a process’s work cost is guaranteed not to exceed some
threshold value (beyondwhich the systemmay break fromdissipating heat). These statements concern the
worst-case work of a process. A key realization is that the optimal worst-case work is determined not by the von
Neumann/Shannon entropy of the initial state, but rather themax entropy, which is the logarithmof the
number of non-zero eigenvalues of the densitymatrix. Thus, which entropy one should use in statements about
optimal work depends onwhich property of thework probability distribution one is interested in.

Single-shot statisticalmechanics beganwith almost no a priori relation tofluctuation theorems. Promising
linksweremade in [6, 15]. In [15] it was shown that Crooks’ theorem can be used tomake statements about
worst-case work. This created the beginnings of a bridge betweenCrooks’ theorem and results in single-shot
papers.We here complete the bridge, showing that key expressions concerning optimal worst-case work from
[3, 5, 6] follow fromCrooks’ theoremplus some extra thought. To our knowledge this is a new and unexpected
result.Wemoreover generalize themby giving an equality for theworst-case work. The equality governs
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time-varyingHamiltonian protocols, including fast ones, assumingMarkovian heat baths and aweak restriction
on the strength of any initial quench. The initial state is taken to be diagonal in the energy eigenbasis, though not
necessarily thermal, and energy coherences can arise during the protocol. Figure 1 illustrates the set-up. The
equality has the form ‘worst-case work= penalty—optimum,’with the penalty term guaranteed to be non-
negative such that the optimumcan be derived by setting the penalty to zero.We believe this concrete link to
fluctuation theoremswill give significant impetus to single-shot statisticalmechanics, allowing it to harness
results from the highly developedfluctuation theorem approach. As a demonstrationwe apply the result to an
electron box experiment described in the fluctuation theorem formalism [16–18].We begin by defining the
general set-up.

2. Trajectorymodel

The physical scenario is depicted infigure 1. For concreteness, we shall use the following explicitmodel (and
later discuss other possiblemodels). A protocol will be a sequence of elementary changes: (i) changes of the
Hamiltonian and (ii) thermalizations.We shall initially assume there is afinite number of such steps (but later
show that the continuum limit is well-defined and corresponds to amaster equation, at least in the discrete-
classical case). TheHamiltonian is parameterized by lm, withm an integer that labels the step.

1.Hamiltonian changesmap lm to l +m 1.We follow [19] in supposing there is an energymeasurement in the
instantaneous energy eigenbasis at the beginning and end of eachHamiltonian-changing step. In a given
realization the system then evolves from ∣ l ñi ,m m to ∣ l¢ ñ+i ,m m 1 , where im labels the energy eigenstate. This costs
work given by the energy difference: (∣ ) (∣ )l l= ñ - ¢ ñ+w E i E i, ,m m m m m1 . An important special case is = ¢i im m,
which arises in the quasi-static (quantumadiabatic) limit, as well as if the energy eigenbasis is constant and only
the energy eigenvalues change; this can be termed the discrete-classical case.

2.Thermalizationsmap ¢im to +im 1, cost nowork, and preserve theHamiltonian: ∣ ∣l l¢ ñ  ñ+ + +i i, ,m m m m1 1 1 .
For notational simplicity let us label this as ∣ ∣ñ  ñi j with energy E Ei j.We do not assume that the system

thermalizes fully but that the hopping probabilities respect thermal detailed balance:
(∣ ∣ )
(∣ ∣ )

( )= bñ ñ
ñ ñ

- -e .
p i j

p j i
E Ej i The

energy change -E Ej i from such a step is called heat,Qm.
A trajectory is the time-sequence of energy eigenstates occupied:

∣ ∣ ∣l l lñ  ¢ ñ  ñi i i, , ,0 0 0 1 1 1 ∣ ∣ ∣l l l ¼  ñ  ¢ ñ  ñ- - -i i i, , , .f f f f f f1 1 1

The probability of a given trajectory is accordingly, assuming aMarkovian heat bath,

( ) (∣ ) (∣ ∣ )

(∣ ∣ ) ( )

l l l

l l

= ñ ñ ¢ ñ

´ ¢ ñ ñ
=

+

+ + +

p p i p i i

p i i

traj , , ,

, , . 1
m

f

m m m m

m m m m

0 0
0

1

1 1 1

A trajectory’s inverse is the reverse of the sequence. The inverse corresponds, in the discrete-classical case, to the
Hamiltonian changes running in reverse, from lf to l0, and to the same thermalizations as in the forward

Figure 1. Setup: a working-medium, a battery fromwhichwork is taken or given to and a single heat bath. The battery system alters the
Hamiltonian of theworking-medium, depictedwith the blue arrow shifting an energy level. The heat bath induces jumps between the
system energy levels, depicted by the red arrow.
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protocol, with the sequence exactly inverted. This process is termed the reverse process. Beyond the discrete-
classical case, theHamiltonian changes corresponding to the reverse process are defined such that

(∣ ∣ ) (∣ ∣ )l l l l¢ ñ  ñ = ñ  ¢ ñ+ +p i i p i i, , , ,m m m m m m m m1 1 . Our results will hold under that condition. There are
at least twoways of satisfying that condition: (i) Simply let the unitary of the corresponding elementary step in
the reverse process be -U 1, whereU is that of the forward process, (ii) apply a suitable ‘time-reversal’ operatorΘ
to all states and operators involved, as in [19]. The reverse trajectory is then the reverse sequence of the time-
reversed energy eigenstates: ∣ ∣l lQ ñ Q ñi i, ... ,f f 0 0 , with the condition

(∣ ∣ ) ( ∣ ∣ )l l l l¢ ñ  ñ = Q ñ  Q ¢ ñ+ +p i i p i i, , , ,m m m m m m m m1 1 being satisfied, as time reversal implies taking the
complex conjugate of the states, in a preferred basis, and the transpose of the time-evolution in the same basis:
U UT . The condition is thus satisfied as ∣ ∣ ( ∣ ∣ ) ∣ ∣†á ñ = á ñ = á ñ* * *b U a a U b a U bT .
A given trajectory has somework cost = åw wm m, in linewith the definition of theHamiltonian-changing

steps. The inverse trajectory haswork cost-w. A given protocol on a given initial state induces a probability
distribution over trajectories, with an associated probability distribution over work p(w). The forward and
reverse protocols give rise to ( )p wfwd and ( )-p wrev respectively.

If the initial densitymatrices of the forwards and reverse processes are both thermal, ( ( ))b l- H Zexp 0 0

and ( ( ))b l- H Zexp f f , Crooks’ theoremholds [19]:

( )
( )

( ) ( )b
-

=
p w

p w

Z

Z
wexp . 2

ffwd

rev 0

(Toderive it take the ratio of equation (1) and the corresponding reverse trajectory expression. Apply thermal
detailed balance and the equality of reverse hopping probabilities for theHamiltonian-changing steps. Sumover
trajectories with the samew, and note that the reverse of a trajectory has the samework up to aminus sign [19].)

3.Worst-casework

The central object of our interest is theworst-case work

≔ { ( ) }>w w p wmax : 0 ,0

also known as the guaranteed work [7]. In physical situations this will have a finite upper bound as no battery has
infinite energy. Theworst-case valuemay be realized by a very unlikely trajectory. It is then natural to consider
theworst-casework of a subset of trajectories  :

≔ { ( ) }> Î w w p wmax : 0 and traj .0

4.One-shot relative entropies

The standard relative entropy is ( ∣∣ ) ≔ ( [ ])r s r r s- -D Tr log log [20], wherein logdenotes (in this paper) the
natural logarithm, or ln. ThisD belongs to a class of relative entropies known as theRényi relative entropies,
parameterized by a Î .We shall use two othermembers of that family: the (classical version of the)

¥-relative entropy ( )( ∣∣ ) ≔¥D P Q sup logx
p

q
x

x

and the 0-relative entropy ( ∣∣ ) ≔ ( )r s p s- rD logTr0 , wherein

pr projects onto the support of ρ [21]. These are called one-shot relative entropies, as they arise naturally in one-
shot (or single-shot) information theory [13, 14, 21].

5.Worst-casework fromCrooks

It was shown in [15] that one can recover an expression for theworst-case workw0 fromCrooks’ theorem
equation (2). Consider the equality of Crooks’ theorem (for values ofw such that ( ) >p w 0fwd ) and select the
value forwwhichmaximizes the lhs (and thus the rhs) [15]:

( )
( )-

= bp w

p w

Z

Z
emax max .

f wfwd

rev

The rhs ismonotonic inw, somaximizing the rhs over the support of ( )p wfwd leads to themaximumw-valuew0.
Taking the logarithm and recalling the ¥D definition yields:

( ( )∣∣ ( )) ( ) ( )b = - -¥w D p w p w Z Zlog . 3f
0

fwd rev

Note that this derivation assumesCrook’s theoremwhich does not in general hold for athermal initial states.
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6. Equality forworst-casework

Consider an initial state r0, and a protocol of thermalizations andHamiltonian changes with initial and final
Hamiltonians ( )lH 0 and ( )lH f respectively. This induces awork probability distribution p(w) and an
associatedw0.We shall derive an equality of the form =w0 penalty—optimum.

We consider initial states of form ∣ ∣r l l= å ñáp i i, ,i i0 0 0 0 0 , i.e., diagonal in the energy eigenbasis though not
necessarily thermal (energy coherencemay still arise during the protocol).We take ¹p 0i . This is becausewe
wish to avoid divergences fromdividing by pi. (See [22] for an alternative approach to this divergence problem.)

To apply Crooks’ theorem (equation (2))here, even though the initial state is not assumed to be thermal, our
approach is as follows. For example, if one has a degenerate two-level system, the thermal state is

∣ ∣ ∣ ∣g = ñá + ñá1 2 0 0 1 2 1 1 . If one instead had ∣ ∣ ∣ ∣r = ñá + ñá2 3 0 0 1 3 1 10 , theworst-caseworkwould be the
same as for γ. This follows because the set of trajectories with non-zero probability is the same in both cases, as
can be seen from equation (1)which gives the probability of a trajectory. Given a r0, wewillfind a corresponding
thermal state with the sameworst-case work and apply Crooks’ theorem to that.

An important practical considerationwhichmakes thismore subtle is that some pimay be negligible and
even arbitrarily close to 0. It is natural to exclude trajectories starting in those states when calculating theworst-
case work.We therefore divide the initial energy eigenstates into two sets. One set is the one of interest: IN. The
set of the other eigenstates, we call OUT, corresponding to thosewe shall excludewhen calculating theworst-
case work. The probability of being in OUT is given by

( ) (∣ ∣ )
∣

å l l r= ñá
l ñÎ

p i iOUT Tr , , .
i ,

0 0 0 0 0
0 0 OUT

Wedefine IN as the set of possible ( >p 0) trajectories beginning in IN. Similarly, we define OUT as the set of
possible trajectories beginning in OUT. Recall that each trajectory corresponds to somework value.We call the
worst-case work of IN, wIN

0 . This cannot beworse than theworst-case over all trajectories: w wIN
0 0.

Let us design an associated thermal state that yields the sameworst-case work as r0: wIN
0 . Later, we show that

this is indeed the case, under an additionalmild assumption. The associated thermal state has the same
Hamiltonian as the system apart from theOUT levels.We define theHamiltonian as

≔ ∣ ∣ ∣ ∣å ñá + å ñá~ ~
H E i i E i ii iIN OUT , changing the energies of the states in OUT to newones, Ei, such that

( )b= -
~

p E Zexpi i , and leaving the other energy levels the same. The thermal state associatedwith that
Hamiltonian is then

∣ ∣ ∣ ∣
∣ ∣

 å åg l l l l= ñá + ñá~
l

b

lñÎ

-

ñÎ 

e

Z
i i p i i, , , , .

i

E

i
i

,
0 0 0 0

,
0 0 0 0

i

0 0 IN 0 0 OUT

The definition implies that

( )
( )∣å

=
-

~ l
b

ñÎ
-


Z

e

p1 OUT
. 4

i
E

,
i

0 0 IN

This partition function differs from that of the actualHamiltonian ( )lH 0 .
In this scenariowith g as the initial state and the OUT levels lifted, the protocol is the same as in the actual

scenario, except that initially the energies of the states in OUT are lowered down to the levels of the actual
Hamiltonian of interest. Theworst-case work of this scenario is called ~w 0. Under amild additional restriction on
protocols considered, roughly speaking that theworst-case work is bounded frombelow—as is the case for
physically realizable protocols (seeMethods), we then have

( )=~w w . 50
IN
0

Toget ~w 0 fromCrooks’ theorem (equation (2))weshallmakeuseof equation (3) from [15]. This applies in the scenario
with g as the initial state, asCrook’s theoremholds in that scenario (seediscussionaroundequation (2)), and thus

( ( )∣∣ ( )) ( ) ( )b = - -~ ~
¥w D p w p w Z Zlog . 6f

0
fwd rev

7.Main result

Combining equation (6) and equation (5)wehave

( ( )∣∣ ( )) ( ) ( )b = - - ~
¥w D p w p w Z Zlog . 7fIN

0
fwd rev

Thus theworst case work of the trajectories of interest wIN
0 is this equal to (kT times) a relative entropyminus

(the logarithm) of the ratio of two partition functions, one of which encodes information about howmany of the
initial energy eigenstates have negligible occupation probability.
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8.Discussion

Note that equation (7)has the form

—b =w penalty optimum.0

The penalty is essentially given by the difference between the forward and reverse distributions, quantified by
D∞. The optimumone can hope for, with a given initial state and given initial and finalHamiltonian, is to set the
penalty to 0 (as relative entropies are non-negative), which leaves ( )-

~
Z Zlog f . This term ismore negative the

smaller the support of ρ is and the lower the final energies are relative to the initial ones. This optimum is
achieved by a protocol in [7].

We now consider the optimum term in two important special cases where the single-shot entropy of the
initial state emerges. To simplify the considerations we here set ( ) »p OUT 0, although our full expressions do
not assume that to be the case. The ‘epsilonics’ are dealt with explicitly in theMethods. (i)Consider firstly the
special case of ( ) ( )l l=H H f0 which has been studied in the single-shot statisticalmechanics literature. Then

( ) = - å
~ b

Î
-Z Z e Zlog logf i

E
fIN

i . This can be rewritten, informally, using the definition ofD0 in the technical

introduction and noting that the sum is only over IN levels, as ( ∣∣ )( )r gD0 0
IN , where ( )r0

IN is r0 with the probability
tail inOUT cut off—this ismade general and precise in the discussion on smooth relative entropies in
appendix B. Thus in this case the equality of equation (7)has the form

b = -¥w D D .0
0

(RecallD∞ concerns work distributions andD0 states.) (ii) Further restricting theHamiltonian such that
( ) ( )l l= =H H 0f0 , we have ( ∣∣ ) ( )r g r= -D d Slog0 0 max 0 (noting g = d and recalling

( ) ≔ ( ) ≔ ( ( ))r r rS S log rankmax 0 . This recovers the known results from [3, 5, 6] that these are optimal in the
respective cases. Themessage is that it is themax entropy Smaxwhich determines the optimal worst-case work,
rather than the vonNeumann entropy. If one defines thermodynamic entropy in terms of optimally extractable
worst-casework, it is themax entropywhich should be used.

Tomake the connection to physics clear, we apply the results to a recent realization of a Szilard enginewith
an electron box [16–18]. A great advantage of using this trajectoriesmodel from the fluctuation theorem
approach is that it allows the application of single-shot results to such experiments.We described the set-up in
figure 2 and in theMethods section, we analyze what controls the penalty termD∞ in this scenario.We also
describe in theMethods how the penalty term, up to vanishing probabilistic error, goes to 0 in the isothermal
quasistatic limit.

As described in the trajectories section, these results also apply if the evolution includes unitaries that create
energy coherences, including sudden changes of the energy eigenbasis such that a state that was orginally an
energy eigenstate is now classified as a superposition of energy eigenstates. Such coherences are normally viewed
as associatedwith entropy production and extrawork costs.We note an interesting counter-example.Working
within this trajectorymodel, suppose ( )l =H 0;0 ∣ ∣ ∣ ∣r = ñá + ñá1 3 0 0 2 3 1 10 , and ( ) ∣ ∣l d= ñáH E i if f f . If the
energy eigenstates stay the same throughout such that ∣ ∣ñ = ñi 1f , theworst-case work is dE , and it has
probability 2/3 (even if the shift is done quickly). If instead theHamiltonian eigenstates change such that

Figure 2.An ‘electron box’ (D) coupled to ametallic electrode (R) via tunneling and the capacitor with capacitanceCJ, and to the gate
electrode via the capacitor withCg. The gate voltageVg controls the number of excess electrons in the electron box,N. At low
temperaturesN is restricted to two possible values associatedwith ∣ ñ0 and ∣ ñ1 , with relative energy ∣ ∣µ - ñáH C V 1 1g g . The electrodeR
plays the role of a heat bath, with tunneling in/out ofD corresponding to thermal excitation/relaxation. Experimentally thework and
heat can bemeasured by probing the charge onD in real time [16–18].
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∣ ∣ñ  + ñ0 , and ∣ ∣ ∣ñ  ñ = -ñi1 f then theworst-case work is still dE , corresponding to outcome ∣-ñof the
final energymeasurement. However the probability of this can be as low as 1/2 (ifH is changed suddenly

(∣ ) ( ∣ ∣)r-ñ = - ñá- =p Tr 1 20 ). This shows that the probability of theworst case can actually be improved
(lowered) by coherence due to a sudden change of theHamiltonian. This improvement comes at the cost of
randomizing thework distribution.

The derivation of themain result relies very little on the specifics of the trajectorymodel. It would e.g. also go
throughwith the quantum-jump typemodel in [23, 24]. Thatmodel uses no intermediate projective
measurements on the systembut rather on the heat bath, as is natural in quantumoptics.

9. Summary and outlook

We showed that in any protocol with a time-varyingHamiltonian and thermalizations, theworst-case work
takes the formof ‘penalty—optimum’. Themodel we used could be generalized in variousways, including non-
Markovian baths and baths that decohere in other bases than the energy basis. It is also important tofindmore
bounds for the penalty term in terms of controllable parameters. Finally we note that the results of [25] suggest
that the bounds obtained here also apply towhat is known as thermal operations in the context of resource
theories—another interesting question.
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Note added. Similar results were obtained independently by Salek andWiesner, using a different set-up and
different starting assumptions, in: Fluctuations in Single-Shot ò-deterministicWork Extractions [26].

AppendixA. Properties of g and associated protocol

AsCrooks’ theorem,whichwe use, is for initial thermal states, we designed a thermal state g , with the aimof
creating a set-upwhich yields the sameworst-case work as for the actual initial state, which is not necessarily
thermal. For a given initial state ∣ ∣r = å ñáp i ii0 and initial energy eigenvalues Ei, the associated thermal state is

defined as ∣ ∣g = å ñá
~b- ~

e Z i ii
Ei , where =~

E Ei i for ∣ ñ Î i IN, but for ∣ ñ Î i OUT,
~
Ei is chosen such that

=
~b- ~

e Z pE
i

i . Physically, this implies replacing the energy levels with small occupation probability pi bymuch
higher energy levels such that their thermal occupation probability is as small as pi. TheHamiltonian associated

with g is accordingly ≔ ∣ ∣ ∣ ∣å ñá + å ñá~ ~
H E i i E i ii iIN OUT . The normalizing factor is ∣= å

~ b
ñ

- ~
Z ei

Ei . These
definitions imply that

( )
( )∣å

=
-

~
b

ñÎ
-


Z

e

p1 OUT
. A1

i
Ei

IN

Apart from the given actual protocol, we then also design a∼-protocol such that it gives the sameworst-case
work in the case of g as the initial state.We define the∼-protocol as beginningwith ~H , then lowering theOUT

levels back toEi, i.e., setting ~
H H . After that it is the same as the actual protocol.We call the∼-protocol

applied to g ‘the∼-scenario.’
In the∼-scenario we similarly have

~
IN and

~
OUT, and

~wIN
0 . The following holds:

( )=~w w , A2IN
0

IN
0

i.e., theworst-case work is the same in the∼-scenario as in the actual scenario, for the IN subset of trajectories.
This is because the protocol is defined above such that the added initial step in the∼-scenario only involves
shifting theOUT levels (without any thermal hopping). The set of possible work values is the same in IN

and
~
IN.
We nowmake the followingmild restriction on protocols allowed:

( )=~ ~w w . A3IN
0 0
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We say this ismild, because the trajectories
~
OUT have an extra work gain relative to their sister trajectories in

OUT following from their initial lowering. This gain tends to infinity as ( ) p OUT 0. Thus the∼-protocol will
not haveworse possible work values than the actual protocol. The sort of protocols that are ruled out by themild
assumption are thosewhere there is initially a dramatic quenchwithout thermal hopping such that one of the
OUT levels is raised very high. As long as it is not raised above the initial value of the level in the∼-protocol the
mild assumption is not violated however—the shifting down andup of the level would have a network gain.
This way themild assumption does not rule out e.g. 2-level Szilard engine protocols where the second, likely
empty, level is lifted very high initially and then lowered quasistatically. This example is studied in a physical
system in appendix F below.Moreover, protocols involving thermalization at the start, including quasistatic
protocols, or appropriately bounded initial quenches, are not ruled out.

Combining equations (A2) and (A3) gives the desired expression used in themain body:

= ~w w .IN
0 0

Tohelp illustrate the notation a simple example of the∼-protocol and how it relates to the actual protocol is
infigure A1.

Appendix B. Smooth relative entropy

As noted in themain body, the optimum term reduces to a relative entropy in a special case. If ( ) ( )l l=H H f0 ,

( ) ( ∣∣ )( ) r g= - å =
~

r
b

Î
-Z Z e Z Dlog log i

E
fsupp 0 0

i

0
.Moreover if ( ) ( )l l= =H H 0f0 ,

( ∣∣ ) ( )r g r= -D d Slog0 0 max 0 (noting g = d). This recovers the known results from [3, 5, 6] that these are
optimal in the respective cases. If p(OUT) defined above is not necessarily zero, this optimal termdepends on
which levels are chosen to be in OUT. If one chooses the best cut between IN andOUT, in the sense of

minimizing
~
Z and thus theworst-case work, the optimumone can hope for becomes in those cases

( ∣∣ ) ≔ ( ∣∣ )r g r g- - ¢D Dmin0 0 0 such that ( )r r¢  d ,0 where d is the trace distance (this is called the smooth
relative entropy). The interpretation is that the optimal worst-case work one can hope for allowing for an error
tolerance of ( )= p OUT is ( ∣∣ )r gkTD0 0 , consistent with [3, 5, 6].

AppendixC. Relation betweenworst-case and deterministic work

Certainprotocols studied in single-shot statisticalmechanics give a pseudo-deterministicworkoutput, i.e. the
workdistribution is highly concentrated around somevalue. (It is standard to say that a certain amount ofworkA is
(δ, ò)-deterministic if onewill have [ ]dÎ W A exceptwithprobability .)For example in [3]onemay compress
all the randomness onto somebits and extractwork from theotherswith essentially deterministicworkoutput. In
[5, 6] and and [26] the expressions given concern theoptimal pseudo-deterministicwork, optimizedoverprotocols
for somegivenboundary conditions. This is in contrast to this paper and e.g. [7]whichmakeboundson theoptimal
worst-casework.Wenote that from thedefinitions one sees that boundsonworst-casework are also boundson

Figure A1.Avery simple example of howwe prepend an extra step to the actual protocol as part of the theoretical analysis. Here level 2
is designated asOUT. The energy of that level is initially higher than in the actual initial Hamiltonian ( )lH 0 so that its occupation
probability is thermal. Then it is lowered downwithout interactingwith a thermal bath.Now the actual protocol begins.
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deterministicworkbutnot vice versa. This is because demanding that thework cost is bounded fromabove is a
weaker restriction thandemanding that it is bounded fromboth above andbelow.

AppendixD. Cutting thework-tail, as well as the state-tail

There can actually be (sets of) trajectories which are unlikely even if the initial state of the trajectory is likely, as
the hopping probabilitymay be low. For example, if one lifts one level towards a very high valuewhile
thermalizing, there is one trajectory corresponding to staying in the rising level throughout, whichwould be the
trajectory that gives theworst-case work.However, if such a trajectory is very unlikely, onewouldwish to ignore
the trajectorywhen stating theworst-case work. In this section, we show away to ignore such unlikely
trajectories, by not only cutting off part of the initial state as previously, but also cutting off a part of thework
distribution. This strategy gives a different penalty term—lower, in general—in the equality for theworst-
case work.

D.1. Proof overview
We shall again take the initial densitymatrix to have the form ∣ ∣r l l= å ñá= p i i, ,i

d
i0 1 0 0 0 0 , not necessarily a

thermal state. Then a sequence ofHamiltonian changes and thermalizations as described above is applied. This
induces somework probability distribution and someworst-case work for the trajectories of interest.

The argument is split in two. First, we define a set of trajectories of interest: some trajectories are unlikely
enough to be ignorable.We derive theworst-case work for the set of trajectories of interest. Next, we consider
the probability that some trajectory is in the set of interest. Combining these two parts gives our new equality for
worst-case work.

D.2. The set of trajectories of interest
Wewish to ignore unlikely trajectories.We identify a set of trajectories of interest, defined as excluding
trajectories of two types:

1. r0-tail trajectories:These are thosewhich are called OUT above, i.e., trajectories which start in OUT.We
now call them r0-tail trajectories as usingOUT risks generating confusion because of the second type of cut we
shallmake on the set of trajectories.

2.Work-tail trajectories:We also ignore trajectories associatedwith theworst work values, if those values are
sufficiently improbable. This ignoring amounts to cutting off theworst-case tail of thework probability
distribution. To simplify the proof, we define this tail in terms of thework probability distribution of the
fictional thermal state g . By ‘thework-tail,’wemean the set of trajectories associatedwith the followingwork
valuesw: if the initial state is g , there is an associatedwork probability distribution ( )p wfwd for the given
protocol, and an associatedworst-case work ~w . Thework tail trajectories are by definition thosewithwork cost

> ~w w . Since the actual initial state r0 may differ from g , the probability that some trajectory begins in the
work tail does not necessarily equal ò.

These sets are depicted infigureD1.We shall call theworst-case work in the set of interest wIN,IN
0 .

D.3. Theworst-case work in that set
Wenowderive theworst-case work in the set of trajectories of interest:Wemaximize thework costw over that
set of interest.We shall, for the first part, draw inspiration from an argument, in [15], concerning scenarios
governed byCrooks’Theorem. Take the initial state of the forwards process to be r g= ;0 and the initial state of
the reverse process as ( )g = b l-e ZH

f
f .

Maximize Crooks’ theoremover the support of ˜ ( )p wfwd [15]:

( )
( )


-

= ~
bp w

p w

Z

Z
emax max .wfwd

rev

The rhs ismonotonic inw, somaximizing the rhs over the support of ˜ ( )p wfwd leads to themaximumw-valuew0.
Taking the logarithm and recalling the ¥D definition yields [15],

⎛
⎝⎜

⎞
⎠⎟( ( )∣∣ ( ))b = - - ~¥w D p w p w

Z

Z
log .0

fwd rev

Now,we cut off thework tail by defining a cut-off probability distribution ( ) ≔p w 0fwd , if ~ w w and
( )

- 

p w

1
fwd , otherwise, wherein ~w denotes thework guaranteed up to probability ò if g is the initial state. (Dividing
by ( - 1 )normalizes the distribution.) Forwork values outside thework tail, Crooks’ theorem can be
reformulated as

8
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( )
( )

( )


-
- = ~

b
p w

p w

Z

Z
e1 .wfwd

rev

Since the rhs ismonotonic,

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

 -

- = ~
b~


p w

p w

Z

Z
emax 1 ,wfwd

rev

wherein themaximization is over the support of pfwd. Taking the logarithm and rearranging yields

⎛
⎝⎜

⎞
⎠⎟( ( ) ∣∣ ( )) ( )b = - + - -~

~¥  w D p w p w
Z

Z
log 1 log .

fwd rev

The lhs is theworst-case work in the set of trajectories of interest.

D.4. Probability that a trajectory is in the set of interest
The trajectories of interest are effectively the possible trajectories. Tomake precise what ismeant by ‘effective,’
we bound the probability that any particular trajectory lies outside that set.

Consider a trajectory followed by a system initialized to r0. The probability that the trajectory lies outside the
set of interest is bounded by ( ) ( )r - + -p ptail work tail0 , as shown infigureD1. ( )r -p tail0 , defined via r0
and the choice of effective support, is specified by input parameters. ( )-p work tail denotes the probability that
the trajectory is in the set associatedwith aworse work cost than ~w (thework guaranteed up to probability ònot
to be exceeded, if the initial state is g ). ( )-p work tail does not necessarily equal ò for an arbitrary r0. As

( )-p work tail is not an input parameter, wewish to bound it with input parameters.
Let us drop the subscript ‘fwd’ and refer simply to p(w). Theweight ( )>p w x in the actual work tail

associatedwith r0 cannot differ arbitrarily from theweight ( ) >p w x in thework tail associatedwith g :

∣ ( ) ( )∣ ( ( ) ( )) > - > p w x p w x d p w p w, .

This bound follows from the definition of the variational distance d, which equals the trace distance between
diagonal states8.

The variational distance d is contractive under stochasticmatrices, because the trace distance is contractive
under completely positive trace-preservingmaps. Thework distribution is the result of a stochasticmatrix’s
acting on the probability distribution over initial energy eigenstates. Let us now in this paragraph for
convenience useDirac notation for classical probability vectors, representing a probability distribution p(w) as

∣á ñw p . Thework distribution comes from the stochasticmatrix ∣ ∣å ñáp jj j mapping a state ∣r ñ0 to awork

distribution, wherein j labels projectors onto ( )lH 0 eigenstates, ∣ ñpj labels thework distributionwhen starting

with an initial state ∣ ñj (i.e., ( ) ∣= á ñp w w pj j ), and ∣ ∣r ñ = å ñq jj j0 . For example, if there are two possible

eigenstates, we canwrite ∣ ∣ ∣ ( )r ñ = ñ + ñ =q q q q1 2 T
0 1 2 1 2 , and the resultingwork

distribution ( ) ( ∣ ∣ ∣ ∣)∣ ( ) ( )r= á ñá + á ñá ñ = +p w w p w p q p w q p w1 21 2 0 1 1 2 2 .

FigureD1.Depiction of the trajectories of interest.We shall ignore trajectories that have undesirable, very unlikely work values (that
are in thework-tail) and trajectories that start in very unlikely energy eigenstates (that start in the ρ-tail).

8
See, e.g., section 2 in http://people.csail.mit.edu/costis/6896sp11/lec3s.pdf.
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Thus,

∣ ( ) ( )∣ ( ( ) ( )) ( )  r g> - > " p w x p w x d p w p w d x, , .0

For some = ¢x x , by definition, ( ) ( ) > ¢ = - = p w x p work tail , and ( ) ≔ ( )- > ¢p p w xwork tail . Thus

( ) ( )r g- + p dwork tail , .0

D.5.Main result, also cuttingwork tail
Weconclude that theworst-case work from the trajectories of interest, wIN,IN

0 respects

( ( ) ∣∣ ( )) ( ) ( )b = - + - - ~
¥ w D p w p w Z Zlog 1 log . D1IN,IN

0
fwd rev

The probability that the trajectory is not in the set of interest is upper-bounded
by ( ) ( ) ( ) ( )r r r g- + - - + + p p p dtail work tail tail ,0 0 0 .

Appendix E. Continuous time versus discrete time

Wehavemainly focused on the discrete-time protocol. Experimental realizations of thermodynamic protocols
are often described by a continuousmaster equation.Here, we show that the discrete protocol leads to amaster
equation in the continuummodel and vice versa. In this sectionwe restrict ourselves to scenarioswithout energy
coherences, i.e., the discrete-classical case.

E.1. Fromdiscrete to continuous
Weconsider a discrete sequence of times, = +t t m tdm 0 ( = ¼m 0, 1, 2 ), and the sequence ( )l lº tm m of
values of the external parameter. As thewaiting time decreases ( td 0), the transition probability

(∣ ( ) ∣ ( ) )l lñ  + + ñp i t t j t t t t, , , d , d due to thermalization should vanish. Tofirst order, it behaves as

(∣ ( ) ∣ ( ) ) ( ) ( ) ( )l l dñ  + + ñ » + G + p i t t j t t t t t t t, , , d , d d d . E1ij i j
2

The transition rate ( )G ti j is a possibly complicated function of instantaneous energy levels (∣ ( ) )l ñE i t t, , .
However, the transition rates inherit the condition

( )
( )

( )[ (∣ ( ) ) (∣ ( ) )]G

G
= b l l



- ñ - ñt

t
e E2

i j

j i

E j t t E i t t, , , ,

fromdetailed balance and the condition

( ) ( )åG = t 0 E3
j

i j

fromprobability conservation. The occupation probability is

(∣ ( ) ) ( ∣ ( ) ) (∣ ( ) ∣ ( ) )

(∣ ( ) ) ( ∣ ( ) ) ( ) ( ∣ ( ) ) ( )

å

å å

l l l l

l l l

+ + ñ = ñ ñ  + + ñ

» ñ + ñ G - ñ G 

p j t t t t p i t t p i t t j t t t t

p j t t p i t t t t p j t t t t

, d , d , , , , , d , d

, , , , d , , d .
i

i
i j

i
j i

If the occupation probability is a smooth function of time, themaster equation

(∣ ( ) ) ( ∣ ( ) ) ( ) ( ∣ ( ) ) ( ) ( )å ål l l+ + ñ = ñ G - ñ G 
t

p j t t t t p i t t t p j t t t
d

d
, d , d , , , , E4

i
i j

i
j i

follows. The equivalence is further illustrated in appendix F in the example of an electron box.

E.2. From continuous to discrete
Going in the other direction, we now show explicitly how the discrete-timemodel can be derived from a physical
master equation. Consider a two-level system that has a state ∣ ñ0 , kept at zero energy, and a state ∣ ñ1 whose energy

( )w t changes. TheHamiltonian is ( ) ( )∣ ∣w= ñáH t t 1 1 , and the system interacts with a temperature-T heat
bath. In [27], amaster equation for the densitymatrix ( )r t was derived for a such system. In the present case, the
master equation is

˙ ( ) [ ( ) ( )] ( ) ( ) ( )r r r= - + t H t t t ti , E5

( ) ( ( ))([ ( ( )) ]{[ ( ) ] } ( ( )){[ ( ) ] }) ( )r w w s r s w s r s= G + + + +- + + - t t n t t n t td 1 , h.c. , h.c. . E6th th

The heat bath,modeled as as set of harmonic oscillators, has a thermal occupation number
( ) ( )w = -b w -n e 1th

1 that depends on time because the upper level shifts. ( )wd is the dimensionless heat-bath
density of states;Γ denotes a rate assumed to be constant; ∣ ∣s = ñá- 0 1 denotes the usual lowering operator; and
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†s s=+ -. Equation (E5) has the formof the usual Lindbladmaster equation, but the Lindblad operator depends
on time. The dependence arises only from the level spacing’s time dependence. TheHamiltonian part contains
the Lamb shift.

In the derivation of equation (E5) one assumes, as usual, weak coupling to the heat bath, theMarkovian
approximation, and the rotating-wave approximation.One also assumes that the adiabatic approximation
holds, i.e., the system always remains in its time-local energy eigenstates when the interactionwith the heat bath
is ignored. This condition is always fullfilled under the assumption of vanishing energy coherences at all times
thatwemade in this section. Indeed, the part of (E5)pertaining to the diagonal elements of ( )r t can be derived
without the adiabatic assumption [28].

We now consider discrete times ≔ Dt n tn , = ¼n N0, , , with ( )w t constant during the time intervalsDt ,
≔ ( )w w tn n . Restricting ourselves to changes of theHamiltonian that only involve its spectrum,H(t) and ( ) t

are constant during a given time interval.
Consider first theHamiltonian changes. Heisenberg’s equation ofmotion for the system-and-bath

composite implies that ˙ ( )r t has afinite jumpwhen theHamiltonian has afinite jump. Therefore, ( )r t is
continuouswhen theHamiltonian has afinite jump.Hence forfiniteHamiltonian changes during a time dt , the
system-and-bath composite’s densitymatrix is unchanged in the limit as δt→ 0.Hence the system’s reduced
densitymatrix is unchanged during the instantaneous shift of energy levels. As for the relaxation process, the
initial thermal state is described in terms of occupation probabilities pn for the nth level. The evolution during
the relaxation process is given by ( ) ( )=p t e p 0Tt , whereT is amatrix that connects the diagonalmatrix elements
of ρ in themaster equation (E5): ṙ r= å Tnn m nm mm. The transition ratesTnm inherit detailed balance from the
rates appearing in themaster equation, i.e., ( )= b- - T e Tij ji

i j . Detailed balance holds for each powerTk ofT,

( ) ( )( )= b- - T e Tk
ij

k
ji

i j , for all Î k . Therefore, by the power-series expansion of e Tt, detailed balance holds
also for e Tt.We thus have derived, from a physicalmodel of a system that is coupled to a heat bath andwhose
energy levels are piecewise-constant, the discrete-timemodel considered in the paper.

To illustrate this let us consider a two level system: expressing ( ) ( )∣ ∣ [ ( )]∣ ∣r = ñá + - ñát p t p t0 0 1 1 10 0 ,
we obtain a differential equation for ( )p t0 ,

˙ ( ) ( ( )) ( ) ( ( )) ( ( )) ( )w
w

w+ = + Gp t g t p t
g t

t
2

d , E70 0

wherein ( ( )) ≔ ( ( ))[ ( ( )) ]w w wG +g t t n t2 d 2 1th . This equation has the general solution

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ( )) ( ) ( ) ( )ò w= - + G +p t p t t G t G t0

1

2
d d

1

2
, E8

t

0 0
0

1 1 1

wherein ( ) ≔ ( ( ))ò wG t e g t td
t

0 1 1. The integrals in equation (E8) can be calculated analytically:

⎡⎣ ⎤⎦( ) ( ) ( )( ) ( ) ( ) ( )= + -w w- G - Gb w b w 
p t p p0 e 1 e , E9t t

0 0
2d coth

0,th
2d coth2 2

wherein ≔ ( )+b w- p e1 10,th denotes the ground state’s thermal occupation. For large times, thememory of
the initial state is lost, and the system relaxes towards thermal equilibrium. From equation (E9), we obtain the
transition probabilities during relaxation over the time interval between Dn t and ( )+ Dn t1 :

(∣ ∣ ) ( )∣ ( )w wñ  ñ = D+ =p p t0 , 0 ,n n n n p1 0 0 10
, (∣ ∣ ) (∣ ∣ )w w w wñ  ñ = - ñ  ñ+ +p p0 , 1 , 1 0 , 0 ,n n n n n n n n1 1 ,

(∣ ∣ ) ( )∣ ( )w wñ  ñ = D+ =p p t1 , 0 ,n n n n p1 0 0 00
, and (∣ ∣ ) (∣ ∣ )w w w wñ  ñ = - ñ  ñ+ +p p1 , 1 , 1 1 , 0 ,n n n n n n n n1 1 .

These transition probabilities obey detailed balance. As they remain unchanged by the inclusion of an
instantaneousHamiltonian change at the end of each time interval,

(∣ ∣ ) (∣ ∣ )w w w wñ  ñ = ñ  ñ+ + +p i j p i j, , , ,n n n n n n n n1 1 1 for { }Îi j, 0, 1 .

Appendix F. Application to solid-state system: electron box

Todemonstrate thephysical relevance of our results, we take a realistic example, the electronbox [16–18, 29, 30],
and apply our results to it.Wefirst derive a time-localmaster equation for the level-occupationprobabilities in
appendix F.1. As shown in appendix E, themaster equation is equivalent to the discrete-time trajectorymodel
discussed in themain text. Theworkdistribution functions are analyzednumerically in appendix F.2 and
analytically in appendix F.3. Finally,weupper-bound the penalty term ¥D , which reveals the direct physical
relevance of our results.

F.1. Theoreticalmodel and its justification
Weconsider the type of system in [16–18]. Following a semiclassical theory (known as ‘the orthodox theory’)
such as in [31], we derive amaster equation and illustrate thework fluctuations. Amore complete quantum
description is possible [29, 30]. Yet the semiclassical approach is useful for interpreting and identifyingwork and
heat, which are often ambiguous.
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The system (figure F1) consists of a largemetallic electrodeR that serves as a charge reservoir, a smallmetallic
island (or quantumdot)D, and a gate electrode. The islandD is coupled only capacitively to the gate electrode
but couples to the reservoirR capacitively and via tunneling. TheHamiltonian has four parts:

= + + +H H H H H .R D C T Thefirst two terms,

( )† †å åe e= =H c c H d dand , F1R
k

k k k D
q

q q q

describe the non-interacting parts of the electrodeR and the islandD. Here, †ck ( †dq ) creates an electronwith
momentum k (q) and energy ek (eq). The single-particle dispersions ek and eq form continua of energy levels.
HC is responsible for the electron–electron interaction on the island.We adopt a capacitivemodel as recounted
below. Finally, the tunneling of electrons betweenR andD is described by

( )†åh= +H c d h. c., F2T
kq

k q

wherein η is the tunneling amplitude. η is assumed not to depend onmomenta (or on energy), as in common
metals that havewide conduction bands.

The effective semiclassicalmodel describes equilibrium: suppose that an electron tunnels between the island
D and the reservoirR. The tunneling jolts the systemout of equilibrium, but the system equilibrates quickly:
Coulomb repulsions redistribute the electrons throughout the circuit. After the redistribution, the junction
carries the equilibrium chargeQJ, and the gate carries the equilibrium chargeQg. These charges are regarded as
being ‘on’ the islandD, due to the island’s capacitive couplings to the reservoirR and to the gate. (The island
carries also excess electrons, discussed below.)The electrons continue to repel each other, imbuing the system
with the equilibriumCoulomb energy

( )= +H
Q

C

Q

C2 2
, F3C

J

J

g

g

2 2

whereinCJ andCg denote the junction and gate capacitances. One can find that

( ) ( )= -Q C V Ne C a, F4J g g

( ) ( )= +Q C V Ne C b, F4g g J

wherein ≔ ( )+C C C C Cg J g J is the system’s effective capacitance. †= åN d dk k k denotes the number of excess
electrons, relative to the charge-neutral state, on the islandD.WhenN=0, the island has zero net charge.
HC can thus be rewritten as

( )= +H E N CV
1

2
, F5C C g

2 2

wherein ≔ ( )+E e C C2C g J
2 is the single-electron charging energy, one of the largest energy scales of the

system.
We are primarily interested in themacroscopic variableN but not in themicroscopic degrees of freedom ck

and dq, whose dynamics is typicallymuch faster. One can thus integrate out ck and dq to get the effective
Hamiltonian expressed only in terms ofN. In the semiclassical approach, this can be achieved by considering the
energy that an electron gains by tunneling.

Figure F1.A schematic of an electron box.
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Suppose that an electron tunnels into the islandD from the reservoirR. This will change the charge
 -Q Q eJ J and the excess number of electrons  +N N 1. This new charge configuration, right after the

tunneling, is redistributed quickly to a new equilibrium configuration,

[ ( ) ] ( )¢ = - +Q C V N e C a1 , F6J g g

[ ( ) ] ( )¢ = + +Q C V N e C b1 , F6g g J

by the gate voltage source. The voltage source hasmoved the amount

≔ ( ) ( ) ( )D ¢ - - = +Q Q Q e eC C C F7J J g g J

of charge through the transmission line from the junction interface to the gate capacitor by doing the amount

( ) ( )= D = +W V Q eV C C C F8g g g g J

ofwork on the system. Therefore, the electron’s overall energy gainDE equals theworkWminus the change in
the electrostatic energy:

[ ( )] ( )D = - +E E C V e N2 2 1 . F9C g g

As this energy gain comes from the transition  +N N 1, the effectiveHamiltonian for themacroscopic
variableN can be regarded as

( ) ( )= -H E N NN2 , F10C geff
2

wherein ≔N C V eg g g . Recall that the second term comes from thework done on the systemby the voltage
source.

Themicroscopic degrees of freedom removed from the effectivemacroscopicmodel causeN tofluctuate
randomly. The transition  N N 1 is associatedwith tunneling of an electron into or from the island.Hence
the transition rate follows fromFermi’s GoldenRule:

( )
∣ ∣

( )
p h r r

G D »
D

+bD
E

E

e

2

1
, F11R D

E

2

wherein rR and rD are the densities of states ofR andD, respectively, and

( ) ( ) ( )D =  -E H N H N1 . F12eff eff

Finally, at sufficiently low temperatures ( bE 1C ), higher energy levels play no role. Considering the two
lowest levelsN=0 andN=1 suffices for [ ]ÎN 0, 1g

9. Let p0 denote the probability thatN=0, and let p1
denote the probability thatN=1.With equations (F10) and (F11), this two-level approximation leads to the
master equation

˙ ( )= -G + G+ -p p p a, F130 0 1

˙ ( )= -G + G- +p p p b. F131 1 0

The transition rates are [29, 30]

( ) ≔ ( ( )) ( ) ≔ ( ) ( )( )
e

G G  G
G

-b  



t t
t

e
and

1
. F14c

t
0

Here, ec is the bath’s high-frequency cutoff (i.e., e c is the correlation time), and G0 is a constant that
characterizes the strength of the coupling to the bath. eG c0 is related to thematerial properties by

∣ ∣e p h r rG = 2c R D0
2 . Note that the transition rates satisfy the detailed-valance relation

( )
( )

( )G +
G -

= b-


e . F15

The time-localmaster equation (F13) is equivalent to the discrete-time trajectorymodel (see appendix E).
Therefore, the electron box is a realistic prototype system towhich our results can apply.

F.2.MonteCarlo simulation of the electron box
Weperformed aMonte Carlo simulation of an erasure protocol in the electron box set-up.Our simulation
discretizes the protocol into time steps dt small enough to justify the linear approximation that the population of
level i evolves from time step t to d+t t according to ( ) ( ) ˙ ( )d d+ = +p t t p t tp ti i i . Using equations (F13), we
canwrite a stochasticmatrix acting on the probabilities:

9
Themodel is invariant under  +N N 1g g , and studying [ ]ÎN 0, 1g suffices.
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⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )
( ) ( )

d
d

d d
d d

+
+

=
- G G

G - G
+ -

+ -

p t t

p t t

t t

t t

p t

p t

1

1
. F160

1

0

1

For a two-level systemwhich does not build up quantum coherences, a stochastic thermalizingmatrix
(which by its definition evolves all states towards theGibbs state) has only one degree of freedom remaining once
theGibbs state has been chosen: the thermalization speed. Allmodels of two-level thermalizations for a given
Gibbs state are equivalent.We pick the conceptually straightforward partial swap: with some probability psw, the
system’s current state is exchangedwith theGibbs state.With probability - p1 sw, the state remains unchanged:

( ) ∣ ∣= - + ñáM p p1 Gibbs onesswap sw sw , where ∣ ñones means the vector of 1ʼs. For aGibbs state associatedwith
an energy-level splitting ò,
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1 exp
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. F17swap

sw sw

sw
sw

Equating equation (F17)with thematrix in equation (F16), we canfind the partial-swap probability in terms
of the electron box’s physical parameters:

( ) ( ) [ ( ) ] ( )d
e

b=
G

 p t
t

t tcoth 2 . F18
c

sw
0

The swap probability ( )p tsw and the energy level splitting ( ) t appear as functions of time, as the swap
probability changes as the protocol evolves. The probability changes only as a function of an external parameter,
the splitting (as opposed to e.g., the current state). HenceCrooks’ theorem is still applicable to thermalizations of
this type.

Figure F2 depicts ourMonte Carlo simulation.We randomly generate trajectories by picking a random
initialmicrostate according to the initial-state probability distribution. Then, we evolve the systemby small
steps, testing at each step if a swap should occur (with probability psw). If a swap occurs, we replace the state with
a newmicrostate randomly chosen according to theGibbs state associatedwith the currentHamiltonian. By
recordingwhichmicrostate is occupiedwhen the energy level is raised, we calculate thework cost associated
with a particular trajectory. Repeated runs of the simulation allowus to build up awork distribution, towhich
the results in this paper apply.

F.3. Analytic expression for thework distribution
Thework distribution function for an electron box can also be obtained explicitly from themaster equation.

Consider an arbitrary work protocol that runs from t=0 to t=t . The gap is tuned as a function ( ) t . The
trajectory ( ) { }s Ît 0, 1 of the system is piece-wise constant, jumping discontinuously fromone energy level to
another at some random instants tj ( = ¼j 1, 2, ). Therefore, the trajectory is specified uniquely by the initial

Figure F2.Work guaranteed to be extracted from a Szilárd engine up to probability ò: w . AMonte Carlo simulationwas used to
predict thework from the single-electron-box. w approaches kT ln 2 as a function of the protocol’s speed. For smaller ò, w
approaches frombelow; and for higher, from above.
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condition s0, the number J of jumps, and the corresponding instants tj ( = ¼j J1, 2, , ). The probability
distribution function for the trajectory is

( ) (( ) ( )) [ ( )] ( )s s¼ = G - - ¼s

=

+ + P t t t S t t, , ; 1 exp , , ; , F19J J
j

J
j

j J J1 0
1

1
1 0

0

where the effective action associatedwith a given trajectory has been defined as

( ) (( ) ( )) ( )òås¼ = G - s

=

+
+ +

-

S t t s s, , ; d 1 F20J J
j

J

t

t
j

1 0
1

1
1

j

j

1

0

and =t 00 and t=+tJ 1 are implied. Checking the normalization is straightforward:

( ) ( ) ( )òås s+ ¼ =
t

=

¥

= -

P t P t td , , ; 1, F21
J j

J

t
j J J0 0

1 1
1 0

j 1

wherein =t 00 is again implied.
Thework is done onlywhile the system is in the state s = 1. Hence the contribution to thework along the

trajectory is

( ) ( ) ( ) ( ) ( )ås s s¼ = - + + -s

=

+   W t t t J, , ; 1 mod 2 . F22J J
j

J
j

j f1 0
1

0 0 0
0

Thework distribution function along a trajectorywith J jumps is

( ) ( ) ( ( )) ( )òs s d s= ¼ - ¼
t

= -

P W t P t t W W t t; d , , ; , , ; . F23J
j

J

t
j J J J J0

1
1 0 1 0

j 1

The total work distribution function can bewritten in a series

( ) ( ) ( ) ( ) ( )( ) ( ) ååd d s= + - +
s

s
- -

=

¥

P W p e W p e W W p P W ; . F24S S
c

J
J0

0
1

1

1
0

0 0

0

0

PJ(W) has a factor of ( )G b- e J
0
2 . At low temperatures, PJ is rapidly suppressed as J increases.

The expression(F24) for thework distribution is essentially a perturbative expansion in G0
2 and converges

very quickly for small G0. For large G0, however, it becomes impractical to use it for actual calculation because of
its slow convergence. Therefore, it will be useful to devise amore generalmethod.We examine the characteristic
function ( )x = á ñxZ e W of thework distribution function P(W).Wefirst consider the characteristic function

( )x = á ñs
x

sZ e W conditioned on all trajectories’ starting from a definite initial state s0. Regarded as a function of
the operation time τ, ( )x tsZ ; satisfies themaster equation [32, 33]

( ) [ ( ) ( ) ] ( ) ( )ål t t l t d l t¶ = G + ¶t s
s

ss t s ss s¢ ¢ ¢Z Z; ; F25

and the initial condition

( ) ( )( )x =s
x sZ e; 0 . F260

Comparedwith the originalmaster equation (F13) for the level-occupation probabilities, the newmaster
equation (F25) for the characteristic function contains additional diagonal terms. The full characteristic function
is

( ) ( ) ( )åx x=
s

s sZ p Z . F27
0

0 0

Recall that ( )xZ contains the same information as P(W). From ( )xZ , one can calculateP(W) itself and, as shown
in section F.4 below, a bound for ( ( ) ( )) -¥D P W P Wfwd rev .

Let us show that thework distribution in equation (F24) satisfies Crooks’fluctuation theorem,

( )
( )

( )
-

= bP W

P W

Z

Z
e , F28

f Wfwd

rev 0

whereinZ0 andZf are the partition functions for the initial and finalHamiltonians in the forward protocol.
Given a forward ramping ( ) t , the reverse ramping ( ) trev is defined by

( ) ( ) ( )t= - t t . F29rev

In the forward protocol, consider a trajectory ( )s t characterized by the initial condition s0, the number J of
energy-level jumps and the jump instants tj ( = ¼j J1, 2, , ). One canfind a unique trajectory ( )s trev in the
reverse protocol, which is defined by the initial condition
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( ) ( )s s= + J mod 2 F300
rev

0

and theflip instants

( )t= - - +t t . F31j J j
rev

1

Note that

( ) ( ) ( )= - + t t . F32j J j
rev rev

1

The effective action along the reverse trajectory is the same as that along the forward trajectory (see (F20)):

( ) ( ) ( )s s¼ = ¼S t t S t t, , ; , , ; . F33J J J J
rev

1
rev rev

0
rev

1 0

Further, thework contribution along the reverse trajectory is the negative of that along the forward trajectory
(see (F22)):

( ) ( ) ( )s s¼ = - ¼W t t W t t, , ; , , ; . F34J J J J
rev

1
rev rev

0
rev

1 0

These observations lead to

( ) ( ) [( ) ] ( )( )s s s b s b¼ = ¼ + -b s- ¼  P t t P t t e J, , ; , , ; exp mod 2 F35J J J J
W t t
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1
rev rev

0
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1 0
, , ;

0 0 0
J J1 0

and

( ) ( ) ( )( )s s- = b s b s b- + - P W P W e e; ; F36J J
W Jrev

0
rev

0
mod 2 f0 0 0

It is then straightforward to proveCrooks’ theorem:
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For illustration, examples of the forwards and reverse distributions appear infigure F3.

F.4.Upper bound on ¥D
Recall theMarkov inequality for a non-negative randomvariableX:

( ) á ñ p X a X a.

This is derived by noting that there cannot be toomuch probability of having a valuemuch greater than the
average, or else the average would have to be greater. In our case, it reads

( ) ≕ á ñ~ ~  p w w w w .

Thus,

( )á ñ~  w w . F37

Figure F3.Work distributions calculated analytically for the forward (a) and reverse (b) processes on an electron box. The two levels
initially have the same energy. One level is lifted linearly to k T50 B and then returned to 0. The values of the zero-energy tunneling rate
G0 and the operation time τ are set such that t eG = k Tc B0 , wherein ec is the relaxation time of themetallic electrode (charge
reservoir).
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We rearrange themain result, equation (D1):

( ( )∣∣ ( )) ( ) ( ) b- = - - +~ ~
¥  D p w p w w Z Zlog 1 log . F38

fwd rev

Substituting in equation (F37) yields

( ( )∣∣ ( )) ( ) ( ) b- á ñ - - + ~
¥   D p w p w w Z Zlog 1 log . F39

fwd rev

(here =
~

Z Zlog log 2). One has only to upper-bound á ñw . á ñw can be upper-boundedmost easily with the
characteristic function á ñle w , which bounds á ñw due to convexity. This has been illustrated infigure F4.

Wefinally remark that, as shown in [6, 7], in the isothermal limit, the penalty (meaning again the lhs of
equation (F38)), goes to zero. The isothermal limitmeans that the hopping probabilitiesmultiplying together to
give a trajectory’s probability as in equation (1) take the formof thermal state occupation probabilities

≔ (∣ ) ( )g b l l- ñE i Zexp ,j
i

j j j
j . The probability of a forwards trajectory becomes ( ) g g g=p traj ...i i

f
i

0 1
f0 1 whereas

the reverse trajectory has the probability ( ) g g g- = -p traj inv ...f
i

f
i i

1
f f 1 0. The probability of a given time

sequence of work values from the elementary steps is then a product of individual distributions
( ) ( ) ( )¼ =p w w p w p w, , ...1 2 1 1 2 2 . This allows one to use theMcDiarmid inequality for independent random

variables as in [7] to show that there is concentration around the average in the limit of breaking up an
isothermal time evolution into infinitelymany substeps of energy shifts. If wewrite e= á ñ +~w w , both ò and ε

tend towards zero in this limit. Combining that with the also known fact that á ñ = -
~

w kT Z Zlog in the
isothermal case, we see that the rhs of equation (F38) tends to zero in this limit; thus the lhs also tends to zero. To
find, for a given initial state and initial and finalHamiltonians, a protocol such that this penalty tends to zero, one
can accordingly begin the protocol with lifting theOUT levels to the corresponding thermal levels, and then
perform isothermal quasistatic extraction as described above. The lifting of theOUT levels then undoes their
initial lowering in the∼-protocol, undoing anywork cost and returning the state to being a thermal state. This
limit also illustrates why the ò-versions of theworst-case work and associated penalty are physically natural to
introduce. Strictly speaking theworst case workw0 could bemuch larger than the average even in the isothermal
case, but the probability of this happening can be arbitrarily small.
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