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Mixed-valence transition in a quantum dot coupled to superconducting
and spin-polarized leads
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We consider a quantum dot coupled to both superconducting and spin-polarized electrodes, and we study the
triad interplay of the Kondo effect, superconductivity, and ferromagnetism, any two of which compete with and
suppress each other. We find that the interplay leads to a mixed-valence quantum phase transition, which for
other typical systems is merely a crossover rather than a true transition. At the transition, the system changes
from a spin-doublet to -singlet state. The singlet phase is adiabatically connected (through crossovers) to the
so-called “charge Kondo state” and to the superconducting state. We analyze in detail the physical characteristics
of different states, and we propose that the measurement of the cross-current correlation and the charge relaxation
resistance can clearly distinguish between them.
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I. INTRODUCTION

Superconductivity, ferromagnetism, and the Kondo effect
are representative correlation effects in condensed-matter
physics. Interestingly, any two of these three effects compete
with each other: hampering the spin-singlet pairing in (s-
wave) superconductors, ferromagnetism naturally suppresses
superconductivity. The Kondo effect is attributed to another
kind of spin-singlet correlation between itinerant spins in the
conduction band and the localized spin on the quantum dot
(or magnetic impurity), and hence it is suppressed in the
presence of ferromagnetism in the conduction band [1–7].
Energetically, when exchange Zeeman splitting due to ferro-
magnetism is larger than the Kondo temperature TK (in the
absence of ferromagnetism), the Kondo effect is destroyed.
The competition between the superconducting pairing correla-
tion and the Kondo correlation even leads to a quantum phase
transition: When superconductivity dominates over the Kondo
effect (i.e., when the superconducting gap energy �0 is larger
than the normal-state TK ), the ground states of the system form
a doublet due to the Coulomb blockade on the quantum dot.
In the opposite case (�0 < TK ), the quantum dot overcomes
the Coulomb blockade and resonantly transports Cooper pairs,
and the whole system resides in a singlet state. The quantum
phase transition is manifested by the 0-π quantum phase
transition in nanostructure Josephson junctions consisting of a
quantum dot (QD) coupled to two superconducting electrodes
[8–24].

In this work, we study the triad interplay of supercon-
ductivity, ferromagnetism, and the Kondo effect all together.

*choims@korea.ac.kr

More specifically, we consider a quantum dot coupled to
both superconducting and fully spin-polarized [31] ferro-
magnetic electrodes, as shown schematically in Fig. 1(a).
Similar setups have been studied in different contexts: the
exchange-field dependence of Andreev reflection [25], spin-
dependent Andreev reflection [26,27], and subgap states in
the QD due to the ferromagnetic proximity effect [28]. The
case with a superconducting and two ferromagnetic leads was
also studied to examine crossed Andreev reflection [29,30].
However, these works either did not properly capture the
full correlation effects (that is, the Kondo regime could not
be exploited) [25,26,29], or they studied the modification of
the Kondo effect due to its interplay with superconductivity
and ferromagnetism [27,30]. Note that in the latter works,
the Kondo effect survives the relatively weak superconduc-
tivity and/or ferromagnetism. In this work, we explore triad
interplays in the opposite limit: Both superconductivity and
ferromagnetism are so strong that they individually suppress
the Kondo effect, but nevertheless together they give rise to
new resonant transport.

We find that unlike the aforementioned pairwise compe-
tition among the three effects, the triad interplay is “cooper-
ative” in a certain sense and leads to a new quantum phase
transition between doublet and singlet states; see Fig. 2. The
singlet phase is in many respects similar to the mixed-valence
state, but it is connected adiabatically (through crossovers) to
the superconducting state in the limit of strong coupling to the
superconductor and to the “charge Kondo state” in the limit of
strong coupling to the spin-polarized electrode. The results are
obtained using the numerical renormalization group (NRG)
method, and the physical explanations are supplemented by
other analytic methods such as scaling theory, the variational
method, and bosonization. Based on the analysis of the
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FIG. 1. System configurations for (a) the spin-polarized (SP)
lead-quantum-dot superconducting (SC) lead and (b) the spin-
polarized lead-quantum dot with proximity-induced superconductiv-
ity. Refer to the text for definitions of the symbols.

characteristics of the phases, we propose three experimental
methods to identify the phases. These methods measure the
dot density of state, the cross-current correlation, and the
current response to a small ac gate voltage (charge relaxation
resistance), respectively.

The rest of the paper is organized as follows: We describe
explicitly our system and the equivalent models for it in
Sec. II. We report our results based on the NRG method, the
quantum phase diagram of the system, and the characteristic
properties of the phases and crossover regions in the singlet
phase in Sec. III. In Sec. IV, we apply several analytic meth-
ods to provide physical interpretations of the quantum phase
transition and the characteristic properties of the different
phases and crossover regions. In Sec. V, we discuss possible
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FIG. 2. Phase diagram obtained from the NRG method. The
phase boundary (thick solid line) divides the spin-singlet (S) and
-doublet (D) phases. The crossover boundaries (red dotted lines)
further divide the singlet phase into the superconductivity-dominant
(SS), mixed-valence (SM), and Kondo (SK) singlet regimes, which are
connected adiabatically. The black dashed lines are guides showing
the change of the physical properties of the system.

experiments to observe our findings. Section VI summarizes
the work and concludes the paper.

II. MODEL

Figure 1(a) shows the schematic configuration of the sys-
tem of our interest, in which an interacting quantum dot is
coupled to both a ferromagnetic lead and a superconducting
lead. To stress our points, we consider the extreme case in
which the ferromagnetic lead is fully polarized [31] and the
superconductivity is very strong (the superconducting gap is
the largest energy scale). Recall that with the QD coupled
to either a fully polarized ferromagnet or a strong supercon-
ductor (but not both), neither charge nor spin fluctuations are
allowed on the QD.

First highlighting the fully polarized ferromagnetic lead,
the Hamiltonian of the system is written as

H = HQD + HF + HS + HT (1)

with

HQD = δ
∑

μ

(nμ − 1/2) + U (n↑ − 1/2)(n↓ − 1/2), (2a)

HF =
∑

k

εkc†
k↑ck↑, (2b)

HS =
∑
kμ

εka†
kμ

akμ −
∑

k

(�0a†
k↑a†

−k↓ + H.c.), (2c)

HT =
∑

k

(tF d†
↑ck↑ + H.c.) +

∑
kμ

(tSd†
μakμ + H.c.). (2d)

The operator d†
μ creates an electron with energy εd and

spin μ = ↑,↓ and defines the number operator nμ := d†
μdμ;

nd := ∑
μ nμ. The dot electrons interact with each other with

the strength U . As mentioned above, the ferromagnetic lead
Hamiltonian HF involves only the majority spin (↑) elec-
trons, which are described by the fermion operator ck↑ with
momentum k and energy εk . In the superconducting lead,
the operator akμ describes the electron with momentum k,
spin μ, and single-particle energy εk , and the terms in the
pairing potential �0 are responsible for the Cooper pairs.
Since the superconducting phase is irrelevant in this study,
�0 is assumed to be real and positive. The tunnelings be-
tween the dot and the ferromagnetic/superconducting leads
are denoted by tF/S, respectively, which are assumed to be
momentum-independent for simplicity. The tunnelings induce
the hybridizations �S/F := πρS/F|tS/F|2 between the dot and
the superconducting/ferromagnetic leads, respectively, where
ρS/F are the density of states at the Fermi level in the leads.

The parameter δ := εd + U/2 indicates the deviation from
the particle-hole symmetry. To make our points clearer and
simplify the discussion, in this work we focus on the particle-
hole symmetric case (δ = 0). While the particle-hole asym-
metry gives rise to some additional interesting features [32],
the underlying physics can be understood in terms of that in
the symmetric case.

Next we exploit the strong superconductivity to further
simplify our model: The pairing gap of the superconducting
lead dominates over the other energy scales (�0 � U, �S, �F)
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including �0 � T 0
K , where T 0

K is the Kondo temperature in the
absence of ferromagnetic lead (tF = 0) and the superconduc-
tivity (�0 = 0). In such a limit, the role of the superconduct-
ing lead is completely manifested in the proximity-induced
pairing potential on the QD. Hence, as far as the physics
below the superconducting gap is concerned, the effective
low-energy Hamiltonian [see Fig. 1(b)] can be approximated
by integrating out the superconducting degrees of freedom, as

H = HSQD + HF + HT (3)

with

HSQD = U

(
n↑ − 1

2

)(
n↓ − 1

2

)
+ �d (d†

↑d†
↓ + d↓d↑), (4a)

HF =
∑

k

εkc†
k↑ck↑, (4b)

HT =
√

�F

πρF

∑
k

(d†
↑ck↑ + c†

k↑d↑), (4c)

where the proximity-induced superconducting gap is given by
�d ∼ �S [33,34]. In this work, we focus on Eq. (3) unless
specified otherwise.

In passing, the isolated QD with pairing potential (4a)
is diagonalized with the eigenstates and the corresponding
energies:∣∣D0

μ

〉 = d†
μ |0〉 , E0

D = −U/4 (μ = ↑,↓), (5a)

|S0
±〉 = 1 ± d†

↑d†
↓√

2
|0〉 , E0

S± = U/4 ± �d . (5b)

The unperturbed ground state of the QD experiences a transi-
tion from the spin-doublet state |D0

μ〉 to the spin-singlet state
|S0

−〉 at �d/U = 1/2.

A. Relation to other models

Upon the Bogoliubov–de Gennes (BdG) transformation[
d↑
d†

↓

]
= 1√

2

[
1 +1

1 −1

][
f⇑
f †
⇓

]
, (6)

the Hamiltonian (3) is rewritten as

H = ε f

∑
σ=⇑,⇓

f †
σ fσ + U f †

⇑ f⇑ f †
⇓ f⇓ +

∑
k

εkc†
k↑ck↑

+
√

�F

2πρF

∑
k

[c†
k↑( f⇑ + f †

⇓) + H.c.] (7)

with ε f = �d − U/2. The Hamiltonian in Eq. (7) describes
a single-orbital Anderson-type impurity level ε f with on-site
interaction U , coupled to a spin-polarized conduction band
with strength �F /2. Despite the formal similarity, there are
two important distinctions between the model (7) and the
conventional single-impurity Anderson model: (i) The model
(7) involves the pair tunneling, c†

k↑ f †
⇓, which will turn out to

play a crucial role below. (ii) The spin index σ = ⇑,⇓ for fσ
indicates the spin direction along the spin-x direction whereas
μ = ↑,↓ for dμ along the spin z-direction.

On the other hand, the particle-hole transformation

d1 = d↑, d2 = d†
↓, (8)

transforms the model (3) to

H = − U (n1 − 1/2)(n2 − 1/2) + �d (d†
1 d2 + d†

2 d1)

+
∑

k

εkc†
k↑ck↓ +

√
�F

πρF

∑
k

(d†
1 ck↑ + c†

k↑d1). (9)

In this model, the ferromagnetic lead is coupled to d1 via a
normal tunneling, and the pairing term has been transformed
to a tunneling term between dot orbital levels. It is known
as the resonant two-level system with attractive interaction
(−U < 0) [35,36].

B. Methods and physical quantities

For a nonperturbative study of the many-body effects, we
adopt the well-established numerical renormalization group
(NRG) method, which provides not only qualitatively but also
quantitatively accurate results for quantum impurity systems.
Specifically, we exploit the NRG method to identify the differ-
ent phases of the system as well as to investigate their quantum
transport properties. Technically, we impose additional im-
provements, the generalized logarithmic discretization [35,37]
with the discretization parameter 
 = 2 and the z-averaging
[38] with Nz = 32, on the otherwise standard NRG procedure
[39–41]. We use the conduction-band half-width D = 1 as the
unit of energy.

To identify the phases, we follow the (nonperturbative)
renormalization group idea [39,40,42] and examine the con-
served quantity

NS = n↑ − n↓ +
∑

k

c†
k↑ck↑ − N0 (10)

of the ground state, where N0 is the total charge number
of the unperturbed spin-polarized lead at zero temperature.
Physically, NS is the excess spin number in the whole system.

The quantum transport properties of different phases and
crossover regions are investigated by calculating the local
spectral density and the charge relaxation resistance with the
NRG method. The local spectral density (or local tunneling
density of states) of the QD,

Aμ(ω) = − 1

π h̄
Im

[
GR

μ(ω)
]
, (11)

is related to the Fourier transform GR
μ(ω) of the re-

tarded Green’s function Gμ(t ) for spin μ, Gμ(t ) =
−ih̄�(t ) 〈{dμ(t ), d†

μ(0)}〉. The charge relaxation resistance
Rq(ω) describes the response of the displacement current I (t )
through the QD in the presence of the ac gate voltage [43–46].
More explicitly, it is defined through the admittance g(t ) =
(ie/h̄)�(t ) 〈[I (t ), nd (t )]〉 by the relation 1/g(ω) = Rq(ω) +
i/ωCq(ω), where Cq(ω) is the quantum correction to the
capacitance. The admittance in turn can be extracted from its
relation, g(ω) = iω(e2/h̄)χc(ω) to the dot charge susceptibil-
ity χc(t ) = −i�(t ) 〈[nd (t ), nd ]〉, which is directly calculated
with the NRG method.
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III. RESULTS

Figure 2 shows the phase diagram, which exhibits a quan-
tum phase transition between two phases, namely the spin
singlet (S) and doublet (D) phases, identified by the quantum
number NS of the ground state calculated with the NRG
method. Across the phase boundary, the quantum number
NS of the ground state changes from NS = ±1 (doublet) to
NS = 0 (singlet). In addition, apart from the phase transition,
we have found two crossovers further distinguishing three
regimes inside the singlet phase: superconductivity-dominant
(SS), mixed-valence (SM), and Kondo (SK) singlet regimes.
Below, we detail some interesting characteristics of each
phase.

A. Double phase

The doublet phase occupies the region of smaller �d and
�F of the phase diagram in Fig. 2. The phase boundary is
roughly linear for �F /U � 1/2 as described by the equation

�d/U + �F /U ≈ 1/2. (12)

Note that the ground state remains doubly degenerate with
the excess spin number NS = ±1 even in the presence of the
coupling to the spin-polarized ferromagnetic lead. It is due to
the particle-hole symmetry. With the particle-hole symmetry
broken, the degeneracy is lifted at finite �F and the phase
boundary is shifted accordingly [32].

In the doublet phase, the local spectral densities Aμ(ω)
on the QD exhibit typical charge-fluctuation peaks at |h̄ω| ∼
E0

S± − E0
D = U/2 ± �d ; see Figs. 3(a) and 3(b). Apart from

those charge-fluctuation peaks, A↓(ω) has an additional
power-law peak at the zero frequency ω = 0, A↓(ω) ∝ |ω|−α

[see Fig. 3(b)]. This power-law peak at zero energy suggests
that the doublet phase is “marginal” in the RG sense. The
exponent α is found to increase monotonically with increasing
�F and �d , and is well fitted to α = 1 − (2/π ) tan−1(U/2�F )
for small �d [see Fig. 3(c)].

B. Singlet phase: Superconductivity-dominant singlet

For larger values of �d , the system has a singlet ground
state. [Recall that the proximity-induced pairing potential
�d ∼ �S . Therefore, the large-�d limit corresponds to the
strong coupling to the superconductor in the original system
in Fig. 2(a).] In particular, the region of larger �d/U and
smaller �F /U of the phase diagram Fig. 2 is characterized
by the strong Cooper pairing. It is natural as the ground
state of the unperturbed QD (�F = 0) is the spin singlet
|S0

−〉 composed of empty or doubly occupied states [see
Eq. (5)] due to the proximity-induced superconductivity. Such
a superconductivity-dominant singlet region is separated from
other singlet regions by a crossover boundary, roughly de-
scribed by the equation [cf. Eq. (12)]

�d/U − �F /U ≈ 1/2. (13)

Because in this regime the superconductivity prevails over
all the other types of correlations, the dot spectral densities
[see Figs. 4(a) and 4(b)] are simply given by the charge fluctu-
ation peaks at |h̄ω| ∼ E0

D − E0
S− = �d − U/2, broadened by

the weak tunnel coupling �F .
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FIG. 3. (a,b) Spin-dependent spectral densities Aμ(ω) in the
spin-doublet phase, corresponding to point 1 in Fig. 2. Here we have
used U = 0.5D, �F = 0.1D, and �d = 0.12D. The dotted lines in
(a) indicate the frequencies |h̄ω| = U/2 ± �d . (c) The exponent α

from the power-law relation of A↓(ω). The line is a fitting curve for
�d = 0; see the text for the expression for it. The values of �d/D
are annotated.

However, there is one noticeable feature in the spin-up
spectral density A↑(ω). That is, A↑(ω = 0) = 0 exactly, which
is a consequence of the Fano-like destructive interference
between two kinds of dot-lead tunneling processes. It will be
discussed in detail in Sec. IV C.

C. Singlet phase: Mixed-valence singlet

The most interesting singlet phase occurs near �d/U ≈
1/2 with finite �F /U in the phase diagram (Fig. 2). We call
it a “mixed-valence singlet” region because ε f < � f in the
model (7) regarding ε f and U as independent parameters;
see the further discussions in Sec. IV D. It is distinguished
from the doublet phase by the true phase boundary (12) and
separated from the superconductivity-dominant singlet state
by the crossover boundary (13); that is,

|�d/U − 1/2| ≈ �F /U . (14)
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FIG. 4. Dot spectral densities in the superconductivity-dominant
singlet regime corresponding to point 3 in Fig. 2. Here we have used
U = 0.5D, �F = 0.4D, and �d = 0.45D. The dotted lines indicate
the frequencies |h̄ω| = �d − U/2. In (a), the spectral density van-
ishes at zero frequency due a Fano-like destructive interference.

It is also separated from still another singlet state for �F /U �
1, which is characterized by the Kondo behaviors (see also
Sec. III D), by another crossover.

The two spin-dependent spectral densities Aμ(ω) in the
mixed-valence singlet state, as shown in Fig. 5, are in stark
contrast with each other: While A↓(ω) for the minority spin
features a usual Lorentzian peak of width �− at the zero
frequency, A↑(ω) for the majority spin has a Lorentzian
dip of the same width �− superimposed on a broader peak
structure of width �+. Later (see Sec. IV D), we will attribute
this dip structure to a destructive interference between two
different types of tunneling processes based on an effective
noninteracting theory.

D. Singlet phase: Kondo singlet

When the QD couples strongly with the spin-polarized lead
(�F /U � 1,�d/U ), the system displays still another type of
singlet correlation. We call this state a Kondo singlet state as
it corresponds to the so-called “charge Kondo state” [47,48];
see Sec. IV E. In the charge Kondo state, the excess charge on
the QD plays the role of a pseudospin.

As shown in Fig. 6, the peak shapes of the spectral densities
Aμ(ω) are similar to those in the mixed-valence singlet state
described in Sec. III C. The dip structure in A↑(ω) for the
majority spin is again attributed to the Fano-like destructive
interference. However, the normalized peak height πTK A↓(ω)
for the minority spin is now unity, demonstrating the charge
Kondo effect; the peak height of π�−A↓(ω = 0) grows from
zero to unity as one moves from the mixed-valence regime
to the Kondo regime [compare Fig. 6(b) with Fig. 5(b)].
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FIG. 5. Dot spectral densities in the mixed-valence singlet
regime at point 4 in Fig. 2. Here we have used U = 0.5D, �F =
0.4D, and �d = 0.19D.

Further, the peak width of A↓(ω), or the dip width of A↑(ω),
is identified as the charge Kondo temperature TK .

The charge Kondo effect is also manifested in the charge
susceptibility χc(ω) of the QD shown in Fig. 6(c). Its real
part displays a pronounced central peak of the same width
TK . In the conventional (spin) Kondo effect, this susceptibility
corresponds to the spin susceptibility.

IV. DISCUSSION

The NRG calculations reported in the previous section
clearly display a quantum phase transition between the spin-
singlet and -doublet phases. Here we use some analytical but
approximate methods to understand more deeply the nature of
the transition and the characteristics of the different phases.

As seen in the equivalent model (7), our system is de-
scribed by a generalized form of the Anderson impurity
model. The Anderson impurity model [49] has been studied
in various theoretical methods, using the variational method
[50], the scaling theory [51,52], the numerical renormalization
group method [42], and the 1/N expansion [53]. Here we
extend some of these methods.

A. Mixed-valence transition

We first examine analytically the phase boundary between
the doublet and singlet phases found in Sec. III based on the
NRG method. Our analysis consists of two steps depending on
the relevant energy scale. At higher energies (the band cutoff

 � �F ), we extend the scaling theory [51,52] to integrate
out the high-energy excitations (the band cutoff 
 here is not

075161-5



MINCHUL LEE AND MAHN-SOO CHOI PHYSICAL REVIEW B 99, 075161 (2019)

10−5 10−2−10−5−10−2
0.0

0.2

0.4

0.6

0.8

1.0

F
A

(
)

(a)

TK

10−5 10−2−10−5−10−2
0.0

0.2

0.4

0.6

0.8

1.0

T
K

A
(

)

(b)

TK

10−5 10−2−10−5−10−2
0

20

40

60

80

100

120

−R
e

[
c(

)]

(c)

TK

0.0 0.5 1.0 1.5 2.0
10−31
10−26
10−21
10−16
10−11
10−6

( F − F c)/U

−
o

rT
K

(d)
TK

boson

FIG. 6. (a)–(c) Dot spectral densities and charge susceptibility
in the Kondo regime of the singlet phase at point 2 in Fig. 2. Here
we have used U = 0.5D, �F = 0.4D, and �d = 0.125D. (d) The
width of the central peak of A↓(ω) and T boson

K from Eq. (29) at
�d = 0.125D.

to be confused with the band discretization parameter of the
NRG in Sec. II B). At lower energies (
 < �F ), we extend the
variational method [50].

Following Haldane’s scaling argument [51,52], it is
straightforward to integrate out the high-energy states in the
conduction band up to �F and keep track of the scaling of the
parameters ε f and U in the equivalent model (7); with regard
to model (7), it is convenient to consider ε f and U (rather
than �d and U ) as independent parameters. We found that
even though our system has only a single spin channel, the
anomalous tunneling term acts as the tunneling via the second

spin channel so that the scaling result is exactly the same as
the one for the conventional Anderson model:

ε f (
) = ε∗
f − �F

π
ln




�F
(15)

with the scaling invariant ε∗
f = ε f (
 = �F ) and the band

cutoff 
. Therefore, as in the conventional Anderson im-
purity model, it is possible to identify three regimes:
the empty/doubly occupied (|ε∗

f | � �F ), the mixed-valence
(|ε∗

f | � �F ), and the local-moment regimes (ε∗
f � −�F ).

For the conventional Anderson impurity model, in all these
regimes the renormalization beyond Haldane’s scaling even-
tually flows into the spin-singlet state, so there are only
crossovers between the regimes. However, for our system
the local-moment regime does not flow into the singlet state
because there is only a single spin channel, and the anomalous
tunneling term prevents the formation of the conventional
Kondo correlation. Therefore, a transition takes place between
the mixed-valence and local-moment regimes, hence the tran-
sition is referred to as the mixed-valence one.

To see this more clearly, we extend the variational method.
(From a numerical point of view, the disappearance of the
Kondo correlation in the local-moment regime is already
well implemented by the nonperturbative NRG method.) Here
we focus on the case of U → ∞. This condition rules out
the doubly occupied state on the QD [recall that concerning
model (7), ε f and U are regarded as independent parameters]
and makes the variational analysis much simpler; the finite
U should involve more states but would not alter the main
qualitative feature of the transition found in the U → ∞ case.
We take a variational ansatz for the ground states in spin-
singlet and -doublet states, respectively, up to second order
in the dot-lead tunneling,

|S〉 =
⎡
⎣α0 +

∑
k<kF

αk+ f †
⇑ck↑ +

∑
k>kF

αk−c†
k↑ f †

⇓

+
∑

k>kF ,k′<kF

αkk′c†
k↑ck′↑

⎤
⎦ |FS〉0 , (16a)

|D↑〉 =
⎡
⎣β0 f †

⇑ +
∑
k>kF

βkc†
k↑ +

∑
k>kF ,k′<kF

(βkk′+ f †
⇑c†

k↑ck′↑

+ βkk′−c†
k↑c†

k′↑ f †
⇓)

⎤
⎦ |FS〉0 , (16b)

where |FS〉0 is the unperturbed Fermi sea and kF is the
Fermi wave number. The states satisfy the normalization
condition, 〈S|S〉 = 〈D↑|D↑〉 = 1. The coefficients α and β

in these two states are to be determined by the minimiza-
tion condition of the energy expectation value with respect
to these states: 〈S|H |S〉 := E0 + ε f + εS and 〈D↑|H |D↑〉 :=
E0 + ε f + εD, where E0 is the unperturbed energy of |FS〉0.
By applying the Lagrange multiplier method under the nor-
malization constraint, we obtain the coupled differential
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equations:

εSα0 = −ε f α0 + tF√
2

⎛
⎝∑

k<kF

αk+ −
∑
k>kF

αk−

⎞
⎠, (17a)

εSαk+ = tF√
2
α0 − εkαk+ + tF√

2

∑
k′>kF

αk′k, (17b)

εSαk− = − tF√
2
α0 + εkαk− + tF√

2

∑
k′<kF

αkk′ , (17c)

εSαkk′ = tF√
2

(αk′+ + αk−) + (εk − εk′ − ε f )αkk′ , (17d)

and

εDβ0 = tF√
2

∑
k>kF

βk, (18a)

εDβk = tF√
2
β0 + (εk − ε f )βk + tF√

2

[ ∑
k′<k

βk′k−

−
∑
k′>k

βkk′− −
∑

k′<kF

βkk′+

]
, (18b)

εDβkk′+ = − tF√
2
βk + (εk − εk′ )βkk′+, (18c)

εDβkk′− = − tF√
2

(βk − βk′ ) + (εk + εk′ )βkk′−. (18d)

Up to first order (by setting αkk′ = βkk′± = 0), the equa-
tions for εS and εD can be obtained in closed form:

εS = −ε f − �F

π
ln

(
1 + D

|εS|
)

, (19a)

εD = −�F

2π
ln

(
1 + D

|εD| − ε f

)
. (19b)

These equations can be solved numerically, and two dif-
ferent phases, in each of which either εS < εD or εS > εD,
are identified, as shown in Fig. 7(a). Although closed-form
equations for εS and εD are not available with the second-order
terms included, the whole differential equation can be solved
numerically by discretizing the lead dispersion. It is found
that the inclusion of the second-order terms hardly changes
the phase boundary. Using similar reasoning, one can see
that the phase boundary remains intact upon including the
higher-order terms in the variational wave functions.

This is in stark contrast with the similar variational analysis
for the conventional Anderson impurity model in Appendix A:
Up to first order the equations for εS and εD are the same as
those for our models [see Eq. (A5)]. Therefore, at this order
a phase transition between the spin-singlet and -doublet states
also takes place even in the conventional Anderson impurity
model. This apparent contradiction to the well-known fact that
the ground state of the conventional Anderson impurity model
is always spin singlet is due to the perturbative construction
of the ansatz. As illustrated in Fig. 7(b), the spin-doublet
region shrinks for the conventional Anderson model when

0.0 0.1 0.2 0.3 0.4

−0.20

−0.15

−0.10

−0.05

0.00

F

f

(a)
D

SM

0.0 0.1 0.2 0.3 0.4

−0.20

−0.15

−0.10

−0.05

0.00

2

d

(b)
D

SM

FIG. 7. Phase diagrams obtained from the variational method in
the U → ∞ limit (a) for our model and (b) for the conventional
single-impurity Anderson model. The solid and dotted lines are
phase boundaries when up to the first- and second-order terms are
taken into account, respectively.

one includes the higher-order terms. In other words, the
Kondo ground state involves all the higher-order singlet states
between the dot and the lead [54].

This difference can be inferred from a comparison between
two ansatz, Eqs. (16) and (A2). For the spin-singlet state, the
number of particle-hole excitations in the second-order term
for our model is smaller by half than that for the conventional
Anderson impurity model because of the difference in the
channel numbers. On the other hand, it is not the case for the
doublet state. It explains why the singlet state in our model
does not lower its energy upon including the higher-order
terms, compared to the doublet state, and also why the Kondo
correlation cannot arise.

B. Doublet phase

We now investigate the characteristics of the different
phases (and subregions inside the singlet phase). We start with
the doublet phase by applying the Schrieffer-Wolff transfor-
mation on the assumption that �F � |ε f |,U . The model (7)
is then transformed to an effective Kondo-like model:

H ≈ Heff = Js · S +
∑

k

εkc†
k↑ck↑. (20)

Here the impurity spin-1/2 operator S is defined by

S+ = (S−)† = |⇑〉 〈⇓| , Sz = |⇑〉 〈⇑| − |⇓〉 〈⇓| , (21)

where

|σ 〉 = f †
σ |0〉 (σ = ⇑,⇓). (22)
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On the other hand, the conduction-band spin, s =∑
kk′νν ′ ψ

†
kν

τνν ′ψk′ν ′ , is defined over the two-component
Nambu spinor ψkν with ψk1 = ck↑ and ψk2 = c†

k↑, with
τ being the Pauli matrices in the Nambu space (i.e., the
particle-hole isospin space). The isotropic exchange coupling
is obtained as ρF J ≈ �F /π |ε f |. The model (20) is formally
the same as the usual Kondo model except for the fact that
the conduction spin is replaced by the isospin in the Nambu
space. This replacement, however, makes a crucial difference
in poor man’s scaling [40,42,55]. For example, the typical
scaling of the Jz term vanishes at least up to second order:

−2
J2
⊥

εk3

(
ck1 ċk2 ċ†

k3
c†

k4
+ ċk2 ck1 ċ†

k3
c†

k4

) |↑〉 〈↑| ≈ 0. (23)

These results imply that unlike the true Kondo model involv-
ing real spins, the exchange coupling in Eq. (20) involving
particle-hole isospins is marginal in the RG sense. Namely, it
does not scale as one goes down to lower energies. The NRG
results discussed in Sec. III A support this scaling analysis.

C. Singlet phase: Superconductivity-dominant singlet

The superconductivity-dominant singlet phase can be eas-
ily understood within the perturbative argument. When the
QD is isolated (�F = 0), the pairing potential �d dominates
over the on-site interaction U for �d/U > 1/2; see Eq. (5).
As the tunneling coupling �F is turned on, the above feature
does not change qualitatively unless �F exceeds �d signifi-
cantly. As �F /U grows further beyond �d/U − 1/2, the state
gradually crosses over to the mixed-valence singlet state.

D. Singlet phase: Mixed-valence singlet

The mixed-valence singlet phase, |�d/U − 1/2| �
�F /U � 1, is roughly similar to the mixed-valence regime of
the conventional Anderson impurity model. Recall that in the
equivalent model (7), the impurity energy level is given by
ε f = �d − U/2 and according to the above phase boundary,
ε f < �F , hence the term “mixed-valence singlet state.”

The most noticeable feature of the mixed-valence singlet
region is the emergence of the two energy scales �± in
the local spectral densities, as demonstrated in Fig. 5. To
understand it, we first note that in this phase (�F > ε f ) the
charge fluctuation on the QD is huge, and at zeroth order the
effects of the on-site interaction U may be ignored. In the
noninteracting picture, the dot Green’s functions given by

GR
↑(ω) = 1

�+ − �−

[
�+

ω + i�+
− �−

ω + i�−

]
, (24a)

GR
↓(ω) = 1

�+ − �−

[
�+

ω + i�−
− �−

ω + i�+

]
, (24b)

clearly exhibit two energy scales,

�± = �F /2 ±
√

(�F /2)2 − ε2
f , (25)

which represent the relaxation rates predominantly via the
normal tunneling (c†

k↑ f⇑) and the pair tunneling (c†
k↑ f †

⇓),
respectively. The normal- and pair-tunneling processes are

accompanied by phase shift π relative to each other and
lead to destructive interference; recall d↑ = ( f⇑ + f †

⇓)/
√

2
from the transformation (6). The destructive interference is
maximal at zero frequency so that A↑(ω) has a dip with a
width �− inside the central peak whose width is �+. For
spin ↓, two processes simply add up so that two peaks are
superposed, displaying a very sharp peak of the width �−.

While the noninteracting theory explains the feature of the
spectral densities qualitatively, the NRG results in Sec. III C
uncover that the interaction U significantly renormalizes ε f

and hence �± such that �− � �+ � �F . In particular, �−
decreases exponentially with decreasing �F and vanishes at
the transition point. One way to investigate such renormaliza-
tion effects is again to use the extended variational method
in Sec. IV A including all orders [50,54]. This is beyond the
scope of the present work, however, and is left for future
studies.

E. Singlet phase: Kondo singlet

Now we turn to the Kondo singlet regime with �F /U �
1,�d/U . In Sec. II A we have seen that our model, (3) or (7),
is equivalent to the resonant two-level model with negative
interaction, (9). In a recent work [36] along a different context,
it was found that the resonant two-level model in the large-�F

limit can be bosonized and thus mapped to the anisotropic
Kondo model. Interestingly, it was also shown to be related to
a quantum impurity coupled to helical Majorana edge modes
formed around a two-dimensional topological superconduc-
tor. Here we adopt their result to our context, referring to
Ref. [36] for details of the derivation.

Following the bosonization procedure [36], the interacting
resonant two-level model is mapped to a bosonized form of
the anisotropic Kondo model,

HK =
∑
kσ

εkc†
kσ

ckσ + J⊥
2

(S+s− + S−s+) + JzS
zsz (26)

with the conduction-band spin s and the impurity spin S. Here
the Kondo couplings are identified as

J⊥ =
√

8�d (27)

and
√

2

[
1 − 2

π
tan−1 πρJz

4

]
= γ := 1 + 2

π
tan−1 U

�F
. (28)

For sufficiently large �F compared to U , this Kondo model
is antiferromagnetic (J⊥, Jz > 0), and the effective Kondo
temperature associated with the screening of the magnetic
moment is, from the known results on the Kondo model,

T boson
K ∼ �F

2

(
2�d

�F

) 2
2−γ 2

. (29)

As is clear from the bosonization procedure, the anisotropic
Kondo model essentially corresponds to the so-called “charge
Kondo effect,” with the excess charge on the QD playing the
role of the pseudospin [47,48]. More specifically, the charging
of the d↓ level is mapped onto the pseudospin of the Kondo
impurity. Considering that the ferromagnetic lead in our orig-
inal model has only a single spin component, this Kondo
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model should be defined in particle-hole isospin space of
both the dot and the lead. Then, the spin-flip scattering in the
effective Kondo model can be interpreted as the particle-hole
scattering in our original model. For example, the injected
particle in the lead is scattered into the hole, accompanying
the inversion of the occupation of the d↓ level. Since the
change in the occupation of the d↓ level is only possible via
the pair tunneling to the superconducting lead, the Kondo
correlation implies that the currents in the ferromagnetic and
superconducting leads are highly correlated.

Here it should be noted that the interpretation based on the
bosonization is valid only in the large-�F limit because the
bosonization procedure requires the unbounded momentum
(or dispersion) of a continuum band (whose bandwidth is �F

in our case) that is to be bosonized. Hence, the mapping to
the anisotropic Kondo model cannot be justified in general;
in this respect, our parameter regime and interpretation are
different from those of Ref. [36], where the singlet and
doublet phases and the phase transition between them are
explained in terms of the effective Kondo model. One piece
of evidence supporting the limitation of the bosonization may
come from a comparison between the width of the central
peak of A↓(ω), which is TK in the SK regime, and the effective
Kondo temperature, Eq. (29), predicted from the bosonization
[see Fig. 6(d)]. Two energy scales are in good agreement
with each other for �F /U > 1, as expected. However, for
�F /U � 1, there is a big discrepancy between them. In
addition, the expression (29) fails close to the transition point.
This indicates that the region of the singlet phase with small
�F is not of the Kondo state but of the mixed-valence state,
as discussed in the previous section.

V. POSSIBLE EXPERIMENTS

Up to now, we have elucidated the physical nature of the
two phases and, in particular, classified the different regimes
in the singlet phase, mostly based on the dot spectral densities.
One remaining question is how to make a distinction between
the different regimes in experiment. Here we suggest three
possible experimental observations: the spin-selective tunnel-
ing microscopy, the current correlation between leads, and the
dynamical response with respect to the ac gate voltage.

The characteristics of different phases and regimes are well
reflected in the spin-dependent spectral density, which can be
measured by the spin-selective tunneling microscopy applied
directly to the quantum dot. It corresponds to adding an addi-
tional ferromagnetic lead very weakly connected to the quan-
tum dot and measuring the differential conductance through
it. By altering the polarization of the auxiliary ferromagnetic
lead, one can measure the spectral density of the quantum dot
for each spin, identifying different phases based on it.

Secondly, as explained in Sec. IV E, the Kondo scattering
in the SK regime correlates the currents in the ferromag-
netic and superconducting leads, resulting in nontrivial cross-
current correlation, which can be measured in experiment.
Obviously, the average current from the fully polarized fer-
romagnetic lead to the superconducting lead is still zero in
the presence of an interacting quantum dot because there is
no influx of spin-↓ electrons from the ferromagnetic lead.
However, in contrast with previous works on similar systems

FIG. 8. Zero-frequency relaxation resistance Rq(ω → 0) (a) as
functions of �d at �F /U = 0.1 along the bb′ line in Fig. 2, and (b)
as functions of �F /U at �d/U = 0.125 along the aa′ line in Fig. 2.

[26,56], the strong interaction in our system makes the cur-
rents correlated, though they are zero on average. Surely, this
cross-current correlation should appear in the other regimes
of the singlet phase. It can be inferred from the fact that
they are divided by crossovers, not by sharp transition, and
that they feature similar spectral densities. However, in the
SK regime the current correlation is maximized by enhanced
particle-hole scattering due to the Kondo correlation. There-
fore, we expect that the amplitude of the current correlation
increases and saturates as one moves toward the SK regime.
Experimentally, the current correlation is measured under
finite bias because the dc current correlation strictly vanishes
at zero bias, and the equilibrium low-frequency feature of
the correlation is hard to measure in experiment due to the
decoherence effect. The calculation of the current correlation
at large bias is beyond the scope of this work, so we have
described this method only qualitatively.

The third experimental proposal, which is expected to iden-
tify all the phases and regimes unambiguously, is to measure
the charge relaxation resistance in the zero-frequency limit
(a current response to an ac gate voltage). Figure 8 shows
the dependence of the zero-frequency relaxation resistance
Rq(ω → 0) on �d and �F . First, it diverges in the spin-
doublet regime. Physically, the relaxation resistance is related
to the dissipation via the charge relaxation process of the
particle-hole pairs in the lead [45]. In the doublet regime,
the spin ↓ level in the dot is effectively decoupled from the
other system and is on resonance, which is the reason for the
twofold degeneracy [36]. This resonance condition enhances
the generation of the particle-hole pairs greatly (or indefinitely
in the perturbative sense) [46], leading to diverging values.

On the contrary, the resistance vanishes in the SS regime.
In the presence of the superconductivity, the particle-hole
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pairs can be generated via two processes: one is the charge-
conserving type [c†

k↑ f⇑ in Eq. (7)] and the other is the pair-

tunneling type (c†
k↑ f †

⇓). The particle-hole pair amplitudes of
the two processes are opposite in sign due to the fermion
ordering [46]. Also, the cancellation is exact in the zero-
frequency limit of the particle-hole pairs because the weights
from the intermediate virtual states are the same for two
processes in this limit. On the other hand, Rq is observed to
saturate toward h/2e2 in the SK regime. For a single-channel
Fermi-liquid system, the relaxation resistance is known to
have the universal value h/2e2 [43,44], and for the conven-
tional Anderson impurity model in the Kondo regime the re-
sistance becomes h/4e2 since there are two spin channels that
behave like a composite of two parallel resistors of resistance
h/2e2 [45]. While our system features the Kondo correlation
in this regime, the resistance is h/2e2 because there is only a
single channel to generate the particle-hole pairs. Finally, in
the SM regime, Rq is finite but depends strongly on the values
of the parameters: it changes continuously from Rq = ∞ to
the saturation values, as seen in Fig. 8. It is known that [43,44]
the small mesoscopic RC circuit with a single channel should
have a universal value Rq = h/2e2 at zero temperature as long
as it is in the Fermi-liquid state. The nonuniversal value of Rq

in the SM, therefore, indicates that the system is in non-Fermi-
liquid states, which makes it distinctive from the SK regime.
The microscopic origin of the nonuniversal value of Rq is
explained by the fact that the two opposite effects discussed
above are partially operative simultaneously: the enhancement
of the particle-hole generation due to the high density of states
of spin-↓ at the Fermi level (near the spin-doublet phase) and
the cancellation between the charge-conserving and -pairing
processes (near the SS regime). The relative strength of the
two effects surely depends on the value of the parameters.

VI. CONCLUSION

Using the NRG method, we have studied the triad interplay
of superconductivity, ferromagnetism, and the Kondo effect
all together in a QD coupled to both a superconducting and
spin-polarized electrode, as shown schematically in Fig. 1(a).
We have found that unlike the pairwise competition among the
three effects, the triad interplay is “cooperative” and leads to a
mixed-valence quantum phase transition between doublet and
singlet states. The singlet phase is in many respects similar to
the mixed-valence state, but connected adiabatically through
crossover either to the superconducting state in the limit of
strong coupling to the superconductor or to the charge Kondo
state in the limit of strong coupling to the spin-polarized lead.
Physical explanations and interpretations based on analytic
methods such as bosonization, scaling theory, and the varia-
tional method have been provided. Finally, we have proposed
the experimental methods such as the spin-selective tunneling

microscopy, measurement of the cross-current correlation,
and the charge relaxation resistance in order to distinguish the
different phases and regimes.

Even though our study has found out the key characteristics
of the ferromagnet-quantum dot-superconductor system, it
still leaves much room for further studies. First, one can
lift the particle-hole symmetry condition used in this work.
Then, due to the ferromagnetic proximity effect, it induces an
effective Zeeman splitting (or exchange field), which would
form subgap states in the dot. Moreover, the breaking of
the particle-hole symmetry for spin-↓ level is expected to
induce an effective Zeeman field for the Kondo model in the
SK regime, shifting the phase boundaries [32]. Secondly, the
strong superconductivity condition (�0 � U, �S, �F ) also
can be lifted so that the spin Kondo-dominated state (TK >

�0) can arise. Then, the SS regime will be replaced by the
Kondo state. In this case, one may observe the interesting
crossover from the spin Kondo state to the charge Kondo
state. Finally, the study can go beyond the equilibrium case by
applying a finite bias that is still below the superconducting
gap. As discussed in Sec. V, the calculation of the cross-
current correlation at finite bias is important for experimental
verification. Although the nonequilibrium condition in the
presence of a strong interaction is challenging, it is worth-
while from an experimental point of view.
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APPENDIX: VARIATIONAL METHOD FOR THE
SINGLE-IMPURITY ANDERSON MODEL

Here we apply the variational method to the conventional
Anderson impurity model described by

HA = εd

∑
σ

nσ + Un+n− +
∑
kσ

εkε
†
kσ

εkσ

+
∑
kσ

(tσ d†
σ ckσ + H.c.) (A1)

in the same way as in the main text. The conventional An-
derson impurity model is different from our model in two
respects: one is that the lead has two (spin) channels, and the
second is that the tunneling conserves the spin. The ansatz for
spin-singlet and -doublet states constructed in a similar way
as in Eq. (16) is

|S〉 =
⎛
⎝α0 +

∑
k<kF ,σ

αkσ d†
σ ckσ +

∑
k<kF ,k′>kF ,σ

αkk′σ c†
k′σ ckσ

⎞
⎠ |FS〉0 , (A2a)

|Dσ 〉 =
⎛
⎝β0σ d†

σ +
∑
k>kF

βkσ c†
kσ

+
∑

k>kF ,k′<kF ,σ ′
βkk′σ ′σ c†

kσ
d†

σ ′ck′σ ′

⎞
⎠ |FS〉0 . (A2b)
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Now we minimize the energy expectation value with respect to these states by applying the Lagrange multiplier method under
the normalization constraint 〈S|S〉 = 〈Dσ |Dσ 〉 = 1. Then, one can obtain the following coupled differential equations:

εSα0 = −εdα0 +
∑

k<kF ,σ

t∗
σαkσ , (A3a)

εSαkσ = tσα0 − εkαkσ + tσ
∑

k′>kF

αkk′σ , (A3b)

εSαkk′σ = t∗
σαkσ + (εk′ − εk − εd )αkk′σ , (A3c)

and

εDβ0σ = tσ
∑
k>kF

βkσ , (A4a)

εDβkσ = t∗
σ β0σ + (εk − εd )βkσ +

∑
k′<kF ,σ ′

t∗
σ ′βkk′σ ′σ , (A4b)

εDβkk′σ ′σ = tσ ′βkσ + (εk − εk′ )βkk′σ ′σ . (A4c)

Up to the first order (by setting αkk′σ = βkk′σ ′σ = 0), the closed-form equations for εS and εD are given by

εS = −εd − �+ + �−
π

ln

(
1 + D

|εS|
)

, (A5a)

εD = −�μ

π
ln

(
1 + D

|εD| − εd

)
, (A5b)

which is basically the same as Eq. (19) except that the dot-lead hybridization is increased since the conventional Anderson
impurity model has two spin channels in the lead. Up to the second order, the self-consistent equations for εS and εD read

εS = −εd −
∑

σ

�σ

π

∫ D

0

dε′

ε′ + |εS| − �σ

π
ln ε′+D+|εS |+|εd |

ε′+|εS |+|εd |
, (A6a)

εD = −�σ

π

∫ D

0

dε′

ε′ + |εDσ | + |εd | − �++�−
π

ln ε′+D+|εDσ |
|εd |+|εDσ |

. (A6b)
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