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We investigate transport of Cooper pairs through a double quantum dot in the Kondo regime and coupled to
superconducting leads. Within the nonperturbative slave boson mean-field theory we evaluate the Josephson
current for two different configurations, the double quantum dot coupled in parallel and in series to the leads.
We find striking differences between these configurations in the supercurrent versus the ratio t /�, where t is the
interdot coupling and � is the coupling to the leads: the critical current Ic decreases monotonously with t /� for
the parallel configuration whereas Ic exhibits a maximum at t /�=1 in the serial case. These results demonstrate
that a variation of the ratio t /� enables one to control the flow of supercurrent through the Kondo resonance
of the double quantum dot.
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I. INTRODUCTION

The Kondo effect arises whenever a localized spin
couples antiferromagnetically with itinerant electrons. At
temperatures T�TK, where TK is the Kondo temperature, the
spin of the impurity is screened entirely by the conduction
electrons, leading to enhanced scattering at the Fermi
surface.1 This new scattering channel �which is reflected in
the density of states of the impurity electron at the impurity
site as a new quasiparticle resonance of width TK, the
Abrikosov-Shul or Kondo resonance� changes completely
the low temperature properties of the system. In the context
of mesoscopic physics, a poorly transmitting quantum dot in
the Coulomb blockade regime, T�TK, becomes perfectly
conducting �unitary limit� as the temperature decreases well
below TK.2 The experimental demonstration of this effect3 is
one of the most spectacular examples of the unprecedent
control over artificial Kondo impurities4 that nanotechnology
offers. This, together with the possibility of studying new
aspects of Kondo physics, has renewed interest in this
problem.5

One of these aspects concerns the study of the competi-
tion between superconductivity and Kondo effect6 in a con-
trolled manner. This can be realized by coupling a quantum
dot to superconducting electrodes. The subgap transport
through the Andreev bound states7,8 in such a nanostructure
is strongly affected by Kondo physics, leading to the phase
transition in the sign of Josephson current.9 The large Cou-
lomb interaction prevents the tunneling of Cooper pairs into
the quantum dot; electrons in each pair tunnel one by one via
virtual processes.10 Due to Fermi statistics, this results in a
negative supercurrent �i.e., a �-junction�. However, this ar-
gument is only valid in the weak coupling limit, when the
gap � is larger than TK. In the opposite strong coupling limit
�� /TK�1� the Kondo resonance restores the positive Jo-
sephson current.9,11 This effect has been confirmed experi-

mentally in a superconductor-dot-superconductor system.6

A natural step forward is to study a double quantum dot
coupled to superconductors. Choi, Bruder, and Loss12 studied
the spin-dependent Josephson current through a double quan-
tum dot in the Coulomb blockade regime. Here, we study a
double quantum dot in the Kondo regime �Kondo molecule�,
both in parallel and in series configurations at zero tempera-
ture. Both configurations show striking differences in the su-
percurrent as a function of the ratio t /�, where t is the inter-
dot coupling and � is the coupling to the leads: the critical
current Ic decreases monotonously with t /� for the parallel
configuration whereas Ic exhibits a maximum at t /�=1 in
the serial case.

II. MODEL

The system is modeled as a two-impurity Anderson
Hamiltonian where the normal metallic leads are replaced by
standard BCS s-wave superconductors:

H = �
k���L,R�	


k�ck�	
† ck�	 + �

k�

��� expi�� ck�↑c−k�↓ + H.c.�

+ �
i��1,2�	

��i	ni	 + Uini	ni	̄� + U12n1n2

+ t�
	

�d1	
† d2	 + H.c.� + �

i,k�,	
�Vi,k�ck�	

† di	 + H.c.� . �1�

ck�	 �di	� describes the electrons with momentum k and spin
	 in the lead � �the dot i�; ni	�di	

† di	 is the occupation per
spin 	 for the dot i. �� and �� denote the superconducting
phase and the superconducting gap, respectively, for the lead
�. The tunneling amplitude between the dots is given by t
and Vik� corresponds to the tunneling amplitude between the
dots and leads. For a double quantum dot in a series
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V1,kR = V2,kL = 0, V1,kL = V2,kR = V0, �2�

and for a double quantum dot in parallel

V1,kR = V1,kL = V2,kL = V2,kR = V0. �3�

�i are the single-particle energies on the dots tuned by gate
voltages. Ui is the on-site Coulomb interaction on the ith dot,
and U12 is the interdot Coulomb interaction.

We are interested in the limit U1, U2→, U12=0, and
−�i�� at zero temperature so that �n1�= �n2�=1. The model
in this limit is well-described in the slave-boson language.13

In this limit, the model can be written in a slave-boson lan-
guage by applying the transformation di,	=bi

†f i,	. Here, f i,	
is a pseudofermion which destroys one occupied state on
quantum dot i and bi

† is a boson which creates one empty
state on quantum dot i.13 We then introduce two constraints
which prevent double occupancy in each dot by means of
Lagrange multipliers, �1 and �2.1,13 The resulting model is
solved within the mean-field approach, namely, replacing

bi�t�→ �bi��	Nb̃i, where N is the degeneracy of the impu-
rity level. This so-called slave-boson mean field theory
�SBMF� is only valid for describing the deep Kondo limit
�spin fluctuations�. Charge fluctuations can be included to
lowest order as 1 /N corrections.1 This approach has been
applied successfully to Kondo double quantum dots coupled
to normal metallic leads.14

HSBMF = �
k���L,R�	


k�ck�	
† ck�	

+ �
k�

��� expi�� ck�↑c−k�↓ + H.c.�

+ �
i��1,2�	

�̃i	ni	 + t̃�
	

�f1	
† f2	 + H.c.�

+ �
i,k�,	

�Ṽi,k�ck�	
† f i	 + H.c.� + �i�Nb̃i

2 − 1� . �4�

The SBMF version of H 
see Eq. �4�� is now quadratic and

contains four parameters, i.e., b̃1,2 that renormalize the tun-

neling amplitudes, Ṽi,k�= b̃iVi,k� and t̃= tb̃1b̃2, and �1�2� that
renormalizes the energy levels �̃1,2	=�i+�1,2. They are de-
termined from the solution of the SBMF equations in a self-
consistent fashion.

The SBMF equations become simpler in the Nambu-
Keldysh space where

�k�	
† = �ck�	

† ,c−k�	̄�, �i	
† = �f i	

† , f i	̄� �5�

are the spinors for the conduction and localized electrons.
These mean-field equations are obtained from the equation-
of-motion of the boson fields and the constrains:

b̃1�2�
2 +

1

N
�
	

��1�2�	
† �t�	̂z�1�2�	�t�� =

1

N
, �6a�

1

N
�

���L,R�	
Ṽ1�2�,k���k�	

† �t�	̂z�1�2�	�t��

+
t̃

N
�
	

��1�2�	�t�	̂z�2�1�	�t�� + �1�2�b̃1�2�
2 = 0. �6b�

This system of mean-field equation can be written in terms
of the 2�2 matrix lesser Green function for the dots

Gi,j	�t , t��� and the lead-dot matrix lesser Green function

Gi,k�	�t , t���, respectively

Ĝi,j	�t,t�� = i�� j	
† �t��,�i	�t�� ,

Ĝi,k�	�t,t�� = i��k�	
† �t��,�i	�t�� . �7�

As usual, the diagonal components of the matrix, G and G̃,
correspond to “electronlike” and “holelike” Green functions
whereas off-diagonal components, F and F†, correspond to
anomalous Green functions.

Following the standard procedure, the lesser Green func-
tions are obtained applying rules of analytical continuation
along a complex time contour to the equation of motion of
the time-ordered Green function �for details, see Refs. 15 and

16�. The two off-diagonal Green functions, namely, Ĝi,j	

�with i� j� lead-dot Green function Ĝi,k�	 can be cast in

terms of the diagonal dot Green function Ĝi,i	� Ĝi	 using
the equation of motion technique. Hereforth, for simplicity
we assume a symmetric structure with �1�2�	=�0	, �L�R�=�,
and �L=−�R=�. Then, the system of SBMF equations in
terms of the dots Green function becomes �for simplicity we
omit the spin indices�

�̃

�
+ �

−

 d�

2�i

G1�2�

� ��� + G̃1�2�
� ���� = 0, �8a�

�̃

�
��̃1�2� − �1�2�� + �

−

 d�

2�i

G1�2�

� ����� − �̃1�2��

+ G̃1�2�
� ����� + �̃1�2��� = 0, �8b�

where �̃i=�0+�i are the renormalized levels and �̃i= b̃i
2� the

renormalized hybridization, which are equal to the Kondo
temperature TK for the coupled system17 
�=2��NV0

2 with �N
being the normal-state density of states�.

At equilibrium we can employ Ĝi
�=2if���Im Ĝi

r with f���
being the Fermi function. Ĝi

r is determined by the lead-dot

�̂i�
r and the interdot tunneling �̂ti

r self-energies. Thus the ma-
trix elements of the lead-dot self-energy are

�̂i�
r = − i�̃i 1 � exp�i���/���

� exp�− i���/��� 1
� , �9�

with
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�S��� =
���

	�2 − �2��� − ��
, �10�

as the superconducting density of states. The interdot tunnel-
ing self-energy is

�̂t1�2�
r = t̃2	̂z�g2�1�

r − �
�

�̂2�1��
r �	̂z, �11�

where 	z is the z component of the Pauli matrices and ĝi
r is

the matrix Green function for an isolated quantum dot. Since

we deal with a symmetric structure �i=�→ �̃i= �̃0 and �̃

= �̃i. Thus, for example, the diagonal components of the dot
Green function for the serial configuration read

Gr�a� =
�A ± �̃0�
�A2 − �̃0

2� − s���2 + t̃2�A � �̃0��
D���

, �12�

where

D��� = 
A2 − X2 − Y2 − ��̃0 − t̃�2�2 − 4t̃2�Y2 + �̃2� ,

with

X = s���cos���, Y = s���sin��� ,

A = �
1 + s���/��, s��� = ��̃/	�2 − �2. �13�

The Green function �12� describes the discrete Andreev
bound states in the subgap region ������� as well as the
continuum spectrum above the gap �������. The Andreev
states appear as poles of the Green function; i.e., the solu-
tions of D���=0 �see Fig. 1�. Accordingly, the Josephson
current has two contributions,

Itot = Idis + Icon, �14�

where Idis is from the discrete Andreev states and Icon from
the continuum �see Figs. 2 and 3�. Itot can be obtained from

the evolution of the quantum particle operator of the left
contact

Itot = − ie�ṄL�, NL = �
kL,	

ckL	
† ckL	. �15�

The total current, for instance, for the serial case, is given by

Itot =
2e

�
Re �

kL	

Ṽ0�� dt
G1,kL	
� �t,t� − G̃1,kL	

� �t,t��� ,

�16�

where Ṽ0= b̃V0. Thus the two parts of the Josephson current
for the double quantum dot in series at zero temperature �see

FIG. 1. �Color online� Andreev bound states in units of �. Left
panel: Parallel case for t /�=0, 0.25, 0.5, 1, 1.25, and 1.5 �from top
to bottom�. Right panel: Serial case for t /�=0.1, 0.25, 0.5, 1, 1.25,
and 1.5 �from top to bottom�. In both cases �=0.1TK

0 .

FIG. 2. �Color online� t /��1. Left �right� panel corresponds to
the parallel �serial� case. �a� and �d� discrete Idis, �b� and �e� con-
tinuum Icon, and �c� and �f� total supercurrent Itot vs � for t /�=0,
0.2, 0.4, 0.6, 0.8, and 1 �t /�=0.2, 0.4, 0.6, 0.8, and 1� and �
=0.1TK

0 . Currents are in units of 2�e� /��. The curves are arranged
with increasing t /� in the direction of the arrows.

FIG. 3. �Color online� t /��1. Left �right� panel corresponds to
the parallel �serial� case. �a� and �d� discrete Idis, �b� and �e� con-
tinuum Icon, and �c� and �f� total supercurrent Itot vs � for t /�=0,
0.2, 0.4, 0.6, 0.8, and 1 �t /�=0.2, 0.4, 0.6, 0.8, and 1� and �
=0.1TK

0 . Currents are in units of 2�e� /��. The curves are arranged
with increasing t /� in the direction of the arrows.
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below for the double quantum dot in parallel� are given
�hereafter currents are expressed in units of 2�e�� /��:11

Idis = − 2t2 sin�2���
Ep

� s2���
�D������=Ep

, �17a�

Icon = − 2t2 sin�2��Im �
−

−�

d�
1

�D���
. �17b�

In Eq. �17a� the summation is over all Andreev states Ep
� 
−� ,�F� ��F is the Fermi energy�. Interestingly, we will see
below 
see Eq. �28�� that in the deep Kondo limit ���TK�,
we recover the short-junction limit for the Josephson current
through a resonant level.11,18 In this limit the continuum con-
tribution is almost negligible. For ��TK the contributions
from the continuum part become considerable.

III. RESULTS

Next we present our results for the double quantum dot in
parallel and in a series, respectively. We will choose �0=
−3.25, D=100 �bandwidth�, �F=0, and different values for
the rest of the parameters at zero temperature. For these val-
ues TK

0 =D exp�−���0� /���0.0036. All energies are given in
units of �.

A. Double quantum dot in parallel

The problem is greatly simplified by the transformation

ck�	 = �cke	 ± cko	�	2, f1�2�	 = �fe	 ± fo	�	2. �18�

The SBMF Hamiltonian is mapped into two independent Jo-
sephson junctions �“even” and “odd”� through effective reso-
nant levels at �̃0± t̃. Each of the two resonant levels accom-
modates an Andreev state Ee/o and carries Josephson current

Itot��� = −
2e�

�
�Ie + Io� . �19�

For the double quantum dot in parallel, the Andreev bound
states �Ee/o� and Josephson current are conveniently ex-
pressed in the even/odd basis. The Andreev bound states are
given as the solutions of

De/o��� = �2�	�2 − �2 + �̃�2 − ��̃0 ± t̃�2��2 − �2�

− �2�2 cos2��� . �20�

The discrete and continuum parts of the current are, respec-
tively, given by

Idis
e/o = − � sin�2��s2���

�De/o�
�

�=Ee/o

�21�

and

Icon
e/o = − sin�2���

−

−�

d�s2���Im� 1

�De/o���� . �22�

Typical profiles of Andreev states on double quantum dot in
parallel are shown in the left panels of Fig. 1. Josephson

currents are shown in the left panels of Fig. 2 �t��� and Fig.
3 �t���. We note that in the deep Kondo limit ��TK the
double quantum dot in parallel presents short-junction limit
behavior:11,18 The Andreev states and the Josephson currents
are given by the corresponding expressions

Ee/o = �
1 − Te/o sin2����1/2 �23�

and

Ie/o��� = Te/o sin 2�
1 − Te/o sin2 ��−1/2, �24�

with

Te/o = 4
�̃2

��̃e/o
2 + �̃2�

. �25�

For very small t /� both dots have their own Kondo reso-
nances at �F and the Josephson current resembles that of a
ballistic junction. As t /� increases the even and odd Kondo
resonances �̃0± t̃ move away from �F and as a result Itot���
diminishes becoming more sinusoidal

Ie/o��� � Te/o sin 2� . �26�

The critical current, defined as the maximum supercurrent
at phase �c, is more accessible experimentally.19 In our case,

Ic � 2e�/� �
���e,o�


1 − �1 − T��1/2� , �27�

and hence decreases with t /�. Notice that in spite of the
simple formal expression for Ie/o, the critical current Ic de-

pends on the many-body parameters, �̃ and �̃0± t̃, in a non-
trivial manner through the solution of Eq. �8�.

B. Double quantum dot in a series

A completely different physical scenario is found for the
serial configuration. Here the even/odd channels are no
longer decoupled and cause novel interference. The manifes-
tation of the interference can be first seen in the profiles of
the Andreev states as depicted in Fig. 1. An important differ-
ence from the parallel case is the almost flat spectrum with
values close to Ee/o����� �reflecting a very small supercur-
rent as seen below�. As t /� increases the spectrum possesses
larger amplitude, and for t /��1 we eventually recover the
spectrum of a ballistic junction Ee/o����� cos���. For t /�
�1 gaps are opened again 
suggesting that Itot��� dimin-
ishes, see below�.

Formally, the supercurrent, for ��TK, is still given by the
expression

I��� = T sin 2�
1 − T sin2 ��−1/2, �28�

but now the transmission T is

T =
4t̃2�̃2

�
��̃0 − t̃�2 + �̃2�
��̃0 + t̃�2 + �̃2��
. �29�

We can interpret that for small t /� the Cooper pairs hop
directly between the two Kondo resonances and T� �t /��2.
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The supercurrent presents a sinusoidal-like behavior as
shown in Fig. 2. With t /� increasing, the physical situation
changes drastically around t /�=1, where the Kondo singu-
larities of each dot hybridize into a correlated state as a result
of the coherent superposition of both Kondo states. We find
T�1 and consequently the supercurrent-phase relation ex-
hibits a typical ballistic-junction behavior �see Fig. 3�. Fur-
ther increasing t /� makes Itot��� smaller, which is attributed
to the formation of bonding and antibonding Kondo reso-
nances. This results in a nonmonotonous behavior of Ic as a
function of t /� �shown in Fig. 4 for � /TK

0 =0.1, 0.25, and
0.5, from top to bottom�, with a maximum at t=� �coherent
superposition of both Kondo resonances�. For the lowest gap
�in the short junction regime� the maximum critical current
reaches the universal value of 2e� /h as expected.18

The physics of the tunability of Ic as a function of t /� is
similar to the transistorlike control of supercurrents in a car-
bon nanotube quantum dot connected to superconducting
reservoirs recently reported by Jarillo et al.19 These experi-
ments demonstrate that the supercurrent flowing through the
quantum dot can be varied by means of a gate voltage which
tunes on- and off-resonance successive discrete levels of the

quantum dot with respect to �F of the reservoirs. In our case,
the Kondo resonances play the role of the discrete levels in
the experiments of Ref. 19 whereas t /� is the extra knob that
tunes the position of the Kondo resonances and thus modu-
lates the critical current. Interestingly, in our case, �i� the
supercurrent is mediated by a coherent many-body state �the
Kondo resonance� instead of a single particle one and �ii� the
maximum supercurrent at t=� corresponds to coherent trans-
port of Cooper pairs through the whole device whereas an
increase of t /��1 splits the Kondo resonance into two
�bonding and antibonding� resulting in a splitting of the Coo-
per pair into two electrons �one on each resonance� and thus
a reduction of the supercurrent. This suggest the use of the
Kondo effect as an alternative to previous proposals using
double quantum dots12 for generating and manipulating en-
tangled pairs in a controlled way.

For the experimental realization of the superconducting
Kondo double quantum dot, we propose carbon nanotubes
since �i� they show Kondo physics,20 �ii� it is possible to
fabricate tunable double quantum dots,21 and �iii� they are
ideal systems to attach new material as electrodes.6

IV. CONCLUSIONS

We have studied Cooper pair transport through an artifi-
cial Kondo molecule. We find remarkable differences in the
phase-current relation between serial and parallel configura-
tions of the double quantum dot. For a double quantum dot
in parallel, the supercurrent always decreases with t /�
whereas for a serial configuration the current behaves non-
monotonously. This fact allows an extra control of the criti-
cal current, and thus of Cooper pairs, through Kondo mol-
ecules by simply tuning the interdot tunneling coupling.
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