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Abstract
In this study, we explore the dynamics of entanglement in an ensemble of qutrits with a
lambda-type level structure interacting with single-mode bosons. Our investigation focuses on
zero-energy states within the subspace of totally symmetric wave functions. Remarkably, we
observe a universal two-stage dynamics of entanglement with intriguing revival behavior. The
revival of entanglement is a consequence of the self-purification process, where the quantum state
relaxes and converges universally to a special dark state within the system.

1. Introduction

Quantum entanglement plays a pivotal role in quantum information processing, specifically in quantum
communication [1, 2], quantum simulations [3], and quantum computing [4]. However, environmental
noise poses a significant challenge to preserving entanglement and coherence. For the majority of systems,
decoherence results in an irreversible loss of entanglement, becoming a major hindrance in advancing
quantum information technologies [5]. Despite this common behavior, certain exceptional systems exhibit a
fascinating phenomenon known as entanglement revival, where entanglement increases during their
dissipative evolution. Moreover, a related scenario called ‘entanglement sudden birth’ has been explored,
wherein entanglement arises from a separable state after a specific time interval. Entanglement revival and
sudden birth have been extensively studied in a variety of discrete and continuous variable systems [6–20].
This non-monotonic behavior relies on a delicate interplay between entanglement generation, induced by
internal system interactions, and dissipation from the external environment [6, 7, 9]. Generally speaking, the
entanglement revival shows a sensitive dependence on the initial state [12–14, 17, 18]. In some systems, it
was suggested that revivals might be induced by the transfer of entanglement between different
subsystems [21–23].

In this work, we present a comprehensive investigation of a robust mechanism for entanglement revival,
centered around the utilization of special metastable states. These unique states act as entanglement
reservoirs during the later stages of time evolution and can be deliberately engineered by leveraging specific
(exact or approximate) symmetries inherent in the underlying quantum system. Our focus lies on an
ensemble of qutrits exhibiting a lambda-type level structure interacting with a single bosonic mode, a model
pertinent to various platforms such as cavity quantum electrodynamics (QED) [24, 25], trapped ions [26],
circuit QED [27], and atomic ensembles [28]. The dissipative evolution in our study follows a universal
two-stage dynamics. In the initial stage, we observe the expected rapid decay of entanglement at short times.
Subsequently, in the second stage leading to entanglement revival, the system undergoes a slower evolution
caused by relaxation, ultimately converging to a special dark state. This self-purification process plays a
crucial role in restoring entanglement. Importantly, the entire process is closely connected to an
antisymmetry (rather than symmetry) associated with the parity operator of the system. Furthermore, we
provide a comprehensive description of the quantum states involved, enabling a clear identification of the
underlying physical processes at play. Armed with this in-depth understanding, we anticipate that the
essential features of the revival dynamics can be realized in a broader class of systems.

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ad18ec
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ad18ec&domain=pdf&date_stamp=2024-1-10
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4679-9957
https://orcid.org/0000-0001-6901-5233
mailto:choims@korea.ac.kr


New J. Phys. 26 (2024) 013018 D Chen et al

This paper is structured as follows: In section 2, we introduce the system, detailing its fundamental
physical processes and associated properties. Section 3 explores the observation of entanglement revival
behavior, illustrating the dissipative evolution characterized by universal two-stage dynamics. Section 4
provides a semiclassical perspective on the system, while sections 5 and 6 elaborate on the detailed decay
processes based on this semiclassical description. Finally, section 7 summarizes the findings and presents an
outlook for future research.

2. Model

We consider n identical three-level systems (qutrits, for short) coupled with single-mode bosons. As shown
in figure 1, each qutrit has a Λ-type structure with two ground-state levels, denoted by |0⟩ and |2⟩, and one
excited-state level, |1⟩. The bosonic mode induces the transition |0⟩ ↔ |1⟩ whereas the transition |1⟩ ↔ |2⟩ is
driven resonantly by an external classical field. In the interaction picture, the system is governed by the
Hamiltonian

Ĥ= g
n∑

k=1

ĉ |1⟩k⟨0|+Ω
n∑

k=1

|1⟩k⟨2|+ h.c., (1)

where ĉ is the bosonic annihilation operator, |µ⟩k (µ= 0,1,2) are the quantum states of the kth qutrit, g is
the qutrit-boson coupling, and Ω is the Rabi transition amplitude. Note that, in this work, we assume
uniform g and Ω for all qutrits. The operator N̂= ĉ†ĉ+

∑n
k=1(|1⟩k⟨1|+ |2⟩k⟨2|) is conserved by Ĥ, and we

will usually refer to its eigenvalues (i.e. the total number of excitations) as p.
Any realistic system is subject to the influence of quantum noise, thus its dynamics is not unitary any

longer. Dissipative dynamics is typically modeled by a quantum master equation, which we take of the
following form

˙̂ρ(t) =−i
[
Ĥ, ρ̂

]
+κL [̂c] ρ̂+Γ0L

[
L̂0
]
ρ̂+Γ2L

[
L̂2
]
ρ̂, (2)

where ρ̂ is the density operator of the system and L[L̂]ρ̂ is the Lindblad superoperator, defined by
L[L̂]ρ̂ := L̂ρ̂L̂† − (L̂†L̂ρ̂+ ρ̂L̂†L̂)/2 for the linear operator L̂ associated with a quantum decoherence process.
Specifically, L[̂c] is responsible for the loss of bosons while L[L̂µ], with L̂µ :=

∑n
k=1 |µ⟩k⟨1|, describes the

collective spontaneous decay of qutrits from the excited-state level |1⟩ to the ground-state level |µ⟩ (µ= 0,2);
κ and Γµ are the corresponding rates. As implied by the specific form of the quantum master equation (2),
we mainly concentrate on collective decay of qutrits. However, as we discuss briefly later and demonstrate in
detail in the appendix B, our main results are not affected qualitatively by individual qutrit decay.

In this work, we investigate an unusual dynamics of entanglement in the presence of quantum
decoherence. The effect of our interest is most pronounced in the zero-energy subspace of Ĥ with p
excitations and totally symmetric wave functions (with respect to the exchange of qutrits). Therefore we
mainly focus on this subspace, denoted as Zp. Interestingly, it was pointed out [29] that the Zp subspace
features a decoherence-free nature [30–32], and is always degenerate regardless of the parameters, allowing
one to geometrically manipulate quantum states within the subspace. This property is due to three symmetry
properties of the system: the conservation of total number of excitations N̂, the exchange symmetry of
qutrits, and the anti-symmetry, {Π̂1,Ĥ}= 0, of Π̂1 := exp

(
iπ
∑n

k=1 |1⟩k⟨1|
)
.

We denote the basis states of Zp by |Zi
p⟩ for i = 0,1,2, . . . , [p/2] 4, where [x] indicates the integer part of

the real number x. The first zero-energy eigenstate can always be chosen of the following form:

|Z 0
p⟩=

p∑
k=0

(−1)p−k√
(p− k)!gp−kΩk

|Φk
n⟩Q|p− k⟩c, (3)

where |Φk
n⟩Q =

∑
P P |2⟩⊗k |0⟩⊗(n−k) (P are permutations of qutrits) is a symmetric Dicke state and |k⟩c is a

Fock state with k bosons. Equation (3) describes a special zero-energy state which we callmaster dark state. It
has several interesting properties useful for quantum-state engineering applications, including the generation
of arbitrary symmetric Dicke states [29, 33]. We will see below that this master dark state plays a key role in
the entanglement-revival behavior as well.

4 For the dimension of Zp, see [29].
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Figure 1. Left: Schematics of an ensemble of qutrits (dots) uniformly coupled to a single bosonic mode. Right: The level structure
of each qutrit.

Figure 2. (a) Time dependence of the bipartite entanglement between the bosonic and qutrit subsystems, for n= 4 and the initial
state |Z1

3⟩ (p= 3). (b) Probabilities of relevant zero-energy eigenstates, ⟨Z1
3|ρ̂(t)|Z1

3⟩ (blue triangles), ⟨Z 0
1|ρ̂(t)|Z 0

1⟩ (green
diamonds), ⟨Z 0

0|ρ̂(t)|Z 0
0⟩ (orange squares), and purity Tr [ρ̂2] of the density matrix (dashed curve). We used:Ω/g= 0.15,

κ/g= 0.1, Γ0/g= 0.05, and Γ2/g= 0.0025.

3. Entanglement revival

Figure 2 illustrates the main phenomenon in the focus of this work. For four qutrits (n= 4) with three
excitations (p= 3), which we take as a prototypical example, there are two zero-energy states, |Z 0

p⟩ and |Z1
p⟩,

where |Z1
p⟩ has a relatively large qutrit-boson entanglement. In this work, we quantify the entanglement by

the logarithmic negativity [34–36], defined as

EN (ρAB) := log2

∥∥∥ρTB
AB

∥∥∥ , (4)

where ∥· · ·∥ denotes the trace norm and ρTB indicates the partial transposition of ρ with respect to
subsystem B. From the quantum dissipative dynamics of equation (2), we find in figure 2(a) that the
entanglement content of |Z1

p⟩ decreases fast initially, as usually expected. Surprisingly, however, the
entanglement increases again to a certain level as time evolves. This type of two-stage dynamics and
entanglement-revival behavior are universally found in a wide range of parameters.

In search for clues to explain the above behavior, we consider the probabilities Pk
p(t) := ⟨Zk

p| ρ̂(t) |Zk
p⟩ of

being in a zero-energy state (p⩽ 3). We find that, among all zero-energy states, the key role is played by |Z1
3⟩,

|Z 0
1⟩, and |Z 0

0⟩, whose populations are shown in in figure 2(b). In the first stage of the dynamics, the initial
state |Z1

3⟩ decays rapidly (over a time scale of order 1/κ or 1/Γµ) to the p= 1 master dark state |Z 0
1⟩. Once

the master dark state |Z 0
1⟩ becomes dominant, the second stage of dynamics kicks in, and |Z 0

1⟩ decays to the
trivial state |Z 0

0⟩ ≡ |0⟩1 ⊗ ·· ·⊗ |0⟩n ⊗ |0⟩c . The latter process is much slower, since the master dark states are
extremely robust to decoherence [29]. As inferred from equation (3), they are not affected by spontaneous
decay of qutrits (neither individual or collective) from the excited-state to ground-state levels, and become
immune to boson losses in the limit of large g/Ω. Between the two stages there is a certain transition period
(shaded region in figure 2) characterized by a low purity, see the dashed curve in figure 2(b). Importantly, the
probabilities P13,P

0
1,P

0
0 do not sum up to unity during this transition period. This means that some other

states give a significant contribution to ρ̂(t). Indeed, as we discuss in detail below, the decay of the initial state
|Z1

3⟩ to |Z 0
1⟩ occurs via intermediate states with finite energies, accounting for the missing population

1− P13 − P01 − P00. The important point here is that the mixture of those states dramatically suppresses the
overall entanglement to a level that is much smaller than the entanglement of each component (pure) state.
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We conclude that the entanglement revival can be attributed to an initial suppression of entanglement
due to strong mixture, followed by a recovery of entanglement when the system evolves towards the
(relatively) pure master dark state which, like the initial state, is significantly entangled. This self-purification
is possible because the master dark state is stable against the decay processes. As noted already, the effect of
boson loss gets suppressed by increasing g/Ω. However, this also leads to a master dark state with smaller
entanglement, implying that the visibility of the entanglement revival can be optimized over the coupling
ratio in appendix A.

4. Semiclassical description

We now quantitatively analyze the two-stage dissipative dynamics and the corresponding
entanglement-revival behavior, observed numerically above. To do this, we first simplify our model through
a semiclassical approximation, recalling that we are working in the subspace of totally symmetric wave
functions. As long as the quantum master equation (2) contains only collective decoherence of qutrits and
boson loss, the system remains in this subspace. Then, it is convenient to describe the ensemble of qutrits
using bosonic operators âµ associated with the levels |µ⟩. Expressed in terms of these bosonic operators, Ĥ
reads

Ĥ= ĝc†â†0 â1 +Ωâ†2 â1 + h.c., (5)

which preserves the total number of qutrits â†0 â0 + â†1 â1 + â†2 â2 = n as well as the total number of excitations
â†1 â1 + â†2 â2 + ĉ†ĉ= p. Likewise, equation (2) becomes:

˙̂ρ(t) =−i
[
Ĥ, ρ̂

]
+κL [̂c] ρ̂+Γ0L

[
â†0 â1

]
ρ̂+Γ2L

[
â†2 â1

]
ρ̂. (6)

So far, everything is exact. We now make a semiclassical approximation ĝc†â†0 â1 ≈ ĝc†â1
√
n, which is

valid in the limit n≫ p. Then, equation (5) gives:

Ĥ≈ Ĥsc := g
√
n ĉ†â1 +Ω â†2 â1 + h.c. (7)

This semiclassical Hamiltonian is quadratic in the bosonic operators, hence can be solved exactly. By
introducing three new bosonic operators

Ĉ0 := cosθ ĉ− sinθ â2, (8a)

Ĉ± := (sinθ ĉ+ cosθ â2 ∓ â1)/
√
2, (8b)

where tanθ := g
√
n/Ω, the semiclassical Hamiltonian takes the following form:

Ĥsc = ϵ
(
Ĉ†
+Ĉ+ − Ĉ†

−Ĉ−

)
, (9)

where ϵ :=
√

g2n+Ω2. We note from equation (9) that Ĉ0 is a zero-frequency bosonic eigenmode, while Ĉ±

have opposite mode-frequencies±ϵ. This interesting property is due to the anti-symmetry {Π̂1,Ĥ}= 0,

with Π̂1 expressed now as Π̂1 = exp
(
iπâ†1 â1

)
. The semiclassical Hamiltonian immediately yields the

eigenenergies (k+ − k−)ϵ, with the corresponding eigenstates:

|Ek0;k+k−⟩=
1√

k0!k+!k−!

(
Ĉ†
0

)k0 (
Ĉ†
+

)k+ (
Ĉ†
−

)k−
| ⟩ , (10)

where | ⟩ is the vacuum state. Of particular importance are the semiclassical zero-energy states with p
excitations (corresponding to the subspace Zp), which take the general form |E(p−2k);kk⟩ . The case k= 0 gives
the master dark states of equation (3), i.e. |Ep;00⟩ ≈ |Z 0

p⟩. For p= 3, applicable to figure 2, the two
semiclassical zero-energy states are |E3;00⟩ ≈ |Z0

3⟩ and |E1;11⟩ ≈ |Z1
3⟩.

In the physically relevant regime of κ,Γµ ≲ g,Ω, the relative phase between any pair of semiclassical
eigenstates with different energies oscillates quickly (the energy difference is of order ϵ≫ κ,Γµ). Therefore,
by ignoring the phase coherence between such eigenstates, we consider a semiclassical solution of the
following form

ρ̂sc (t)≈
∑
α

Pα (t) |Eα⟩⟨Eα|, (11)

4
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where α≡ (k0;k+k−) collectively denotes the semiclassical quantum numbers k0 and k±. Substituting this
ansatz into equation (6), we obtain the (classical) equations

dPα
dt

=
∑
β

γαβPβ (t) (12)

for the probabilities Pα(t), where γαβ is the transition rate between semiclassical states |α⟩ and |β⟩.

5. Boson loss

We now apply the semiclassical description of equations (11) and (12) to analyze in detail the dynamical
process. We first consider the effects of boson loss and, for simplicity, we focus on the particular example
with p= 3. Similar results apply to arbitrary p.

In the semiclassical limit (n≫ p, hence tanθ ≫ 1), the rates γαβ := κ|⟨Eα |̂c|Eβ⟩|2 of the four processes
|E1;11⟩ → |E1;10⟩, |E1;11⟩ → |E1;01⟩, |E1;10⟩ → |E1;00⟩, and |E1;01⟩ → |E1;00⟩ , are much larger (by a factor of
order g2n/Ω2 ≫ 1) then other transition rates. Therefore, as illustrated in figure 3, one can identify two
dominant (incoherent) decay paths of |Z1

3⟩ ≈ |E1;11⟩:

|E1;11⟩ → |E1;10⟩ → |E1;00⟩ , (13)

|E1;11⟩ → |E1;01⟩ → |E1;00⟩ . (14)

We also include |E1;00⟩ → |E0;00⟩ among the major transitions of figure 3(solid arrows). The latter process has
a much smaller rate, but is the only allowed transition once the system has reached |E1;00⟩.

The above remarks allow us to further simplify our semiclassical description, by only including in the
ansatz ρ̂sc(t) of equation (11) the five most relevant states |E1;11⟩, |E1;10⟩, |E1;01⟩, |E1;00⟩, and |E0;00⟩, which
appear in the major transition paths. As figure 4(a) demonstrates, the approximate evolution of the five
populations Pα(t) agrees very well with the full numerical solution, obtained from equation (6). In
figure 4(b) we further compare the entanglement content of the dominant semiclassical state ρ̂sc(t) (red
dashed line) to the full solution ρ̂(t) (blue empty circles). Here the agreement is worse than for the
probabilities of panel (a); apparently, the entanglement content is more sensitive to the detailed form of ρ̂(t).
However, the discrepancy can be easily corrected by including all semiclassical eigenstates |Ek0;k+k−⟩ in ρ̂sc(t).
In this case, the possible transition paths include those marked by dashed arrows in figure 3. The black
dashed curve of figure 4(b) plots the evolution of the entanglement content within the full semiclassical
description, and shows an excellent agreement with the full solution.

We have shown above that, as expected, the semiclassical approximation works very well when n≫ p.
However, it also gives qualitatively correct predictions of the dynamical behavior for values of n as small as
n= 4 (with p= 3). Many features can be even described quantitatively, as long as we replace â†0 â0 by the
average occupation n0 of state |0⟩.

6. Qutrit decay

The semiclassical description is still applicable when collective decay of qutrits is the dominant decoherence
mechanism. Assuming κ= Γ2 = 0, we illustrate in figure 5(a) the transitions induced by the â†0 â1 ≃

√
nâ1

process of equation (2). This semiclassical diagram is similar to the one in figure 3, except that now mode Ĉ0

is not affected by dissipation. Therefore, all the slow transitions of figure 3 do not take place (including
|E1;00⟩ → |E0;00⟩). The system will ultimately reach the master dark state |E1;00⟩, instead of the vacuum state.
In figure 5(a), the transition rates are all of order Γ =

√
nΓ0, i.e. collectively enhanced by the occupancy of

state |0⟩. If, on the other hand, the â†2 â1 process dominates (κ= Γ0 = 0) we find the complete semiclassical
diagram shown in figure 5(b). Since the decay from |1⟩ to |2⟩ does not alter the excitation number, the
dynamics is confined to the p= 3 subspace, and terminates in the master dark state |E3;00⟩.

As before, both diagrams of figure 5 lead naturally to a two-stage dynamics where, after an initial loss of
purity, the system evolves towards a master dark state. As a consequence, revivals are observed in the time
dependence of the logarithmic negativity, shown in figure 6. Since the master dark states are completely
immune to the decay of qutrits, at long times the entanglement content saturates to a finite value.

When both types of qutrit decay are present, the semiclassical diagram is more complex but can be
obtained in a similar manner. An entanglement revival is still found with the parameters of figure 6 (see the
lowest curve). However, now the system relaxes to a mixture of three master dark states, |E3;00⟩, |E1;00⟩, and

5
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Figure 3. Schematic diagram describing boson losses within the semiclassical approximation. Dominant semiclassical processes
are represented by solid blue arrows. The complete semiclassical diagram includes both solid and dashed arrows.

Figure 4. Comparison of the exact (empty circles) and semiclassical (dashed curves) dynamics in the presence of boson loss. (a)
Probabilities Pα of the five states |Eα⟩ entering the major transition paths of figure 3. (b) Time dependence of the logarithmic
negativity. The dashed curves in panel (a) only consider the dominant semiclassical contribution, while in panel (b) we show both
the dominant (upper dashed curve) and the complete (lower dashed curve) semiclassical treatment. The latter includes all states
and transitions of figure 3. In both panels: n= 20, p= 3,Ω/g= 0.1

√
n, and κ/g= 0.1.

Figure 5. Semiclassical diagrams describing the collective decay of qutrits. Panels (a) and (b) refer to â†0 â1 and â†2 â1 decay,
respectively. In panel (b), the rates associated to dashed arrows are suppressed by a factor of orderΩ2/(g2n)≪ 1.

|E2;00⟩, leading to a general reduction of entanglement. As seen, in all three cases of figure 6 the semiclassical
approximation (dashed curves) is in close agreement with the exact evolution (empty circles).

Finally, we comment on the effect of individual decay of qutrits. This process is more complex to
describe, as it causes transitions between different symmetry sectors, expanding the dynamical process
beyond the totally symmetric subspace. Nevertheless, we find that the dynamics is qualitatively similar in
appendix B. The system can still reach a distinct master dark state, causing the entanglement to revive. Only

6
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Figure 6. Evolution of the logarithmic negativity in the presence of collective qutrit decay. The full solution, obtained from
equation (6), is computed with Γ2 = Γ and Γ0 = 0 (empty circles),

√
nΓ0 = Γ and Γ2 = 0 (empty squares), and

Γ2 =
√
nΓ0 = Γ (empty triangles). The black dashed curves are from the semiclassical approximation. We also used: n= 20,

p= 3, κ= 0, Γ/g= 0.02, andΩ/g= 0.1
√
n.

when the decay rates from |1⟩ to |0⟩ and from |1⟩ to |2⟩ are comparable, a larger number of states is involved
and this might prevent the self-purification process in appendix B. The analysis of individual qubit decay
suggests that the revival is robust to other types of local perturbations, e.g. small deviations of g,Ω from the
homogenous limit. The entanglement revival also survives in the presence of detuning in appendix C.

7. Conclusion

By analyzing the evolution of an ensemble of qutrits interacting with a bosonic mode, we have identified a
robust physical mechanism for entanglement revivals. We show that starting from a highly-entangled state,
decoherence leads to a universal two-stage dynamics which can be accurately captured by a semiclassical
approximation. The entanglement revival is attributed to the self-purification of the quantum state as it
relaxes towards a special dark state. While the specific model of our study has direct applicability to various
experimental setups [24–28], the revival mechanism boasts broad applicability and bears some analogy to
other extensively studied protocols to generate entanglement through dissipation such as reservoir
engineering [37–41]. However, our primary focus here is on inducing an unconventional form of quantum
evolution.
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Appendix A. Optimal coupling ratio

Here, we analyze the optimal value of the coupling ratio Ω/(g
√
n), which is determined by the competing

requirements of having a dark state with large entanglement and being weakly affected by boson decay.
For simplicity and to focus on the essential point, we assume no qutrit decay (the effect of which does not

affect the qualitative feature). In this case, the semiclassical dynamics is described by figure 3 of the main text.
We also recall that the revival of entanglement is due to a self-purification of the system, as it relaxes to the
special master dark state |E1;00⟩. This process takes place on a timescale∼ κ−1. Later, boson decay causes a
slow leakage towards the vacuum state, |E1;00⟩ → |E0;00⟩. The rate of this process is of order κ/ tanθ and can
be suppressed by making tanθ as large as possible. In this limit the probability of the master dark state can

7
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Figure A1. (a) Entanglement revivals at different values of the coupling strengths ratio 1/ tanθ =Ω/(g
√
n). The values of

1/ tanθ range from 0.01 to 0.2, in steps of 0.01 (from top to bottom). (b) Revival height as a function of 1/ tanθ. We use n= 20,
p= 3, κ/g= 0.1 and neglect qutrit decay.

Figure A2. Estimation of the optimal coupling ratio. The entanglement of the master dark state |E1;00⟩ (blue curve) grows with
1/ tanθ, while the corresponding probability P1;00(10) (red curve) is a decreasing function of 1/ tanθ. The orange curve is the
entanglement of the approximated density operator ρ̃(10). Here n= 20 and p= 3.

approach one (ideal purification), but the entanglement between the qutrits and the cavity becomes
vanishingly small. We see from equation (3) of the main text that |Z 0

p⟩ ≃ |Φp
n⟩Q|0⟩c when

tanθ = g
√
n/Ω≫ 1.

Because of this competition, the entanglement revival will at first become more visible by increasing the
ratio of the two coupling strengths 1/ tanθ =Ω/(g

√
n) but gradually disappears at larger values. This

behavior is illustrated in panel (a) of figure A1, where we plot the time dependence of the entanglement with
various coupling strength ratios. The height of the revival as function of 1/ tanθ is plotted in figure A1(b),
showing that the optimal ratio is in the range of 0.05−−0.1.

This optimal ratio can be estimated through simple analytical calculations. At long times t≫ κ−1, the
initial state |E1;11⟩ has almost fully decayed to a mixture of |E1;00⟩ and |E0;00⟩. The approximate density
matrix, denoted by ρ̃(t), can be expressed in the following form:

ρ̃(t) = P1;00 (t) |E1;00⟩⟨E1;00|+(1− P1;00 (t)) |E0;00⟩⟨E0;00|, (A.1)

where the probability can be derived through the semiclassical rate equation, equation (11) of the main text,
giving

P1;00 (t) = e−κt
(
1− e

sinθ
2(sinθ+cosθ)κt

)2
. (A.2)

As a reference, we consider the typical timescale κt= 10 and compute the entanglement of the approximate
density operator ρ̃(10). The entanglement obtained in this manner is plotted in figure A2, from where we
estimate an optimal coupling ratio 1/ tanθ ≈ 0.13, which is close to the value from the full simulations of
figure A1.
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Figure B1. Effects of individual decay of qutrits on the initial state |E1;11⟩, for n= 4. Panel (a) represents the allowed transitions
between different symmetry sectors. In panel (b) we show the approximate probability of reaching the various eigenstates with
p= 1, computed as in equation (B.2). The eigenstate with the largest Pm (blue dots) is |E1;00⟩.

Appendix B. Individual decay of qutrits

To incorporate the effect of individual decay of qutrits, we extend the master equation of the main text as
follows:

˙̂ρ=−i
[
Ĥ, ρ̂

]
+κL [̂c] ρ̂+

∑
µ=0,2

ΓµL
[
L̂µ

]
ρ̂+

n∑
j=1

Γ1µL
[
Âj
1µ

]
ρ̂

 , (B.1)

where L̂µ :=
∑n

k=1 |µ⟩k⟨1| describes the collective decay of qutrits from state |1⟩ to state |µ⟩ and
Âj
1µ = |µ⟩j⟨1| describes the individual decay of qutrits. Due to this additional dissipation channel, the

dynamics become more complex. It extends beyond the totally symmetric subspace, thus the semiclassical
description is not applicable anymore. Despite these technical difficulties, the qualitative behavior is
remarkably similar to the evolution with only bosonic and/or collective qutrit decay.

We first only include the individual decay of qutrits (κ= Γ0 = Γ2 = 0). Starting from |E1;11⟩, the allowed
transitions between different symmetry sectors (Young diagrams) are represented in figure B1(a). The
individual decay |1⟩ → |0⟩ gives the ‘horizontal’ transitions, which reduce the number of excitations p. On
the other hand, the |1⟩ → |2⟩ decay induces ‘vertical’ transitions, which do not change p. If we restrict
ourselves to the former process (setting Γ12 = 0), after two decays the systems is one of the |Em

1 ⟩ eigenstates of
the p= 1 subspace. We can estimate the probabilities of these states as follows:

Pm ≃
∑
k

Γ
(
Ek
2 → Em

1

)∑
m ′ Γ

(
Ek
2 → Em ′

1

) Γ
(
E1;11 → Ek

2

)∑
k ′ Γ

(
E1;11 → Ek ′

2

) , (B.2)

where Γ(α→ β) =
∑

i Γ10|⟨β|Âi
10|α⟩|2 and the sum over k runs over all the intermediate states with p= 2.

In figure B1(b) we show that the largest Pm is for the state |E1;00⟩, indicating that the decay to the master dark
state is the dominant process. Thus, the same type of two-stage dynamics discussed already should take place.

In agreement with this argument, we see a clear revival in figure B2(a), where the decay |1⟩ → |0⟩ is
dominant. If the |1⟩ → |2⟩ decay is dominant, the dynamics is also restricted, as it remains approximately
confined to the p= 3 subspace. As seen figure B2(b), a strong revival exists in this case. Instead, when the
effects of Âj

10 and Âj
12 are comparable, all the processes shown in figure B1(a) occur on a similar timescale

and it is difficult to achieve the self-purification process. As a consequence, the revival is not observed in
panel (c) of figure B2.

Lastly, we investigate the entanglement revival when both bosonic decay and individual decay of the
qutrits are present. As shown in figure B3(a), where all the decay rates are comparable, the entanglement
revival can persists in this scenario as well.

Appendix C. Detuning

Until now, we have treated the resonant case. Considering a finite detuning∆, the effective Hamiltonian in
the bosonic representation reads:

Ĥ∆ =∆â†1 â+ g
√
n
(
â†1 â0 + â†0 â1

)
+Ω

(
â†1 â2 + â2â

†
1

)
. (C.1)
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Figure B2. Logarithmic negativity simulations with individual qutrit decay. In panel (a) we use Γ10/g= 0.05 and
Γ12/2= 2.5× 10−3. In panel (b) Γ10/g= 2.5× 10−3 and Γ10/g= 0.05. In panel (c) Γ10 = Γ12 = Γ = 0.05g. Other parameters
are n= 4, p= 3, κ= 0, andΩ/g= 0.2.

Figure B3. Panel (a) Time dependence of the entanglement including both boson decay and individual qutrit decay. As initial
state, we consider either the master dark state |E3;00⟩ (orange curve) or the other zero-energy eigenstate |E1;11⟩ (blue curve). The
inset shows the same plot in a larger range. In this panel we use: Γ10/g= 2Γ12/g= 0.05, Γ0 = Γ2 = 0, andΩ/g= 0.15. Panel (b)
Entanglement revivals at finite detuning. The three curves refer to∆/(g

√
n) = 0 (blue), 0.2 (orange), and 0.4 (green).

Furthermore we used Ω= 0.1g
√
n and neglected qutrit decays. In both panels n= 4, p= 3, and κ/g= 0.1.

Simulations for different detunings are presented in figure B3(b). If the detuning is small compared to the
effective coupling strength g

√
n, the entanglement revival behavior survives because the master dark state

|Z 0
p⟩ still satisfies Ĥ∆|Z 0

p⟩= 0. If the detuning is too large, the oscillations caused by detuning and the
possibility of transitions from a master dark state |Z 0

p⟩ to other excited states can destroy the entanglement
revival behavior.
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