Introduction to the diamond NV centers

focusing on quantum sensing applications

Donghun Lee

Department of Physics, Korea University

Toward quantum devices in real life

Quantum devices (applications of quantum systems)

e.g. quantum computers, quantum communications, quantum metrology

UCSB

- Long spin coherence time (e.g. trapped atoms)
- Fast processing capabilities (e.g. superconducting qubits)
- Scalabilities (e.g. solid-state QDs or defects)
- Interfaces and transducers (e.g. photons, mechanical oscillators)
- ..

Toward quantum devices in real life

Quantum devices (applications of quantum systems)

e.g. quantum computers, quantum communications, quantum metrology

Nitrogen-Vacancy color centers in diamond crystal

"diamond NV centers"

- Lo
 - Fa
- Sci
- Int
- •

Outline

- Basics of the NV center
 - Structure, electronic, optical properties
 - Spin physics, coherence properties
- Applications for quantum metrology
 - Magnetic field sensing
 - Strain field sensing

Outline

- Basics of the NV center
 - Structure, electronic, optical properties
 - Spin physics, coherence properties
- Applications for quantum metrology
 - Magnetic field sensing
 - Strain field sensing

Physical structure of diamond and the NV center

Synthesized single crystal diamond for research

- HPHT(high pressure high temperature) growth (> 50,000 bar, > 1400 °C)
- CVD(chemical vapor deposition) growth
- Nanodiamonds, thin films, bulk crystals...

Element 6

Type Ib diamond: ~ 100 ppm [N]

Type IIa diamond: ~ 1 ppm [N] Electronic grade: < 5 ppb [N]

Nanodiamonds

Physical structure of diamond and the NV center

Color centers in diamonds

• Pure diamond (clear)

• Nitrogen defects (yellow)

• Boron defects (blue)

original-diamonds.com

Nitrogen-Vacancy(NV) defects (pink)

Formation of the NV center

- Natural or as-grown NV centers : longest spin coherence times for bulk NVs
- High density NV formation: electron irradiation (~ MeV) and annealing (~ 800 K)
- Low density NV formation: N implantation (~ keV) and annealing (~ 800 K)
- Position control of NV centers :
 - Depth control: delta-doped CVD growth
 - Lateral position control: masked implantation, TEM irradiation

K. Ohno et al., Appl. Phys. Lett. (2012)

K. Ohno et al., Appl. Phys. Lett. (2014) C. A. McLellan et al., Nano Lett. (2016)

Fabrication of diamond nanostructures

Optical properties of the NV center

Optical properties of the NV center

Optical properties of the NV center

dashed lines : non-radiative decay

Room-temperature optical absorption and fluorescence (excited at 532 nm) spectra from NV⁻ center

V. M. Acosta Ph.D. thesis (2011)

Experimental setup: confocal optics

ñ

- LCAO (linear combinations of atomic orbitals)
 : four sp³ dangling bonds
- C_{3v} point group symmetry
- There are total 6 electron for NV⁻
 - : 3 e⁻ from C, 2 e⁻ from N, 1 e⁻ from environment
- S = 1 (spin triplet) state

MW frequency (MHz)

Outline

- Basics of the NV center
 - Structure, electronic, optical properties
 - Spin physics, coherence properties
- Applications for quantum metrology
 - Magnetic field sensing
 - Strain field sensing

- T_1 : spin-lattice relaxation time measured by population decay
- T_2 : spin-spin dephasing time measured by Hahn echo or decoupling sequences
- T_2^* : inhomogeneous dephasing time measured by free induction decay

• T_1 : spin-lattice relaxation time measured by population decay

• T_2^* : inhomogeneous dephasing time measured by Ramsey sequences

• T_2 : spin-spin dephasing time measured by Hahn echo or decoupling sequences

Unique properties of the NV center

- Spin qubits (or artificial atoms) in sold-state material
 (e.g. wide band gap, low spin-orbit coupling, large Debye temperature)
- Atomic-scale defect for high spatial resolution imaging
- Optical initialization and readout of spin state
- Long coherence times at even room temperature $(T_2 > ms)$
- Fast spin control and qubit gates (~ns)
- Operates from cryogenic temperatures to ambient
- Chemically stable, non-toxic and bio-friendly
- Optically stable (free from photobleaching)
- High field sensitivity e.g. magnetic, electric, strain field, temperature

Property	Sensitivity	Property	Sensitivity
Magnetic field	< 1 nT/Hz ^{1/2}	Strain field	< 10 ⁻⁷ /Hz ^{1/2}
Electric field	< 100 Vcm ⁻¹ /Hz ^{1/2}	Temperature	< 0.1 K/Hz ^{1/2}

Outline

- Basics of the NV center
 - Structure, electronic, optical properties
 - Spin physics, coherence properties
- Applications for quantum metrology
 - Magnetic field sensing
 - Strain field sensing

Magnetic field sensing with high sensitivity and high spatial resolution

Biomedicne

Magnetic field sensing: detecting schemes of DC field

Oscillation frequency

 $\propto \delta$ (detuning)

Magnetic field sensing: detecting schemes of DC field

Example of DC field imaging with scanned probes

P. Malentinsky et al., Nature Nanotechnology (2012)

UCSB setup

Example of DC field imaging with scanned probes

UCSB setup

Confocal scan (30 µW @ 532 nm)

- Single crystal diamond cantilevers fabricated with pillars to aid in photon collection
- NV depth ~ 20 nm, on average 1 NV per pillar
- These cantilevers are then attached to custom tuning fork probes for force sensing

1 μm

Example of DC field imaging: hard disk

DC field sensitivity: 0.32 G/VHz, dynamic range: 30 Gauss

From UCSB group M. Pelliccione *et al.*, Nature Nanotechnology (2016)

Example of DC field imaging: hard disk

Alternate method: Use a fixed RF frequency to trace out magnetic field contours.

28**90.0** MHz (**9**.0)G)

200 nm

More examples of DC field imaging

Superconducting vortices in BaFe₂(As_{0.7}P_{0.3})₂

M. Pelliccione et al., Nature Nanotechnology (2016)

Superconducting vortex in YBCO

L. Thiel et al., Nature Nanotechnology (2016)

Magnetic field sensing: detecting schemes of DC field

Photon shot-noise limited DC field sensitivity

$$\eta_{DC} \approx \frac{1}{\gamma} \frac{1}{C\sqrt{I_0}} \frac{1}{\sqrt{T_2^*}}$$

 T_2^* : inhomogeneous dephasing time

 $\eta_{DC} \sim 10 \text{ nT}/\sqrt{\text{Hz}}$ $(T_2^* \sim 100 \ \mu s)$

L. Rondin et al., Rep. Prog. Phys. (2014) S. Hong et al., MRS Bulletin (2013)

Magnetic field sensing: detecting schemes of DC field

R. Schirhagl et al., Annu. Rev. Phys. Chem. (2014)

Photon signal :

$$S = \frac{a+b}{2} + \frac{a-b}{2}\cos(\phi) = \frac{a+b}{2} + \frac{a-b}{2}\cos(\gamma B_{DC}\tau)$$

a : number of photons at $\phi = 0$ b : number of photons at $\phi = \pi$

Magnetic field sensing: detecting schemes of AC field

Advanced pulse method e.g. Hahn echo sequence

$$\frac{\pi}{2} - \tau - \pi - \tau - \frac{\pi}{2}$$

S. Hong et al., MRS Bulletin (2013)

Magnetic field sensing: detecting schemes of AC field

 $\eta_{AC} \sim 30 \text{ nT}/\sqrt{\text{Hz}}$

Outline

- Basics of the NV center
 - Structure, electronic, optical properties
 - Spin physics, coherence properties
- Applications for quantum metrology
 - Magnetic field sensing
 - Strain field sensing

Strain field sensing with high sensitivity

- Quantum sensors for force, mass, displacement, acceleration...
- Universal interface in quantum networks
- Quantum measurements in macroscopic mechanical object

Strain field sensing

x

- Simulated stress profile of our cantilever (COMSOL)
- $60 \ \mu m \times 15 \ \mu m \times 1.1 \ \mu m$, NV depth = 51.5 nm
- Fundamental flexural mode, $f_m = 882 \text{ kHz}$
- Drive motion with a piezo actuator

Strain tensor

$$\varepsilon = \begin{pmatrix} -\nu s & 0 & 0 \\ 0 & -\nu s & 0 \\ 0 & 0 & s \end{pmatrix}$$

î || [110]

s : strain along cantilever axisν : Poisson ratio, 0.11

Strain field sensing

Energy levels change followed by $C_{3\nu}$ symmetry group

• axial strain: uniform shift of all energy levels

Strain field sensing

Energy levels change followed by $C_{3\nu}$ symmetry group

- axial strain: uniform shift of all energy levels
- transverse strain: split and mix of energy levels (orbitals along \hat{x} and \hat{y})

Ground state Hamiltonian and energy level change

$$E_{\pm}(s) = D_0 + \boldsymbol{d}_{\parallel}\boldsymbol{\varepsilon}_{\parallel} \pm \sqrt{(\boldsymbol{\gamma}_{NV}\boldsymbol{B}_z)^2 + (\boldsymbol{d}_{\perp}\boldsymbol{\varepsilon}_{\perp})^2}$$

- AC parallel strain modulates at mechanical frequency
- AC perpendicular strain modulates at twice mechanical frequency

Axial strain detection with Hahn echo pulse sequence

P. Ovartchaiyapong et al., Nat. Comm. (2014)

Transverse strain detection with XY-4 pulse sequence

- XY-4 pulse sequence used
- Interference between axial strain ($\sim \omega_m$) and transverse strain ($\sim 2\omega_m$)

$d_{\perp} = 21.5 \pm 0.8 \text{ GHz/strain}$

- Basics of the NV center
 - Structure, electronic, optical properties
 - Spin physics, coherence properties
- Applications for quantum metrology
 - Magnetic field sensing
 - Strain field sensing
- Other applications (next time ?)