Efficient switching of magnetization using spin-orbit torque

Byong-Guk Park Materials Science and Engineering, KAIST

* Kyung-Jin Lee, MSE, Korea University

- **1. Introduction : Spin-orbit torque (SOT)**
- **2.** Material engineering for SOT enhancement
- **3. Field-free SOT switching**
- **4. SOT-based spintronic devices**
- 5. Summary

Spintronics

Utilization of the intrinsic **spin** of the electron,

in addition to its fundamental electronic charge, in solid-state devices

Non-magnet Cu (29) 3d ¹⁰

Ferromagnet

 $\rho_{\uparrow} \neq \rho_{\downarrow}$

Spin dependent scattering FM acts as spin filter

Can we change R in FM?

Giant (tunneling) magnetoresistance

Control R by rearrangement of magnetization direction

Can we change R in FM?

Giant (tunneling) magnetoresistance

Control R by rearrangement of magnetization direction

Application of the Spintronics

HDD read heads

> 50% of data Stored in HDD

Data center

Magnetic memory

MRAM

- Non-volatile
- Endurance
- High speed

Embedded MRAM

KAIST

NanoSpintronics Laboratory

(Fujitsu and University of Toronto 2009) non-volatile CMOS : instant-on Low power & High density

Stand alone memory STT-MRAM

Operation of spintronic devices

Operation speed & capacity : How to switch magnetization direction

1. Magnetic field

2. Spin-transfer torque (STT)

Low capacity

Spin orbit torques

Alternative method of electric manipulation of magnetization

VS

- based on spin-orbit coupling
- by in-plane current

Conventional spin-transfer torque

Spin orbit torques

- : Spin torque generated by spin-orbit coupling
- Manipulation of magnetization by in-plane current

Spin Hall effect (in-plane current) induces spin accumulation at HM/FM interface

Spin Hall effects

Electron motion is affected by electrons spin direction

Spin Hall effect → spin accumulation at the edge

Spin orbit torques

- : Spin torque generated by spin-orbit coupling
- Manipulation of magnetization by in-plane current

Spin Hall effect (in-plane current) induces spin accumulation at HM/FM interface → Torques to FM

For switching, in-plane magnetic field is required

SOT-induced M switching

Spin Hall angle : switching polarity & I_c

Spin orbit torques

• Critical current density for SOT switching

$$J_{SOT} = \frac{2e}{\hbar} \frac{M_S V t_F}{\theta_{SH}} \left(\frac{H_{K,eff}}{2} - \frac{H_x}{\sqrt{2}}\right)$$

 \rightarrow Increase $\theta_{SH,eff}$

[Lee, et al., APL (2013)]

Bulk Spin Hall effect

- from bulk heavy metal (Ta, Pt, W)
- spin Hall angle (θ_{SH})

Interface spin-orbit coupling

- from HM/FM interface inversion asymmetry
- HM/FM combination

Spin-Hall angle

$$\vec{J}_s = \theta_{SH}(-\frac{\hbar}{2e})\vec{J}_c \times \vec{\sigma}$$
 \vec{J}_s : spin currnet, \vec{J}_c : charge current

- Pt: 0.07~0.1 [Liu, et al., PRL (2012), Wang, et al, APL(2014), Wang, et al, PRL(2014)]
- Ta: -0.15 [Liu, et al., Science (2012)]
- W: -0.30 [Pai, et al., APL (2012)]

$$\rho_{\beta-W} > \rho_{\beta-Ta} > \rho_{Pt}$$

- Intrinsic Spin Hall effect : $\theta_{SH} \sim \rho$
- Interface spin Hall effect in FM/HM [Wang, et al., PRL (2016)]

Spin Hall effect in FM/HM bilayers vs resistivity of HM?

SOT-induced M switching

Spin Hall angle : switching polarity & I_c

SOT measurement (H_{eff, SOT})

1. Introduction : Spin-orbit torque (SOT)

2. Material engineering for SOT enhancement

- Engineering Pt resistivity
- 3. F Ti interfacial layer in Pt/CoFeB structure

4. SOT-based spintronic devices

5. Summary

Engineering Pt resistivity

Spin Hall effect(angle) in FM/HM bilayers vs resistivity of HM?

Resistivity control using different sputtering pressure (3~50mtorr)

 Resistivity increases by a fact of 1.6 times with variation of Ar pressure 3~50 mtorr

SOT-induced effective fields

Ta/Pt/Co/AlOx

NanoSpintronics Laboratory

Enhanced spin Hall angle and SOT-induced switching

NanoSpintronics Laboratory

Interfacial engineering

Modification of Pt/CoFeB interface by Ti layer (weak SOC)

SOT-induced effective fields

Pt(5nm)/Ti(x)/CoFeB (1nm)/MgO(1.6nm)

Enhancement in H_{DL, FL} by Ti (1nm)

SOT-induced Switching

Magnetization vs in-plane current

 I_C : switching current $(J_C/H_K)^{-1} \sim \text{magnitude of SOT}$

- No change in switching polarity (Pt)
- I_c is minimum when Ti is ~1 nm
- *I_C* increases when Ti gets thicker

Interfacial spin-orbit coupling

X-ray Magnetic Circular Dichroism (XMCD)

KAIST NanoSpintronics Laboratory

Switching performance

- switching sequence same as Ta
- No Enhancement of efficiency

Effective magnetic field of SOT

Summary I

Successful enhancement of SOT using materials engineering

1. Spin Hall effect engineering

- Linear increase in effective spin Hall angle with Pt resistivity
- Non-negligible interfacial Spin Hall effect
- 2. Interface engineering
 - Increase of SOT and switching efficiency In Pt/Ti(~1nm)/CoFeB/MgO
 - Reduction in Pt proximity effect

1. Introduction : Spin-orbit torque (SOT)

2. Material engineering for SOT enhancement

3. Field-free SOT switching

• Utilization of antiferromagnet 4. Sol-based spintronic devices

5. Summary

SOT with antiferromagnets

Replacement of HM with AFM

→ Spin-orbit coupling + (in-plane) exchange field

- HM SOT structure
 - : in-plane H field

AFM SOT structure

: exchange biased effective H field (no external H field)

Antiferromagnets

- Alternating M (No net M)
- Majority of magnetic ordered materials
- Exchange bias in GMR/TMR
 - ➔ effective magnetic field
 - : in-plane H for SOT

AuMn, PtMn, IrMn

→ Spin-orbit effect AMR, Spin-orbit torque

Field-Free magnetization switching for SOT

Spin orbit torques with AFM

• SOT in IrMn is comparable to Ta & (+) θ_{SH}

SOT-induced M switching

In-plane exchange-biased effective H field at the AFM/FM interface

 \rightarrow Field-free deterministic switching ?

No in-plane exchange-biased H field

Thicker IrMn (9nm) & field annealing

Ta(5)/IrMn(9)/CFB(1)/MgO Anneale

Annealed @ 190C & 0.8T

- Exchange bias field : 0.5 mT
- Field-free SOT switching, but not completly
 → Need stronger exchange bias field

Field-free SOT switching

Ta(5)/CoFeB(3)/IrMn(3)/CFB(1)/MgO

Develop in-plane exchange bias

· Field free deterministic switching

Oh, Park, et al., Nature Nanotech (2016)

NanoSpintronics Laboratory

Summary II

- 1. Spin-orbit torque in antiferromagnet
 - : a sizable SOT & in-plane exchange-biased effective field allows field-free magnetization switching

Contents

5. Sı

1. Introduction : Spin-orbit tc

2. Material engineering for S

3. Field-free SOT switching

4. SOT-based spintronic devices

Simultaneous switching of (more than 2) devices
Electric-field effect on SOT switching

Summary

- 1. Spin orbit torque is an alternative for electric switching of perpendicularly magnetization, which can be utilized in various spintronic devices including MRAM
- The SOT is significantly enhanced by material engineering
 ; manipulation of HM resistivity & interfacial modification
- 3. Field-free SOT switching is achieved by the introduction of antiferromagnet which has a sizable SOT and exchange bias
- 4. SOT switching allows for simultaneous switching and easy integration of electric gate

