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Precise determination of magnetic moment of a fluxoid quantum in a superconducting microring
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Using dynamic cantilever magnetometry and experimentally determining the cantilever’s vibrational mode
shape, we precisely measured the magnetic moment of a lithographically defined micron-sized superconducting
Nb ring, a key element for the previously proposed subpiconewton force standard. The magnetic moments due
to individual magnetic fluxoids and a diamagnetic response were independently determined at T = 4.3 K, with
a subfemtoampere-square-meter resolution. The results show good agreement with the theoretical estimation
yielded by the Brandt and Clem model within the spring constant determination accuracy.
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I. INTRODUCTION

The superconducting ring has attracted considerable at-
tention in the context of both fundamental superconductor
research and application, because of its geometry-related
effects, such as fluxoid quantization and quantum interfer-
ence [1–5]. The magnetic flux, or more precisely, magnetic
fluxoid, through an ordinary superconducting ring is quantized
in units of h/2e, where h is Planck’s constant and e is
the electron charge [1]. In superconducting devices and
applications, a superconducting ring with or without Josephson
junctions has acted as a key element [4–8]. Understanding its
magnetic properties is valuable for the design and analysis
of, for example, a superconducting quantum interference
device (SQUID) [4,5], a gravity gradiometry [6], an ultracold
atom trap [7], and a subpiconewton force standard [8]. In
particular, the concept of quantum-based force realization [8],
which some authors have suggested as a candidate for the
subpiconewton force standard previously, utilizes magnetic
fluxoid quanta in a microscale superconducting ring. The force
can be increased or decreased by a force step, estimated to be
on the subpiconewton level, by controlling the fluxoid number.
The magnetic moment due to a single fluxoid quantum is the
minimum unit for generating a magnetic force in a well-defined
magnetic field gradient.

Determining the unit magnetic moment with not only high
sensitivity, but also high precision is key towards establishing
the suggested method as the first standard for an extremely
small force, because the unit magnetic moment defines the
magnitude and precision of the unit force to be realized.
Besides the small-force-standard application [8], the unit
magnetic moment based on fluxoid quanta can be utilized
as a new reference for a small magnetic moment at the
femtoampere-square-meter level.

Several theoretical methods [9–11] have been developed to
calculate the magnetic moments as well as the magnetic-field
and current-density profiles for various values of the fluxoid
number and external magnetic field in superconducting thin-
film rings and disks. Initially, cases of negligibly small penetra-
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tion depth λ were addressed [9,10], and Brandt and Clem [11]
generalized the previous studies to finite λ, providing a calcula-
tion method to give precise numerical solutions. Although their
theory has been adopted for superconducting ring design or to
interpret its properties over the past decade [4,7,8], very few
experimental studies providing high-precision measurements
of the ring magnetic moment have been reported [2].

Experimentally, the measurement sensitivity for microsam-
ple magnetic moments is approaching its limit, as a result
of the notable recent improvement in the force sensitivity in
dynamic cantilever magnetometry [12–14] down to attonewton
level [2,15]. In a study of persistent currents in normal metal
rings [15], for example, dynamic cantilever magnetometry,
which measures the resonance frequency shift of a cantilever in
a magnetic field, exhibited a resolution that was approximately
250-fold superior to SQUID magnetometers [16,17] for detec-
tion of a ring’s current. This result finally resolved previous
order-of-magnitude discrepancies between experimental and
theoretical current values. Such high sensitivity is obtained by
applying high external fields. As regards dynamic cantilever
magnetometry analysis of the low-field magnetic properties
of a sample, however, a significant sensitivity reduction is
inevitable. Very recently, this limitation was overcome using a
phase-locked approach suggested by Jang et al. [2,18]. These
researchers succeeded in detecting small half-fluxoid-quantum
signals in an Sr2RO4 superconductor at low static fields by
applying an additional oscillating field, which was phase
locked to the cantilever position, for signal enhancement.
The above studies have highlighted the potential sensitivity
of dynamic cantilever magnetometry for magnetic-moment
detection at both high and low magnetic fields.

In this work, we adopt dynamic cantilever magnetometry
for precision measurement of the small magnetic moments of
fluxoids in a superconducting microring. However, in order
to retain a simple measurement geometry and to reduce
the uncertainty factors, we do not employ a phase-locked
approach, which requires precise control of the modulation
field [18]. Instead, we enhance the resonance frequency shift
by increasing the external field after trapping fluxoids in
the ring. For a micron-sized Nb ring, we determine the
magnetic moment of a single fluxoid, along with the Meissner
susceptibility of the ring, and compare the results with
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theoretical estimations from the Brandt and Clem method [11].
For accurate comparison, we prepare a ring sample with a
well-defined geometry on an ultrasoft cantilever and utilize
a fiber-optic interferometer with subnanometer resolution,
with the fiber on a piezo positioner; this setup enables
precision vibration measurement at multiple target positions
on the cantilever. The latter is necessary for the experimental
determination of the cantilever vibration mode characteristics,
such as its effective length, which is otherwise theoretically
estimated.

II. EXPERIMENT

For the sample-on-cantilever configuration, we batch-
fabricate cantilevers with an Nb ring sample. After the
cantilever patterns are defined in a low-pressure chemical
vapor deposited (LPCVD) silicon-nitride layer on a silicon
wafer, a 100-nm-thick Nb ring with nominal inner and outer
radii of a = 2 and b = 4 μm, respectively, is fabricated via
lift-off patterning with photolithography. The ring is aligned
with the mounting paddle center of each cantilever, as can
be seen in Fig. 1(b), (right). The cantilever fabrication is then
completed, taking care to protect the attached, high-quality Nb
film (see Ref. [19] for more details). The released cantilevers
have 367 μm length, 4 μm width, and 200 nm thickness, with
a mounting paddle at one end. The lateral dimensions and
surface quality of the Nb ring are measured and examined
using a Tescan Mira scanning electron microscope (SEM).

The sample-on-cantilever device is placed on a piezoactua-
tor in high vacuum, surrounded by a superconducting solenoid
for application of a uniform magnetic field. Its low-temperature
vibration amplitude and resonance frequency are measured
with a low-noise fiber-optic interferometer using a 1550-nm
tunable laser (Agilent 81660B-200) with a high wavelength
stability of 1 pm for 24 h and a coherence control feature,
which has been demonstrated to have subpicometer resolution
at an optical power of 10 μW and room temperature [20].
For our study, a very low laser power of 13 nW at the fiber
end is adopted to avoid optical effects such as photothermal
actuation. The fiber, attached to a three-axis piezo positioner,
is located above a target position on the cantilever. The optical
interference from the optical-fiber cantilever cavity is detected
at a photodiode coupled to a low-noise transimpedance
amplifier (Femtoamp DLPCA-200). The cantilever frequency

is primarily measured at a temperature of 4.3 K. In the
magnetic-field-cooling (FC) process, the cantilever temper-
ature is elevated momentarily using a light-emitting diode to
above the superconducting transition temperature, Tc, of the
Nb ring and then recovered. The entire system is mounted on
a double-stage vibration-isolation platform including a 21-ton
mass block.

Measurement fundamentals

Figure 1(a) shows the key features of our dynamic cantilever
magnetometry setup. In an external magnetic field Hext, the
magnetic moment μ of the sample exerts a torque τ = μ ×
Hext on the cantilever. For a two-dimensional sample, we can
assume that μ has an out-of-plane component m only. Then,
the magnitude of the torque is given as

τ = mHext sin θ (1)

and, with Hext ‖ z, the relative angle θ of μ and Hext is
identical to the cantilever surface angle at the sample position
with respect to the x direction.

The shift of the resonance frequency f due to the magnetic
torque [14,18] is expressed as

�f = f0

2k0L
2
eff

mHext = f0

2k0L
2
eff

(χHext + nmFQ)Hext, (2)

where k0 and f0 are the spring constant and intrinsic resonance
frequency of the cantilever, respectively, and Leff is the
cantilever effective length. In the case of our superconducting
ring, m has two contributions, from the diamagnetic response
due to the Meissner current and from the n magnetic fluxoids
in the ring hole. Here, χ is the Meissner susceptibility, and
each fluxoid quantum has the same magnetic moment, mFQ.

In our work, we adopt a cantilever, shown in Fig. 1(b), with
f0 = 1221.9 Hz and k0 = 4.5 × 10−5 N/m in the fundamental
vibrational mode. For Leff , the theoretical value of L/1.38 for
a rectangular Euler-Bernoulli beam of length L is frequently
used [21]. However, the Leff of our device was experimentally
determined to be L/1.48 or 248 μm, by measuring the shape of
the first vibration mode with a fiber on the piezo positioner. The
minimum detectable frequency shift and magnetic moment,
�fmin and mmin, respectively, of our cantilever were estimated
to be 1.1 mHz and 1.2 fAm2, respectively, for a 1-Hz detection
bandwidth with Hext = 40 Oe. The characterization of the

FIG. 1. (a) Schematic of dynamic cantilever magnetometry. (b) Optical microscope (right) and fiber scan (left) images of a free end part of
a silicon nitride cantilever with a paddle (top) and a reflector (middle). (c) Calibrated SEM image of an Nb ring on a paddle (see Ref. [19]).
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FIG. 2. Temperature dependence of the resonance frequency f of
the Nb-ring-mounted cantilever in a magnetic field of 10 Oe, applied
along the z direction after zero-field cooling. The arrow indicates the
diamagnetic onset temperature of superconductivity. The dashed line
is a linear fit to the data above T = 8.4 K.

cantilever mechanical properties is described in more detail
in Appendix A.

III. RESULTS AND DISCUSSION

To observe the superconducting transition, the f of the
cantilever was monitored with increasing temperature in a
magnetic field of 10 Oe, applied perpendicularly to the
mounted Nb ring after zero-field cooling to T = 4.5 K.
The f temperature dependence exhibits a typical feature
of a diamagnetic superconducting transition, with an onset
temperature of Tc = 8.3 K, with the exception that a slope is
apparent across the entire displayed temperature range (Fig. 2).
This feature indicates that the superconducting ring is in
the Meissner state at temperatures lower than Tc. The Tc value
agrees well with the superconducting transition temperature
obtained for a resistive measurement of a strip Nb sample
from the same batch (data not shown here).

The f0 in the absence of τ is represented by a dashed line
in Fig. 2, having a slope of −5.5 mHz/K; this slope is obtained
from a fit of the data in the normal state. The possible origins
of the negative slope are the temperature dependence of the

cantilever dimensions, cantilever surface stress, and so on;
further discussion of this topic is presented in Appendix B.

In the Meissner state of the Nb ring, the f response to
sweeping Hext follows Eq. (2), resulting in the parabolic curve
shown in Fig. 3(a). The parabolic dependence is valid in the
|Hext| � ∼60 Oe range, whereas it breaks down beyond this
range as a result of magnetic vortex penetration into the annular
area, i.e., a mixed state of Nb. Such a small critical field value
is attributed to the high demagnetization effect due to the
quasi-two-dimensional sample geometry [22]. As we increase
the FC magnetic field, HFC, used in cooling the Nb ring from
above Tc, more magnetic fluxoids are contained within the ring
hole. Accordingly, the curve is shifted to higher f and Hext.

Parabolic fits to the data shown in Fig. 3(a) can provide
χ and nmFQ; however, we obtained the nmFQ values from
separate measurements, which proved to be more accurate
and efficient. We deduced χHext by dividing the HFC = 0
data by Hext, which exhibits a linear dependence, as depicted
in Fig. 3(b). Note that data at low magnetic fields were not
employed, because of their low accuracy. The linear fit yields
χ = −102 ± 10 pAm2/T.

To observe individual magnetic fluxoids at T = 4.3 K, we
varied HFC from 10 to 13 Oe with a smaller step of 0.1 Oe. To
enhance the �f signal for nmFQ for low HFC, we increased
the magnetic field from HFC to a larger and fixed value, i.e.,
Hext = 40 Oe, before measuring f . This procedure is depicted
in the inset of Fig. 4. In this manner, we could obtain nmFQ for
small n, because nmFQ is independent of the magnetic field,
but its contribution to �f is proportional to Hext, as shown
in Eq. (2). Note that the contributions of χH for various HFC

are identical and can be universally eliminated because Hext

is fixed. Figure 4 clearly shows that f has a stepwise feature
with varying HFC. The single step width, �H , was estimated
to be 0.65 ± 0.03 Oe from the total width of the four steps
fully shown in Fig. 4. Taking the errors in HFC and �H into
consideration, the n corresponding to HFC = 10 Oe may range
from 14 to 16.

For FC with a HFC corresponding to the center of each step
plateau, no net current circulates the ring, even with n fluxoids
and the response to the external field. The effective area of the
zero-current contour is given by Aeff = �0/Ha [11], where Ha

is the field increment necessary to induce a transition from the
n to n + 1 state. Because Ha = �H , we can estimate Aeff to
be 32 μm2, which indicates flux focusing where Aeff is larger

FIG. 3. (a) Resonance frequency f of the cantilever versus the external magnetic field, Hext, for various values of HFC, the magnetic field
used in field cooling. (b) Diamagnetic response for increasing Hext, calculated from the f shift for HFC = 0 Oe. The dashed line is a linear fit.
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FIG. 4. Resonance frequency shift (left axis) and magnetic
moment (right axis) vs HFC. Each data point was obtained from five
repetitions of a temperature-field cycle and a single measurement
with an averaging time of 40 s, described in the inset: (i) warm-up
and field cooling at HFC; (ii) increasing field up to Hext; (iii) f -shift
measurement; and (iv) decreasing field to the next value, H ∗

FC. The
error bars indicate standard deviations, and the dashed lines are guides
for the eye.

than the actual hole area, πa2 = 13 μm2. This estimate agrees
roughly with the Aeff = 25 μm2 result calculated using the
Brandt and Clem theoretical prediction [11].

Within �H, f is virtually constant to within 1 mHz for
changing HFC, which implies that the number of fluxoids is
fixed and their contribution to m is constant. As HFC is raised
beyond �H , an additional fluxoid is introduced to the ring
hole, resulting in a discrete shift of f or mFQ as shown in
Fig. 4. As the mFQ of each fluxoid are intrinsically expected to
be equivalent, this value can be determined from the average

of the five steps of m or f , which are 5.8 ± 0.6 fAm2 or
5.2 ± 0.2 mHz, respectively. Note that the uncertainty in the
cantilever spring constant makes a dominant contribution to
the estimated error in mFQ. Near the step edges, f is observed
at both fluxoid quantum numbers, n and n + 1, because the
kinetic energies of the right- and left-circulating supercurrent
states, respectively, are degenerate for Nb-ring cooling at
corresponding magnetic fields.

Figure 5 depicts the theoretical values of the magnetic
moments due to a single fluxoid and a diamagnetic response,
which were estimated numerically for various ring radii
utilizing the Brandt and Clem model [8,11]. As shown in
the figure, the magnitudes of mFQ and χ decrease slowly
with increasing a, but increase with higher dependence with
increasing b. The experimentally obtained values are also
plotted at the dimensions of our Nb ring on the cantilever; the
dimensions are measured from the calibrated SEM, yielding
a and b of 2.0 ± 0.1 μm and 3.8 ± 0.1 μm, respectively. For
	 = 110 nm at 4 K [23], where 	 = λ2/d is the thin-film
penetration depth and d is the film thickness, mFQ and χ are
calculated to be 5.98 ± 0.10 fAm2 and −91.2 ± 0.3 pAm2/T
(5.98 ± 0.24 fAm2 and −91.2 ± 7.8 pAm2/T), respectively, if
the uncertainty of a (b) is considered. These values are in quite
good agreement with the experimental results, considering the
accuracy of the spring constant determination.

The effect of the 	 uncertainty is negligible, as mFQ

and χ are estimated to vary by only 1.4% and −1.7%,
respectively, for a 	 difference of 10%. However, it is
notable that the assumption of negligible 	 in the theoretical
estimation yields mFQ = 7.17 fAm2 and χ = −116 pAm2/T,
which are considerable overestimations in comparison with the
experimental values. This finding implies that consideration
of the finite penetration depth, as in the Brandt and Clem
model, is crucial for appropriate description of micron-sized

FIG. 5. Theoretical estimates of mFQ and χ for 	 = 0 and 110 nm for a superconducting ring with varying inner radius a [(a) and (b)] and
outer radius b [(c) and (d)]. The circles represent the experimental values with error bars indicating 10% accuracy.
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superconducting rings, and that it remains valid when the ring
radii uncertainty is considered, as can be seen in Fig. 5.

IV. CONCLUSIONS

Using high-resolution cantilever magnetometry capable of
fiber scanning, we precisely measured the magnetic moment
of a well-defined superconducting Nb thin-film ring with
inner and outer radii of 2.0 and 3.8 μm, respectively, on an
ultrasoft cantilever at T = 4.3 K. The experimental results, a
diamagnetic response of −102 pAm2/T and a single fluxoid
magnetic moment of 5.8 fAm2, agree well with the theoretical
model prediction, providing a reliable technical and theoretical
base for superconducting microring research and applications
in the future.
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APPENDIX: A

In dynamic cantilever magnetometry, the resonance-
frequency shift �f can be derived by calculating the magnetic
torque oscillation dependent on the cantilever vibrations. The
cantilever vibration is a solution of the equation of motion for
beam vibration [24], which is generally expressed as

u(x,t) =
∞∑

n=1

un(x)qn(t), (A1)

where un(x) is the nth resonance mode shape and qn(t) is
the generalized coordinate in the nth mode. If we drive the
cantilever at one of the resonance frequencies, for example, the
first mode, the problem is reduced to solving a one-dimensional
forced equation of motion for q1(t). The cantilever is subject to
an effective force of τ/Leff , where Leff is the cantilever effec-
tive length, defined as u1(x)/ tan θ = u1(x)/[du1(x)/dx] [21].
The effective force can then be deduced as

τ

Leff
= 1

L2
eff

mHextu1(x)q1(t) (A2)

from Eq. (1), with an approximation of sin θ ∼= du1(x)
dx

q1(t) =
u1(x)
Leff

q1(t) for small deflections. Hence, the Fourier transform
of the forced vibration equation for q1(t) can be expressed
as [18]

( − ω2 − iγ ω + ω2
0

)
q̃(ω) = ω2

0

k0L
2
eff

mHextq̃(ω). (A3)

Here, ω0 is the angular resonance frequency 2πf0. The solution
of Eq. (A3) gives �f as expressed in Eq. (2) [14,18].

As illuminating the cantilever free end, even at small
laser power, may cause local heating of the sample, �f

measurement for magnetometry is conducted with the fiber

FIG. 6. Thermal vibration noise spectrum at T = 4.3 K measured
at the reflector position (closed circle in the inset).

pointing at the center of a 20-μm-width reflector, shown in
Fig. 1(b), 100 μm from the paddle on which an Nb ring is
mounted. To align the fiber to the reflector center or another
point of interest, we first obtain a quick map of the cantilever,
as shown in Fig. 1(b), by scanning the cantilever plane and
obtaining the laser interference amplitude at each point; this
is achieved by sweeping the fiber-cantilever interdistance.
Then, for fine adjustment, we repeatedly obtain line profiles
of the interference amplitude, in directions both parallel and
perpendicular to the cantilever, to find the target position with
∼1 μm resolution.

To determine precise values for k0 and Leff in Eq. (2),
we require a fundamental mode shape; therefore, we ob-
tain position-dependent vibrational noise spectra along the
cantilever. These spectra provide 〈u2(x,t)〉 from Eq. (A1),
which falls on the mode shape predicted by the finite element
method for the cantilever employed in this work. From the
ratio of 〈u2(x,t)〉 at the sample position, 〈u2

S〉, against that at
the reflector center, 〈u2

R〉, we determine the spring constant
conversion factor, 〈u2

S〉/〈u2
R〉, to be 2.85, and from the slope at

the sample position, we determine Leff to be 248 μm.
Figure 6 shows the fundamental thermal vibration noise

spectrum at T = 4.3 K, obtained with a span of 3.125 Hz
and averaging over 15 results, which provides 〈u2

R〉 as
well as f0 = 1221.9 Hz and the quality factor Q = 43 000.
Using the equipartition theorem along with 〈u2

S〉/〈u2
R〉, the

mechanical impedance to the force at the sample position
is evaluated to be k0 = 4.5 × 10−5 N/m, with an accuracy
conservatively claimed to be 10% [25]. The minimum de-
tectable shift of the cantilever frequency is given by �fmin =
f0Fmin/

√
2k0xpk [14]. Here, Fmin is the smallest detectable

force signal, given by Fmin = √
2k0kBT B/πf0Q, where kB is

the Boltzmann constant, xpk is the peak displacement of the
oscillating cantilever, and B is the detection bandwidth. The
thermally limited detectable magnetic moment mmin can be
expressed as 2�fmink0L

2
eff/f0Hext, employing Eq. (2). Using

the cantilever parameters given above, the corresponding
�fmin and mmin are 1.1 mHz and 1.2 fAm2 for a 1-Hz
bandwidth with xpk = 100 nm and Hext = 40 Oe.

APPENDIX: B

The negative slope of f0(T ) in Fig. 2 may originate from the
temperature dependence of the Young’s modulus, dimensions,

064505-5



CHOI, KIM, LEE, CHOI, KIM, AND CHOI PHYSICAL REVIEW B 95, 064505 (2017)

surface stress, and so on, of the silicon nitride cantilever.
The spring constant of a simple beam is given by [21]
k0 = 1.030Ewt3/l3, where E is the Young’s modulus of the
material and w, t , and l are the beam width, thickness, and
length, respectively. With 2πf0 = √

k0/meff , where meff is the
beam effective mass, the temperature derivative of f0(T ) can
be expressed as

1

f0

df0

dT
= 1

2k0

dk0

dT
= 1

2

(
1

E

dE

dT
+ 1

w

dw

dT

)
, (B1)

where we assume an isotropic thermal contraction for w, t ,
and l.

The effect of the intrinsic Young’s modulus can be
ignored because, in general, its temperature dependence is
virtually zero at low temperatures. If we adopt the Wachtman
semiempirical formula for Young’s modulus [26], E(T ) =
E0 − BT exp(−T0/T ), its temperature derivative is given
by dE/dT = −B(1 + T0/T ) exp(−T0/T ). For the reported
parameters for silicon nitride [26], E0 = 320 GPa, B = 0.0151

GPa/K, and T0 = 445 K, (1/E)dE/dT is estimated to be as
small as −1 × 10−24 K−1 at T = 9 K.

Excluding the intrinsic Young’s modulus, we may speculate
that the temperature dependence of the cantilever dimensions
yields the f0(T ) slope both indirectly and directly, via the first
and second terms on the right-hand side of Eq. (B1), respec-
tively. One possible indirect effect is via surface stress in a thin
cantilever. Because of the strain-dependent surface stress, the
effective Young’s modulus Eeff of a silicon nitride cantilever
has been reported to have a thickness dependence [27]. That
is, Eeff decreases strongly for decreasing thickness below our
cantilever thickness of 200 nm.

Considering the thickness dependence and the signs in
Eq. (B1), the thermal contraction of the cantilever dimensions
for increasing T is consistent with the negative slope of
f0(T ), if other factors are ignored. The lower bound of
the thermal expansion coefficient α, which is defined as
α = (1/w)dw/dT , can be estimated from Eq. (B1) with the as-
sumption of dE/dT = 0, yielding αlower = (2/f0)df0/dT =
−9 × 10−6 K−1. More systematic studies are necessary in the
future to determine an accurate value of α for silicon nitride at
low temperatures.
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