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week ending

PRL 103, 150502 (2009) PHYSICAL REVIEW LETTERS 9 OCTOBER 2009

S

Quantum Algorithm for Linear Systems of Equations

Aram W. Harrow,1 Avinatan Hassidim,2 and Seth Lloyd3

'Department of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom
2Research Laboratory for Electronics, MIT, Cambridge, Massachusetts 02139, USA

3Research Laboratory for Electronics and Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, USA
(Received 5 July 2009; published 7 October 2009)

Solving linear systems of equations is a common problem that arises both on its own and as a subroutine
in more complex problems: given a matrix A and a vector b, find a vector X such that A¥ = b. We consider
the case where one does not need to know the solution X itself, but rather an approximation of the
expectation value of some operator associated with ¥, e.g., ¥ MX for some matrix M. In this case, when A
is sparse, N X N and has condition number «, the fastest known classical algorithms can find X and
estimate X' M* in time scaling roughly as N./k. Here, we exhibit a quantum algorithm for estimating
%t M% whose runtime is a polynomial of log(N) and «. Indeed, for small values of « [i.e., poly log(N)], we
prove (using some common complexity-theoretic assumptions) that any classical algorithm for this
problem generically requires exponentially more time than our quantum algorithm.

For a system of linear equations Ax=b with AERN*N and x, bERN:

(1)

(&X)

 Standard classical methods (based QR-factorization) exhibiO(N3) the best algorithm

I ~ 3 i
has a runtime of _0(N2 ) [D. Coppersmith and S. Winograd, Journal of symbolzc computatzon 9,251 (1990)]

- X 18 the ratio of the largest and the smallest elgenvalues'

- s 1s the sparsity; [A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103,150502 (2009)]
- € 1s the precision (degree of error).
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The numbers of papers published in the area of
guantum machine learning (source: Scopus)
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Definition

Machine learning can be broadly defined as computational methods using experiences to improve

the performance or to make the accurate prediction. \

* past information available to learner, which typically takes the

I f electronic dat
Associated problems form of electronic data

* Classification: Assign a category to each data.

* Regression: Predict a real value for each data.

* Ranking: Order data according to some criterion.

*

Clustering: Partition data into homogeneous regions.

Learning scenarios & strategies

* Supervised learning: receives the labeled examples as training sample.

* Un-supervised learning: receives the unlabeled examples as training sample.

* Semi-supervised learning: receives both labeled and unlabeled

* Reinforcement learning:
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Examples: Items or instances of data used for learning.

Features: The set of attributes, associated to an example.

Labels: Values or categories assigned to examples.

Input class X': the set of all possible examples or instances.

Target class V: the set of all possible labels or target values.

A concept: "c: X — ) " 1s a mapping from X to ). A concept class C1s a set of

concepts we wish to learn.

Hypothesis set H:, the set of possible concepts, which may not coincide with C.

Description of the learning problem:

Given a fixed set H, a learner receives a sample S=(x1, x2, ... , xm) and labels (c(x1),
c(x2), ..., c(xm)) drawn from a fixed but unknown distribution D. Here, ¢ is a specific
target concept in C to learn. The task 1s to use the labeled sample S to select the best
hypothesis 4s € H that has a small generalization error.
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Classical Exact L.earning.
For a concept class C, a learner A4 1s given access to a membership oracle MQ(c) for the

target concept ¢ € C that A 1s trying to learn. Given an input x € {0,1}7, MQ(c) returns
the label c(x). Here, a learning algorithm A4 1s an exact learner for C if:

- For every ¢ € C, given access to M(Q(c) oracle, 4 outputs hypothesis / such that
h(x)=c(x) for all x, with probability at least 2/3.

The guery complexity of A 1s the maximum number of invocations of the MQO(c), over
all concepts ¢ € C and iternal randomness of the learner. The guery complexity of

exactly learning C 1s the minimum query complexity over all exact learners for C.

Each concept c:{0,1}» — {0,1} specified by its N-bit Truth-table (N=27"), we define
(N, M)-query complexity of exact learning as the maximum query complexity of exactly
learning C, maximized over all C C {0,1}V such that |C|=M.

Quantum Exact L.earning.

In the quantum setting, instead of having access to an MQ(¢). oracle, a quantum exact
learner 1s given access to a Quantum-MQ(c) oracle, which maps:" |z, b) — |z, b D c(x))

for x € {0,1}», b € {0,1}. For a given C, the guantum query-complexity of exactly
learning C can be defined as the quantum analogues to the classical complexity measures.
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Classical Probably Approximately Correct (PAC) L.earnin
For a concept class C, a learner 4 1s given access to a random example oracle PEX(c,D),
where ¢ € C 1s a target concept that 4 1s trying to learn and D:{0,1}» — [0,1] 1s an

unknown probability distribution. When invoked PEX(c,D) returns a labeled example (X,
c(x)) where x is drawn from D. Here, a learning algorithm A4 is a (¢,0)-PAC learner for C if:

- For every ¢ € C and distribution D, given access to PEX(c) oracle, A outputs
hypothesis /4, with probability at least 1-9, such that Prx-o[A(x)#c(x)] < € for all x.

The sample complexity of A 1s the maximum number of invocations of the PEX(c,D) oracle
which the learner makes, over all concepts ¢ € C, distribution D, and the internal

randomness of the learner. The (£.0)-PAC sample complexity of a concept class C is the

minimum sample complexity over all (¢,0)-PAC learners for C.

uantum Probably Approximately Correct (PAC) L.earnin
The quantum PAC learner has access to a quantum example oracle QPEX(c, D) that

produces a quantum example,
> VD) |z, (@)

xe40,1}1m
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Speed-Ups Kernel

Deutsch-dozsa’s
J. Bang et al. (2014) N — Sart(N) & QEXIH|O|E] ZAAH

H. Briegel et al. (2016) N — Sart(N) QUXH|O|E{ ZAH

C. Lloyd et al. (2014) N — Log(N) HHL
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PRL 113, 130503 (2014) PHYSICAL REVIEW LETTERS 26 SEPTEMBER 2014

Quantum Support Vector Machine for Big Data Classification

Patrick Rebentrost,”” Masoud Mohseni,” and Seth Lloyd'"
'Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Google Research, Venice, California 90291, USA
3Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 12 February 2014; published 25 September 2014)

Supervised machine learning is the classification of new data based on already classified training
examples. In this work, we show that the support vector machine, an optimized binary classifier, can be
implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number
of training examples. In cases where classical sampling algorithms require polynomial time, an exponential
speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation
technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.

DOI: 10.1103/PhysRevLett.113.130503 PACS numbers: 03.67.Ac, 07.05.Mh
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® A method to find an optimal hyper-plain to classify the given data

Decision Rule:

Woxp +b> 41 =t forx)  gop
w-x_+b< -1 (y=-1 for x-)

= . (W-xp+b)—1>0

Margin: l
W
Optimization Problem:
maz(|w|™1) or min(|w|)

For the constraints : Y (W... X +b) —1 =0

1
- [ — 5yw|2 — ) Ak (W-xp+b)—1  Solving Eq. 9L = 0
k
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® [.incar SVM

when there 1s no solution hyper-plane

1
L = §‘w|2 — Z)\kyk (W-Xk -|-b) —1 ‘|‘77k£k

k
1
:;)\k_§zk)\j[(jk)\k for ;Akzo and YrAx = 0
J

Kernel matrix: K, = k(x;, %) = X, - Xg

Example: & R2_. R3
e Nonlinear SVM (21, %2) = (21,22, 23) := (21, \/(2)2122, 23)
« A A %3
Kernel Method: x — ®(x) R < X
/’—’—\\\x\ p '\\X X
X xs0 0 ™ X N o x X
Ky, = k(¢(x;), 6(xx)) = d(x;) - $(xx) O A A VI
' ’:\\\\‘_,/3/)( x \\\ _J»Jljf\\j( - ;
X X N\ ’
.
X AN
X % X S\
p2
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[Phys. Rev. Lett. 113,130503 (2014)]
® Quantum Support Vector Machine (QSVM)

- Quantize the training data and labels :
x€X — |z) €H and y € {|+1),|-1)}
- The problem:

{y) i x e Ry =1} m {(x),1y) : [x) € H", |y) = 1) |
- Adopting the HHL algorithm for solving linear equation

Classical: O(sx N log(1/¢)) >»> Quantum: O(s?x? log(N)/¢€)

e Nonlinear QSVM

- €x) Polynomial kernel:
k(xj,xk) = 6(x;) - p(xi) mb (3(x;)|0(xk)) = (x;]xi)"
where |§(x;)) = [x;) @ -+ ® |x;)
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Problem QML applications

4 Quantum SVM*
Classical: O(sx N log(1/¢)) [Phys. Rev-Fett-113;130503 (2014)]

Quantum Regression

Quantum: 0(S2K2 lOg(N)/E) [arXiv:1512.03929 (2015)]

Kernel Least Squares
[Phys. Rev. A 94, 022342 (2016)]

HHL for linear
system

Recommendation System
Classical: O(k2 N log(1/0)/¢) [arXiv:1603.08675 (2016)]

SVE Quantum Linear Regression

Quantum: O(log(N)/e3) [Phys. Rev. A 94, 022342 (2016)]
Principal Component Analysis

[Nature Physics 10, 631 (2014)]
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Read the fine print

Scott Aaronson

Random Access Memory (RAM)

Classical Data <—

Write/Read out

Register
D5
Address #1 #2 #3

New quantum algorithms promise an exponential speed-up for machine learning, clustering and finding
patterns in big data. But to achieve a real speed-up, we need to delve into the details.

#4  #5

Quantum Random Access Memory (QRAM)

Quantum or classical

Data Write/Read out
N ‘XN> . -
T In superposition

/ Quantum
Register ... | Dy) | DI Ds)] -+
m Address [#1> |#2> |#3> |#4> |#5>

S Uil =" S WililD e
J J

Box 1| HHL checklist of caveats.

(1) The vector b = (b, ..., b,) somehow )
needs to be loaded quickly into the
quantum computer’s memory, so that we

can prepare a quantum state [6) = ¥'" b [i),

of log, n quantum bits, whose n amplitudes

encode the entries of b. Here, I assume for

simplicity that b is a unit vector. At least in
theory, this can be accomplished using a

‘quantum RAM’ — a memory that stores the

classical values b, and that allows them all to

“be read at once, in a quantum superposition.

Even then, however, it’s essential either that

b is relatively uniform, without a few values

of b, that are vastly larger than the others, or
else that the quantum RAM contains (say)

LIt | L Y B 1 SR - S GRS W 1| NP

constant c, then the exponential speed-up of
HHL vanishes in the very first step.

(2) The quantum computer also needs
to be able to apply unitary transformations
of the form e, for various values of .

If the matrix A is sparse — it contains at
most s nonzero entries per row, for some

s < n — and if there is a quantum RAM
that conveniently stores, for each i, the
locations and values of the nonzero entries
in row i — then it is known that one can
apply e in an amount of time that grows
nearly linearly with s (ref. 4). There are

other special classes of matrix A for which
NI e 1| el O b
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Fast Quantum Random Access Memory (QRAM): An (1maginary) quantum gadget

that 1s capable to fast encode/decode large data into quantum superposition.
- e.g., proposed a ‘bucket-brigade’ architecture, it can encode N d-dim. classical
vectors 1nto /og(Nd) qubits in O(log(Nd)) time.

[V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. A 78, 052310 (2008)]
Controversial Issues: [V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 100, 160501 (2008)]

® First issue is whether all the components require to be error-corrected.
® The QRAM should have the data distributed in a relatively uniform manner.

® As a last comment, the possibility of fast loading the data (particularly when the
data-size 1s considerably large) 1s now controversial due to the communication

speed limited by light-speed. This would requires very big memory structures.
[S. Arunachalam et al, New J. Phys. 17, 123010 (2015)]
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Error correction: exponential resources, again!
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On the robustness of bucket brigade quantum RAM
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Keywords: quantum memories, quantum error correction, quantum algorithms

Abstract

We study the robustness of the bucket brigade quantum random access memory model introduced by
Giovannetti et al (2008 Phys. Rev. Lett.100 160501). Due to a result of Regev and Schiff (ICALP ’08
733), we show that for a class of error models the error rate per gate in the bucket brigade quantum
memory has to be of order o (2"‘/5‘) (where N = 2" is the size of the memory) whenever the memory

1s used as an oracle for the quantum searching problem. We conjecture that this is the case for any
realistic error model that will be encountered in practice, and that for algorithms with super-
polynomially many oracle queries the error rate must be super-polynomially small, which further
motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion
Harrow et al (2009 Phys. Rev. Lett.103 150502) or quantum machinggarningﬁébentrost etal (2014

Phys. Rev. Lett.113 130503) that only require a polynomial number of queries, the error rate only

needs to be polynomially small and quantum error correction may not be required. We introduce a

circuit model for the quantum bucket brigade architecture and argue that quantum error correction
for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small
number of ‘active’ gates, since all components have to be actively error corrected.
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Figure 9. Circuit for bucket brigade qRAM. Nodes to the left of the memory cell are routing nodes. The dashed squares represents the
memorylocations. The first layer of nodes immediately to the right of the memory are the coupling nodes. Finally, the nodes on the
right are the read out nodes. A possible input is e.g. |agay a,) = |010), for which the circuit reads the memorylocation #1,0. The path
leading to the location 1, is represented in blue color, and the active routing and readout nodes are highlighted. One could more
closely mimic the physical flow of information in the bucket brigade qRAM by adding an additional qubit at each node in the binary
tree we see in the diagram. Then, for k € {0, ..., n — 1}, weadd an initial controlled-NOT (CNOT) gate to copy g to the root node,
followed by a series of O(2%) controlled-SWAPs that will bring the value of 4 to the unique node in level k defined by the bits

ag, @y, ..., 1. While this adds exponentially many gates, it does not change the overall gate complexity, and these additional gates
onlyadd O(k) to the depth of the circuit. This also illustrates that the exponential depth implicit in the circuit we describe in the
diagram can easily be reduced to polynomial depth by further mimicking the ideas presented in the qRAM proposal. We leave the
circuit diagram in this simpler form, since it does not affect our arguments in sections 3 and 5.

« QRAM query implementation
— circuit-model description

* Error rate per gate: O(e) is required!
— Computational resources: exponential, again!
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Method Speedup Amplitude  HHL Adiabatid qRAM |
amplification g
Bayesian OWN)  Yes Yes No E No
inference!06:107 =
Online OWN)  Yes No No | Optional }
perceptron!®® { i
Least-squares O(logN)* Yes Yes No . Yes
fitting® :
Classical OWN)  Yes/No Optional/ No/Yes § Optional ]
Boltzmann No | ‘.
machine?° .
Quantum O(logN)* Optional/No No No/Yes & No
Boltzmann
machine2261 '
Quantum O(logN)* No Yes No | Optional |
PCA!l i t
Quantum O(logN)* No Yes No { Yes
support vector |
machine!® \{
Quantum OGWN)  Yes No No i No

reinforcement
learning°
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- QRAM= 7Pdst=e SR FE/MAEH e K|t Skt ZH2 S
[E. Tang, Phys. Rev. Lett. 127, 060503 (2021)]

-T

PHYSICAL REVIEW LETTERS 127, 060503 (2021)

Quantum Principal Component Analysis Only Achieves an Exponential Speedup
Because of Its State Preparation Assumptions

Ewin Tang®"
University of Washington, Seattle, Washington 98195, USA

® (Received 21 November 2019; revised 3 June 2021; accepted 1 July 2021; published 4 August 2021)

“From this work, we conclude that the exponential speedups of the quantum algorithms that we consider arise
from strong input assumptions rather than from the “quantumness” of the algorithms since the speedups vanish
when classical algorithms are given analogous assumptions.”

- QRAMS 7185t= FAFEFE/OA2 9

—

1>

Cekd 2 INMAFEZ gL(dequantizing)?t 7ts
[A. Bakshi, E. Tang, arXiv:2303.01492v2 (2023)]

3K

An Improved Classical Singular Value Transformation
for Quantum Machine Learning

Ainesh Bakshi Ewin Tang
ainesh@mit.edu ewint@cs.washington.edu
MIT University of Washington

March 7, 2023
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Noisy Intermediate-Scale Quantum (NISQ)
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2018 90 0.0 0,096 090900
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NISQ will not change the world
g xo oxo oxo oxo oxo oxo

by itself. Realistically, the goal \"’,‘ '  7"_ 9 cusi

‘ Adjustable coupler

for near-term quantum
platforms should be to pave the
way for bigger payoffs using
future devices.

Google’s Sycamore Processor

of/H|M™: AKX 2 - S (Task-Oriented)
o UXIALC| 7|5 z|HSI - SHH|O|E/ZAEE XS] RIS} EM/EE (e.g., HET ZX)
e *NISQ AlCH =2f:
- QFE 51&sta1(Noisy)
- S 20X (Intermediate-Scale)0f| A
- &9l st dele| XK Quantum) 7[=2] =+

i
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Google’s quantum supremacy proof

The leading quantum supremacy proposals: R TG PR T N
P LW A W

- Boson Sampling IR I PP
- Fourier Sampling X

- Instantaneous Quantum Polynomial-time (IQP) W& AT NN
Random Circuit Sampling (RCS) w

9.0 00000069000

x’ OxQ OxO OxO OxQ Ox

X 4
X X X X X X
x Qubit ’ Adjustable coupler

Worst-case Average-case Anti- Experimentally
hardness hardness Concentration Feasible

Boson Sampling

Fourier Sampling

IQP

P Google’s Sycamore Processor
[Nature Physics 15, 159 (2019)]  [Nature Physics 14, 595 (2018)] [Nature 574, 505 (2019)]

* *
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Theoretical proof Hardware demonstration

Interplay between software and NISQ hardware
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Characterizing quantum supremacy in near-term

devices

Sergio Boixo ©®™, Sergei V. Isakov? Vadim N. Smelyanskiy’, Ryan Babbush', Nan Ding', Zhang Jiang3*,

Michael J. Bremner ©3, John M. Martinis®’ and Hartmut Ne

A critical question for quantum computing in the near future is whether q
a well-defined computational task beyond the capabilities of supercompt
quantum supremacy requires a reliable evaluation of the resources requir
propose the task of sampling from the output distribution of random quan
acy. We extend previous results in computational complexity to argue th
a classical computer. We introduce cross-entropy benchmarking to obt
dynamics. This can be estimated and extrapolated to give a success metri
the computational cost of relevant classical algorithms and conclude that
a two-dimensional lattice of 7 X 7 qubits and around 40 clock cycles. This
gates (0.05% for one-qubit gates), and it would demonstrate the basic bu

nature ARTICLES
thSlCS https://doi.org/10.1038/541567-018-0318-2

On the complexity and verification of quantum
random circuit sampling

AdamBouland’, Bill Fefferman ©'2*, Chinmay Nirkhe ©' and Umesh Vazirani’

A critical milestone on the path to useful quantum computers is the demonstration of a quantum computation that is pro-
hibitively hard for classical computers—a task referred to as quantum supremacy. A leading near-term candidate is sampling
from the probability distributions of randomly chosen quantum circuits, which we call random circuit sampling (RCS). RCS was
defined with experimental realizations in mind, leaving its computational hardness unproven. Here we give strong complexity-
theoretic evidence of classical hardness of RCS, placing it on par with the best theoretical proposals for supremacy. Specifically,
we show that RCS satisfies an average-case hardness condition, which is critical to establishing computational hardness in the
presence of experimental noise. In addition, it follows from known results that RCS also satisfies an anti-concentration prop-
erty, namely that errors in estimating output probabilities are small with respect to the probabilities themselves. This makes
RCS the first proposal for quantum supremacy with both of these properties. Finally, we also give a natural condition under
which an existing statistical measure, cross-entropy, verifies RCS, as well as describe a new verification measure that in some
formal sense maximizes the information gained from experimental samples.
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Alexander Korotkov'?, Fedor Kostritsa', David Landhuis', Mike Lindmark’, Erik Lucero’,
Dmitry Lyakh®, Salvatore Mandra®, Jarrod R. McClean', Matthew McEwen®,

Anthony Megrant', Xiao Mi', Kristel Michielsen™?, Masoud Mohseni', Josh Mutus',

Ofer Naaman', Matthew Neeley', Charles Neill', Murphy Yuezhen Niu', Eric Ostby’,

Andre Petukhov', John C. Platt', Chris Quintana', Eleanor G. Rieffel®, Pedram Roushan’,
Nicholas C. Rubin', Daniel Sank’, Kevin J. Satzinger', Vadim Smelyanskiy', Kevin J. Sung'®,
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The promise of quantum computersis that certain computational tasks mightbe
executed exponentially faster on a quantum processor than on a classical processor'. A
fundamental challenge is to build ahigh-fidelity processor capable of running quantum
algorithms in an exponentially large computational space. Here we report the use of a
processorwith programmable superconducting qubits®” to create quantum states on
53 qubits, corresponding to acomputational state-space ofdimension 2°* (about 10*).
Measurements fromrepeated experiments sample the resulting probability
distribution, which we verify using classical simulations. Our Sycamore processor takes
about 200 seconds to sample one instance of aquantum circuit amillion times—our
benchmarks currently indicate that the equivalent task for a state-of-the-art classical
supercomputer would take approximately 10,000 years. This dramaticincreasein
speed compared to all known classical algorithms is an experimental realization of
quantum supremacy® * for this specific computational task, heralding a much-
anticipated computing paradigm.

Intheearly1980s, Richard Feynman proposedthataquantumcomputer
would be an effective tool with which to solve problems in physics
and chemistry, given thatit is exponentially costly to simulate large
quantumsystemswith classical computers'. Realizing Feynman’svision
poses substantial experimental and theoretical challenges. First, can
aquantum system be engineered to performa computationin alarge
enough computational (Hilbert) space and with a low enough error
rate to provide aquantum speedup? Second, can we formulate a prob-
lem thatis hard for a classical computer but easy for a quantum com-
puter? By computing such abenchmark task on our superconducting
qubit processor, we tackle both questions. Our experiment achieves
quantum supremacy, a milestone on the path to full-scale quantum
computing®™,

Inreaching this milestone, we show thatquantum speedupisachiev-
ableinareal-world systemand is not precluded by any hidden physical
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies®. The benchni&fR taSRWe GenTon-

AN ATTHITeUa e PPITeaedh in generating certifiable random
numbers (S. Aaronson, manuscriptin preparation); other initial uses
for this new computational capability may include optimization'®?,
machine learning®?', materials science and chemistry?2*. However,
realizing the full promise of quantum computing (using Shor’salgorithm
for factoring, for example) still requires technical leaps to engineer
fault-tolerantlogical qubits® .

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We

S
X

X 4
X 4

 {

 {

9
 {

X
g

@,
0,
@,

N4
@,
N4

@,
X 4
@,

0,
L W 4

4

Google’s Sycamore Processor






NISQ AlCH2]| XD 'S

AA

ical- * Loss Function
Classical-data . Kernel Method
VS

- Parametric Quantum Circuits = QNN
Quantum-data e |
(*Variational Quantum Algorithms)

s —
+N\S&

Noisy quantum

K device %o "j

o, K

- Control Parameter Space
* Quantum Training?

|

anses|p | [ eunsesiy

[ ezijerau) | | ezijen
T
fany
\J/




85 NISQ & LXIDIAIZ: SR} EIOJE] AA/EIE

B Quantum Data Embedding

user-recognizable (or classical) data = quantum state

xj = [P(x;)) or U(x;)]00...0) = [¢(x;))

OS2 I E H|0|E{= FH|E A|AH
_ HE — n FHIE (Y fo-logol_;ga

°
- FHELS(E, SH{E 27+2) ofH3t 22|H TPHM PHEs HE(QREE ZEhE Q1A TS

A

- &

|o ”*

-
=
pal _I_.H_

O™ ¢ T30 :
&= Hl0|& = A00A [Phys. Rev. Lett. 122,040504 (2019)] [arXiv:2001.03622 (2020)]

1. S0 &(F, 28X22) 18 HO|H S A JEjof 12T = ASAUTL?
Y Z2EZ9| SH(AA)HENZIe| LiH0| AFH 2= A[=2]|0]H517] 0242 HEHO{0F & => Kernel Method 2FAI0|=

12 Z2EZ9| S=H(YXA)JE7L LHE S L 8 Jhseh SH0f| A0{0F & = Classification &XH0|5

2. Quantum Dataset? (MNIST, dogs vs cats, Iris, etc)
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B X G[O[E M|

user-recognizable (or classical) data = quantum state

x; = [¥(x5)) or U(x;)]00...0) = [¢)(x;))

Encoding pattern Encoding Req. qubits
)
aomy BASIS ENcoD- oz &~ Y, bi2" 1= k-+m per
ING b, - b_k) data-point
—
x¢>|>/ ANGLE x; — cos(x;) |0) + 1 per data-
ENCODING sin(xz;)|1) point
SR
m%ﬁ QUAM ENCOD- X ZZ 0 \/_ ;) [
ING
() [0
H QRAM X — Zn 0 \/_ i) |z;)  [logn] +1
ENCODING
~ N
.4 | AMPLITUDE X e S by |d) logn]
Il ENCODING

IET Quantum Communications 2, 141 (2021)
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B Variational Quantum Algorithms (VQAS)
- YL+ 1™ SI0|EE|E 22|
. OFX}OlZAlAD} 7| EEE

Quantum Computer = ‘

Training set

Cost function e >ﬁc(9 PI:}
Ansatz SAST R Cr
Input g§—§~§h

_— Output
Zk Ji(6. p)

Classical Computer

C(0) =

Quantum state
Probability distribution
Bitstring
Gate sequence

Optimizer
arg min C(@)
&

Updated parameters

Quantum operator

Hybrid Loop

B Quantum Neural Network (QNN)

- QML BEo| 71 7|2 H0| T #AEol 94 o Dj7iEi4stE Ot 2(PQCS) ©

e.g.)
MEZLIE SejA Q| AXMEES EHE Z7t9| 11 Jis6t YQ O 2 niE = Classification (Supervised learning)

MAXCUT 24| 0i& = Clustering (Unsupervised learning)
[Phys. Rev. Lett. 122, 040504 (2019)] [arXiv:1712.05771 (2017)]
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B Quantum Neural Network (QNN)

\ Dissipative model of QNN
- MM D|EXQE HERIS Litefel RLIEIZ| At
- 2f|0| Z0| &7t — FH|E += &7t

* 84k (dissipative): 210/0f LS| RHIES0| HEE T3 #lojoje| (HZL)
FHIESZ FMYE $ B2{FICHs 21 o/

11

]
I

|
[Nat. Commun. 11, 808 (2020)]

/

O

O

o JOR |
K No. of qubts: increases
/

J

CNOT gate

lterative model of QNN
-EZHOl HEQa R

-20|0f 20| £7} —» FH|E 4

— 4

:

B B E

— N -
N\

[Quant. Inf. Proc. 13,267 (2014)] [arXiv:1802.06002 (2018)]

-
\_

~
J

-1 QCNN
11 - Z} 2|0|0{Of| M FHIESO0| EXE|0] G|O|E{Q XIS =2l
e - pE S450| B

24l0]0f 20| E7} —» FH|E 2 1
\_ J [Nat. Phys. 15, 1273 (2019)]

[Cerezo et al., Nature Computational Science (2022)]
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B Kernel Method

Ex) ¢((z1,25)) = (23, /22,29, 73)

P . &(X) rP k(z,y) = z2y2 + 221259,y + 2292 = (z,y)?
* . V. s o4
* ’ AN
~ " A &/ x A 4 ‘) Kernel: k(wza wj) — <¢(m2)7 ¢(wj)>
—> - —
y(z) = sgn((w, z) +b) y(z) = sgn((w, #(z)) + b)

l w =), 0;4(;)
= sgn (Za z) ¢ )

<https://pennylane.ai/gml/demos/tutorial_kernels_module>

B Quantum Kernel Method

- QML BERA 7|E 72 weiel IxiHFO| HIoHE

>

- 2} 921 GlO[E{Z TAKR HE| BZHQ (YA 7{) SIME BZIOR ThE = T 7Y SHE BN MY LS St

—

4 )
[Y()) = U(z)|0)

k(z;, z;) = (p(;), d(;)) > k(@) = [(Y(@) [(=;)]’

- x QR AHEIS ALg310] Y HHE A )
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B Example: Projected Quantum Kernel Method [Nat. Comm. 12,2631 (2021)]

Classical ML

A
o2 N

Embed into

T

quantum

@4»-'*

g measures the geometric difference,
e.g., “*=%» and <% has small g,
but «e=» and <= has larger g.
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B Training (or optimization)

A=t MAl2{d (either classical or quantum)2| SE= FO{Zl U2 sl dsts RHS E36H= A
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B Challenges: quantum landscape or Barren plateaus problem

o

- QML 20| DS ERSHs 2 o> &M 84 LS A|ASI5tn D2 8E (YEHoR HIEE

(Local minima in quantum landscapes)

- Loss function O| & local minimum & ME0l| M = 7HH AXO[ PQCs 2= YE M
(Barren plateaus from ignorance or insufficient inductive bias)

- PQCs (&2 Ansatz) 9| & XH|7t F= BAZZH0|e] Hebd WZ0]| 7| = =
(Barren plateaus from global observables)

- EMMZZE MAo|(F, R FHIESQ|) S-S0l 7|8t Loss function 2 715101 BP &Y

(Barren plateaus from entanglement)

- 4R B2 2f510] M= QNN %A BP X2

S2| 7|thatE Althst= AS ERE E
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