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We investigate the mesoscopic resistor-capacitor circuit consisting of a quantum dot coupled to spatially
separated Majorana fermion modes in a chiral topological superconductor. We find substantially enhanced
relaxation resistance due to the nature of Majorana fermions, which are their own antiparticles and are
composed of particle and hole excitations in the same abundance. Further, if only a single Majorana mode
is involved, the zero-frequency relaxation resistance is completely suppressed due to a destructive
interference. As a result, the Majorana mode opens an exotic dissipative channel on a superconductor
which is typically regarded as dissipationless due to its finite superconducting gap.

DOI: 10.1103/PhysRevLett.113.076801 PACS numbers: 73.63.-b, 73.23.-b, 73.43.-f, 74.90.+n

As an electronic circuit is miniaturized on the nanometer
scale, quantum coherence takes effect and transport proper-
ties get fundamentally different. For a ballistic conductor,
Ohm’s law breaks down and the conductance is quantized
to multiples of RQ ≡ h=e2 [1,2], where h is the Planck
constant and e is the electron charge. For a small resistor-
capacitor circuit, the charge relaxation resistance is also
quantized to RQ=2, irrespective of the transmission proper-
ties [3,4], as demonstrated in an experiment on a quantum
dot (QD) coupled to a quantum Hall edge channel [5]. The
quantization is technically ascribed to the Fermi-liquid
nature of the system [6–10], where the relaxation of
particle-hole (p-h) pairs due to charge fluctuations at the
cavity is the culprit for the dissipation. It is tempting and
indeed customary [11] to interpret the quantized value as
the contact resistance at a single interface (hence a half of
the two-terminal contact resistance RQ).
Here, we show that when the circuit involves Majorana

fermions, which are casually regarded as half-fermions,
the quantum resistance defies such an interpretation.
Specifically, we examine a QD coupled, with different
strengths, to two spatially separated one-dimensional (1D)
chiral Majorana fermion modes; see Fig. 1. In the ultimate
limit, a single Majorana mode is considered. The primary
goal is to identify the role of each Majorana mode in
relaxation resistance and compare it to the case of the Dirac
fermion mode.
Mathematically, a Dirac fermion can always be decom-

posed into a pair of Majorana fermions, but these Majorana
fermions usually occupy the same spatial location. However,
the chiral topological superconductor (CTSC) states [12]
enable the physical realization of spatially separated 1D
Majorana fermion modes. An example is a quantum
anomalous Hall (QAH) insulator proximity coupled to a
conventional (or normal) superconductor (NSC) [12]. A
HgTe quantum well doped with Mn [13] and a Bi2Te3 thin

film doped with Cr [14,15] turn into a QAH insulator with a
chiral Dirac fermion edge mode, i.e., two chiral Majorana
edge modes. When the QAH insulator is coupled to a NSC
(see Fig. 1), the proximity-induced pairing potential pushes
one of the two Majorana modes deeper into the bulk,
spatially separating it from the other. As the relative
magnitudes of the magnetization and the superconducting
gap vary, the system undergoes topological phase transitions,
from the QAH insulator phase to a CTSC phase (hereafter
called the CTSC2 phase) with two spatially separated
Majorana edge modes [16], to another CTSC phase (called
the CTSC1 phase) with a single Majorana edge mode (one
mode having disappeared into the bulk), and finally to a NSC
without any edge channel [12].
Once the system enters the CTSC phases (either CTSC1

or CTSC2), we find that the low-frequency relaxation
resistance is no longer pinned at RQ=2 and strongly
depends on the transmission properties. Especially, as
the QD level approaches the resonance, the zero- or
finite-frequency resistance is substantially enhanced, sug-
gesting that Majorana modes boost the p-h pair generation
and are highly dissipative. It contrasts with the gapped
superconductor case, in which the resistance is suppressed

(a) (b)

FIG. 1 (color online). (a) A possible realization of a quantum
capacitor with spatially separated Majorana fermion modes. (b) A
schematic of the coupling between two spatially separated
Majorana edge modes (j ¼ 1; 2) and the energy level localized
on the QD.
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for frequencies ω smaller than the gap. For the CTSC1

phase with only a single Majorana edge mode, on the other
hand, we find that the low-frequency relaxation resistance
vanishes in the ω → 0 limit as for the fully gapped
superconductor. The vanishing resistance is attributed to
the exact cancellation between p-h pair generation proc-
esses in charge-conserving and pairing channels, as will be
discussed later (see Fig. 3). These exotic behaviors are
distinguished from those for normal superconductors or
Dirac fermion channels. This casts an intriguing question
about the role of the Majorana fermions in relaxation
resistance and offers another method to probe the Majorana
fermions.
Model.—Focusing on the low-energy physics inside the

bulk gap, one can describe a CTSC with two chiral
Majorana modes

HMajorana ¼
X
j¼1;2

X
k>0

ϵkγ−k;jγk;j; ð1Þ

where γk;j ¼ γ†−k;j are chiral Majorana fermion operators,
ϵk ¼ ℏvk is their energy, and v is the propagation velocity
of the Majorana edge modes. In the CTSC1 phase, we
regard the mode j ¼ 2 disappearing into the bulk.
The QD can be formed by depositing ferromagnetic

insulators (FMs), which turn the underneath region into the
trivially insulating state (I). A proper placement of FMs
deforms and localizes the QAH edge states to form a QD;
see Fig. 1(a). Since the localized state in the QD originates
from the spin-polarized QAH edge state, it is described as a
single spinless level ϵd:

HQD ¼ fϵd þ e½UðtÞ − VgðtÞ�gnd: ð2Þ

Here, nd ¼ d†d is the occupancy operator, and the ac
voltage VgðtÞ upon the gate coupled to the QD via a
geometrical capacitance C induces the polarization charge
on the dot and eventually the internal potential UðtÞ. The
latter is determined self-consistently under the charge
conservation condition.
The coupling of the QD level to the chiral Majorana edge

modes (j ¼ 1; 2) takes a tunneling model [17]

Htun ¼
X
k

½t1d†γk;1 þ it2d†γk;2 þ ðH:c:Þ�: ð3Þ

Here, for simplicity, we have assumed wide bands and
neglected the momentum dependence of the tunneling
amplitudes tj between the Majorana mode j and the
QD level. In this limit, the coupling is conveniently
described by the hybridization parameters Γj ≡ jtjj2=ℏv
(∼0.4–4 μeV [5]) and Γ� ≡ ðΓ2 � Γ1Þ=2. In general,
Γ1 ≥ Γ2 due to their spatially separated localizations; in
particular, Γ2 ¼ 0 in the CTSC1 phase and Γ1 ¼ Γ2 only in
the QAH phase. Note that our model ignores the bulk states
of the reservoir and Γ1 and ω should be sufficiently smaller

than the bulk gap; it is inadequate when the system is too
close to the CTSC2-CTSC1 transition point, where the bulk
gap is small. Γ2 may vanish well before the transition point
due to the exponential suppression with the distance of the
tunneling.
Relaxation resistance.—We calculate the ac current IðtÞ

between the reservoir of Majorana modes and the QD or,
equivalently, the displacement current between the top gate
and the QD, using the self-consistent mean-field approach
in the linear-response regime [3,4,6–10,18] (see Ref. [19],
Secs. II A and B). The relaxation resistance RqðωÞ is then
obtained from its relation to the admittance gðωÞ
[1=gðωÞ ¼ RqðωÞ þ i=ωCqðωÞ], where CqðωÞ is the quan-
tum correction to the capacitance. At zero temperature, the
admittance allows for a closed-form expression and reads
as (hereafter, we set ℏ ¼ kB ¼ 1)

gðωÞ ¼ 1

RQ

X
μ¼�

�
Γ2−

εðωþ μεÞ ln
Γþ þ iε
Γþ − iε

þ
�

Γ2−
εðεþ μωÞ þ

Γþ
Γþ þ iω

�
ln
Γþ þ ið2ωþ μεÞ

Γþ þ iμε

�
;

ð4Þ

with ε≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵ2d − Γ2−

q
. Equation (4) is the main result of this

work. We now discuss its physical implications.
Zero-frequency resistance at zero temperature.—Let us

first focus on the zero-frequency limit (ω ≪ ϵ2d=Γ1) of the
resistance R0 ≡ Rqðω → 0Þ; see Fig. 2 and Ref. [19],
Sec. II C. In the QAH phase, where the two Majorana
modes equally contribute (Γ1 ¼ Γ2), the resistance restores
the quantized value R0 ¼ RQ=2, as expected, because the
two Majorana modes in the QAH phase are equivalent to a
single Dirac fermion mode.
As the system evolves into the CTSC2 phase

(0 < Γ2 < Γ1), R0 does not only deviate from the quantized
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FIG. 2 (color online). Zero-frequency relaxation resistanceR0 ¼
Rqðω → 0Þ as a function of ϵd and Γ2. For comparison, a shaded
horizontal surface is also drawn at the quantized value RQ=2.
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value but also depends on the ratio Γ2=Γ1 and the QD level
εd, as shown in Fig. 2. When the dot level is far from the
resonance (jϵdj ≫ Γ1), the zero-frequency resistance R0 ≈
ðRQ=2Þ½4ðΓ2=Γ1Þ=ð1þ Γ2=Γ1Þ2� depends only and mono-
tonically on the ratio Γ2=Γ1; see the curve for large values
of jϵdj in Fig. 2. When the dot level resonates with the
Fermi level (jϵdj ≪ Γ1), it now depends nonmonotonically
on Γ2=Γ1 with the maximum at Γ2 ≈ Γm ≡ 4ϵ2d=Γ1 of the
height ∼½4γm ln γm�−1 with γm ≡ Γm=Γ1. In short, unlike
the Dirac fermion case, R0 for the reservoir of Majorana
modes strongly depends on the properties of the tunneling
barrier and the QD and thus defies the simple interpretation
[11] of it as a half of the two-terminal contact resistance.
The zero-frequency relaxation resistance in the CTSC1

phase with a single Majorana mode (Γ2 ¼ 0) is even more
interesting and exotic: it vanishes exactly R0 ¼ 0, irre-
spective of Γ1, Γ2, and ϵd, although there is no excitation
energy gap (see Ref. [19], Sec. II C). To understand it,
we introduce chiral Dirac fermion operators ck≡
ðγk;1 þ iγk;2Þ=

ffiffiffi
2

p
composed of the two Majorana fermions,

in terms of which the Hamiltonians (1) and (3), respec-
tively, are rewritten as

HMajorana ¼
X
k

ϵkc
†
kck; ð5Þ

Htun ¼
X
k

½tsingled†ck þ tpaird†c
†
k þ ðH:c:Þ�; ð6Þ

with tsingleðpairÞ ≡ ðt1 � t2Þ=
ffiffiffi
2

p
. This form (6) immediately

suggests two distinctive types of processes, as illustrated in
Fig. 3: One is the charge-conserving type from the tsingle
term, in which the p-h pair is excited via the electron
tunneling in and out of the QD [Fig. 3(a)]. This type of
process alone would give rise to R0 ¼ RQ=2 [7–10]. The

other is a pairing type involving the tpair term which
accompanies the creation and destruction of a Cooper pair
in the bulk [Fig. 3(b)]. This type is missing in the QAH
phase, where t1 ¼ t2. When the QD is initially occupied,
the charge-conserving (pairing) process creates the particle
(hole) first. Hence, the p-h pair amplitudes of the two
processes are opposite in sign (at all orders) due to the
fermion ordering. When Γ2 ¼ 0 (tsingle ¼ tpair), both types
are the same in magnitude, so as to cancel out each other
exactly. This cancellation and the subsequent vanishing
resistance are hallmarks of the relaxation via the Majorana
modes. Note, however, that this cancellation is exact only
for Γ2 ¼ 0 and for p-h pairs with vanishingly small energy
(the ω → 0 limit). At finite ω, as shown below, the
intermediate virtual states are different for two processes
so that the cancellation is not perfect.
Finite-frequency resistance at zero temperature.—We

find that the vanishing or enhancement of the resistance
discussed above becomes even more pronounced at finite
frequencies. While the finite-frequency resistance RqðωÞ is
0 for a conventional superconducting reservoir or even for
Andreev bound states localized at yet propagating along its
edge (Andreev edge modes) due to their finite gap (see
Ref. [19], Sec. III D), it grows with jωj for the gapless Dirac
fermion reservoir since the spectral density of p-h excita-
tions grows with energy [7]. In the QAH phase, RqðωÞ
grows slowly and monotonically with ω [Fig. 4(a)].
Entering the CTSC phase, however, RqðωÞ becomes highly
nonmonotonic, forming an ever narrower dip at ω ¼ 0, and
peaks at jωj ∼ Γm [Figs. 4(a) and 4(b)]. The dip width is the
order of Γm for Γ2 ≈ 0.

FIG. 3 (color online). Second-order processes to generate a p-h
pair in the Majorana fermion channel via (a) the charge-
conserving process (∼jtsinglej2) and (b) the pairing process
(∼jtpairj2) when the QD is initially occupied. The degenerate
Majorana modes are artificially split here as a guide for the eye.
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FIG. 4 (color online). (a),(b) Zero-temperature resistance
RqðωÞ ¼ Rqð−ωÞ as a function of frequency ω. (c),(d) Zero-
frequency resistance R0 as a function of temperature T. ϵd=Γ1 ¼−2 in (a) and (c), and Γ2 ¼ 0 in (b) and (d). The arrow in
(b) indicates the approximate peak position ∼γm for Γ2 ¼ 0 and
ϵd=Γ1 ¼ −0.01. The dotted lines in (c) correspond to the low-
temperature asymptotes.
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Let us examine the CTSC1 phase (Γ2 ¼ 0) in three
different regimes: the (i) off-resonance (jϵdj ≫ Γ1),
(ii) near-resonance (0 < jϵdj ≪ Γ1), and (iii) exact-reso-
nance (ϵd ¼ 0) regimes. (i) In the off-resonance regime, the
resistance grows like RqðωÞ ≈ ðRQ=3Þðω=ϵdÞ2 for small
frequencies (ω ≪ Γm) and keeps growing monotonically
for higher frequencies. Note that in this limit, the resistance
is independent of the barrier transmission. (ii) In the near-
resonance regime, RqðωÞ ≈ t½RQ=3γmðln γmÞ2�ðω=ΓmÞ2 for
ω ≪ Γm, and it shows sharp peaks at ω ≈�Γm [Fig. 4(b)].
The quadratic growth and dip-peak structure around ω ¼ 0
cast stark contrasts with the superconducting reservoir or
the case with Andreev edge modes; in the latter case, the
peak is either pinned at the gap energy or linearly
dependent on the QD level (see Ref. [19], Sec. III E).
(iii) Even more dramatic contrast appears at the exact
resonance. In this case, the two peaks at ω ≈�Γm in
Fig. 4(b) merge together, filling up the dip at ω ¼ 0 (i.e.,
the dip width is 0). As a result, the resistance RqðωÞ ≈
πRQ=4ð2jωj=Γ1Þ½lnð2jωj=Γ1Þ�2 diverges as ω → 0. In sum-
mary, the finite-frequency relaxation resistance is genuinely
enhanced for Γ2 ≪ Γ1 near resonance.
All-Majorana representation.—To understand the

enhancement of the resistance near resonance, it is instruc-
tive to describe the dot level in terms of the language of
Majorana fermions as well (see Ref. [19], Sec. II D). We
define two Majorana operators γd;j (j ¼ 1; 2) by γd;1 ¼
ðd − d†Þ= ffiffiffi

2
p

i and γd;2 ¼ ðdþ d†Þ= ffiffiffi
2

p
. Unlike the

Majorana fermions on the edge modes of the CTSC, these
dot Majorana fermions are rather mathematical, as they
occupy the same spatial location. The QD and coupling
Hamiltonians (2) and (3), respectively, read as

HQD ¼ iϵdγd;2γd;1; ð7aÞ

Htun ¼
X
k

iðt2γd;2γk;2 − t1γd;1γk;1Þ: ð7bÞ

In this expression, ϵd becomes the coupling between the
two dot Majorana fermions. The two Majorana edge
modes in the reservoir are coupled indirectly via the
coupling between two Majorana fermions on the dot, being
completely decoupled at the resonance (ϵd ¼ 0). However,
it does not mean that their contributions are independent
[see Eq. (8) below] because the charge is always composed
of two Majorana fermions. At ϵd ¼ 0, the real part
of admittance, representing the dissipation, is expressed as

Re½gðωÞ� ¼ 2π2

RQ
ω

Z
ω

0

dω0ρ1ðω − ω0Þρ2ðω0Þ; ð8Þ

where ρiðω0Þ is the density of states for γd;i, which is
Lorentzian, centered at ω0 ¼ 0 and with width Γi. If both ρ1
and ρ2 are finite, then Re½gðωÞ� ∼ ω2 for ω → 0, so that R0

is finite; recall that gðωÞ ≈ −iωCq þ ω2C2
qR0. However, as

Γ2 → 0, ρ2ðω0Þ becomes sharper, and eventually, ρ2ðω0Þ ¼
δðω0Þ at Γ2 ¼ 0, so that Re½gðωÞ� ∼ ω, i.e., R0 ∝ 1=ω, as
seen above. In short, the resistance enhancement at reso-
nance is attributed to a decoupled dot Majorana with an
abundant density of states near zero energy; the dot
electron is coupled equally to the particle and hole
components of the single Majorana edge mode so that
the Majorana nature, leading to a proliferation of p-h pairs,
is highly pronounced. A single local Majorana fermion
coupled to a chiral Majorana line has appeared in a different
context, essentially a two-channel Kondo model, and a
similar divergence Rq ∼ 1=ωðlogωÞ2 has been observed
[27]. This suggests that the exotic behaviors of our system
may be a non-Fermi-liquid feature.
For ϵd ≠ 0, γd;1 and γd;2 are coupled and interfere with

each other, causing anti-Fano-like destructive interference:
The broadening of γd;2 is ∼Γm, and the destructive
interference leads to a dip in ρ1ðωÞ of width ∼Γm
(Fig. 4). This is another explanation, now based on the
interference between Majorana fermions, of the vanishing
low-frequency resistance discussed before.
Decoherence effects.—We remark that all the features

discussed so far—the vanishing low-frequency resistance
and the divergence of the resistance at resonance—occur
only when the full coherence is maintained. In the presence
of decoherence, the resistance would deviate from those
coherent values. For example, when the dot is subject to
random background charge fluctuations, which are the
most common decoherence source on QDs, it leads to the
fluctuation in ϵd. In effect, it pushes the system away from
the resonance and the resistance does not diverge. Another
indication of decoherence effects can be seen in the finite-
temperature effect discussed below.
Finite-temperature effect.—Typically, Rq increases with

temperature T since the thermal fluctuations promote the
generation of p-h pairs [6]. For T ≪ Γm, the Sommerfeld
expansion (see Ref. [19], Sec. II E) gives rise to R0 ≈
R0jT¼0 þ RQð2π2=3ÞðT=εdÞ2ð1þ Γ2−=Γ2þÞ in the off-
resonance regime [Fig. 4(c)]. For higher temperatures,
however, nonmonotonic behavior is observed for Γ2 ≪ Γ1

[Fig. 4(d)]: A peak occurs at T ∼ Γm, whose height grows as
jϵdj decreases. The enhancement of Rq around this particular
temperature is related to the peak structure in zero-temper-
ature RqðωÞ located at ω ∼ Γm, as shown in Fig. 4(b). In the
presence of thermal fluctuations, the contribution of low-
energy p-h pairs that are suppressed due to the destructive
interference between γd;1 and γd;2 decreases. Instead, the p-h
pairs, which have energy ∼Γm and are not affected by the
cancellation, cause the surge of the resistance. Together with
the nonmonotonic frequency dependence of RqðωÞ, the peak
structure driven by the thermal excitations is a unique feature
of dissipation via Majorana states.
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