GRAPHENE MEMBRANE FOR IMAGING MOLECULAR ASSEMBLY AND DYNAMICS

Kwanpyo Kim Department of Physics, UNIST

> Korea University 9. 20. 2017

VARIOUS 2D MATERIALS

(electrical gating), mechanical stimuli (strain) and defect manipulations, etc.

2D MATERIAL-BASED HETEROSTRUCTURES

Simply putting different materials together is not what we want!

High-quality 2D crystals (Large-scale synthesis for real applications)

Coherent interaction between components

- Clean interfaces
- Well-defined inter-component lattice relations

New phenomena and applications from 2D materials and heterostructures

Intrinsically weak van der Waals interaction may result in misaligned inter-component packing.

WHY ATOMIC RESOLUTION IMAGING?

Atomic-Scale Defects? Stacking Relation? Crystal Edge? Surface Residues?

Interlayer Rotation? Stacking Sequence? Interface Quality? In-Plane Strain? Assembly Behavior? Interface Quality?

2D/2D

1D/2D

0D/2D

MICROSCOPES USING ELECTRONS: TEM AND STM

The Nobel Prize in Physics 1986

Gerd Binnig Prize share: 1/4 Heinrich Rohrer Prize share: 1/4

The Nobel Prize in Physics 1986 was divided, one half awarded to Ernst Ruska *"for his fundamental work in electron optics, and for the design of the first electron microscope"*, the other half jointly to Gerd Binnig and Heinrich Rohrer *"for their design of the scanning tunneling microscope"*.

TRANSMISSION ELECTRON MICROSCOPY

http://en.wikipedia.org/wiki/Transmission_electron_microscopy

- Imaging and spectroscopy using high energy electrons (20 ~ 300 keV) on a very thin sample
- Study of atomic-scale structure, chemistry, and atomic dynamic

D. A. Muller, Nature Materials 8, 263 (2009)

- Development of aberration correctors in the late 1990s
- Sub Å resolution imaging and spectroscopy with low acceleration voltages

CONTENTS

Atomic Resolution TEM Imaging of Graphene and Other
 2D Materials

• Nanostructure Assembly on Graphene

- Organic Molecular Assembly (Pentacene and Fullerene)

- Epitaxial Growth of Inorganic Nanowires on Pristine Graphene

Imaging Liquid-Phase Dynamics Using Graphene Liquid
 Cells

CLEAN TRANSFER OF LARGE-SCALE GRAPHENE

W. Regan et al., Appl. Phys. Lett. 96, 113101 (2010)

GRAPHENE MEMBRANE

ATOMIC SCALE IMAGING OF GRAPHENE DEFECTS

Y. Yamada et al. JACS (2014) K. Kim et al. ACS Nano (2011)

Moiré Patterns from Twisted Double-Layer

K. Kim et al. Phys Rev Lett (2012) J. Kim et al. Sci Rep (2015) K. Kim et al. Nano Lett (2012) K. Kim et al. Nature Commun (2013)

Graphene Fold

K. Kim et al. Phys Rev B (2011)

IMAGING OF 2D LATERAL HETEROSTRUCTURES

CONTENTS

Atomic Resolution TEM Imaging of Graphene and Other
 2D Materials

- Nanostructure Assembly on Graphene
 - Organic Molecular Assembly (Pentacene and Fullerene)

- Epitaxial Growth of Inorganic Nanowires on Pristine Graphene

Imaging Liquid-Phase Dynamics Using Graphene Liquid
 Cells

WHY GRAPHENE FOR TEM IMAGING?

Electrical properties

$$E^{\pm}(\kappa) = \pm \hbar v_{\rm F} |\kappa| \quad m^* = 0$$

$$H = v_{\rm F} \vec{\sigma} \cdot \vec{p}$$

$$v_{\rm F} \approx 1 \times 10^6 \,\mathrm{m/s} = \mathrm{c} / 300$$

ultrahigh charge carrier mobility μ > 200,000 cm²/Vs

Superior mechanical properties

http://nobelprize.org

Excellent thermal properties (K ~ 4000 W/mK)

Z. Yan et al., Nature Commun. 3, 827 (2012)

Low background signals (Thinnest membrane)

> **Mechanical & chemical** stability

Low damages from electron-beam with high electrical & thermal conductivity

Novel Imaging Platform

J. Yuk et al., Science (2012) J. Park et al., Science (2015)

NANOSTRUCTURE ASSEMBLY ON GRAPHENE

Excellent Assembly Template

Molecule-Molecule Interactions vs. Molecule-Substrate Interactions **Added Functionality**

PENTACENE ASSEMBLY ON GRAPHENE

Molecular crystals of pentacene on graphene

Unusual pentacene polymorph

K. Kim et al., Small 11, 2037 (2015)

c* axis

d(001)

C₆₀ ASSEMBLY ON GRAPHENE

K. Kim et al., ACS Nano 9, 5922 (2015)

C₆₀/GRAPHENE VERTICAL TRANSISTORS

C₆₀/H-BN LATERAL TRANSISTORS

C60/h-BN Lateral Transistors

Previous Work: Graphene + Inorganic Materials

Inorganic materials (at graphene defects)

[J Phys Chem C, 2008] [J Phys Chem C, 2009] [JACS, 2010] [Adv Mat, 2009]

Previous Work: Graphene + Inorganic Materials

Linker molecules

Inorganic materials (using organic linkers)

[Nat Chem, 2009]

Previous Work: Graphene + Inorganic Materials

Vapor-phase deposition

Inorganic materials (at high temperature)

[Nano Lett, 2012]

Self-Organized Nanowires on Graphene

Nanowire Identification: AuCN

<TEM imaging>

<Au EDX Mapping>

Pristine Graphene Underneath the Nanowires

Alignment Mechanism

Known information

Lattice matching induces epitaxial alignments.

	d ₁	d ₂
AuCN	5.08 ± 0.01 Å	3.00 ± 0.12 Å
Graphene	e 4.92 Å	3.19 Å
Lattice mismatchir	ng 3.3 ± 0.2 %	- 6.1 ± 3.8 %
<previous alignments="" epitaxial="" examples:=""></previous>		
- Bi ₂ Se ₂ on graphene: ~2.9 %		

- MoS_2 on graphene: ~28 %

Calculations by Prof. H. Lee (Kunkuk Univ.)

THERMODYNAMICS VS. KINETIC FACTORS

J. Jang et al., to be submitted

AUCN/GRAPHENE HYBRID PHOTODETECTOR

J. Jang et al., to be submitted

CONTENTS

Atomic Resolution TEM Imaging of Graphene and Other
 2D Materials

• Nanostructure Assembly on Graphene

- Organic Molecular Assembly (Pentacene and Fullerene)

- Epitaxial Growth of Inorganic Nanowires on Pristine Graphene

Imaging Liquid-Phase Dynamics Using Graphene Liquid
 Cells

HIGH-TEMPERATURE IMAGING WITH GRAPHENE SANDWICH

Observation of high-temperature reactions and dynamics

PREVIOUS IMAGING IN LIQUID ENVIRONMENTS

H. Zheng et al., Science 324, 1309 (2009)

Previous work from A. P. Alivisatos Group (Chem, UC Berkeley)

IN SITU TEM IMAGING WITH GRAPHENE LIQUID CELL

Atomic resolution imaging enabled by graphene liquid cells

Pt nanoparticle growth and dynamics

J. Yuk et al., Science 336, 61 (2012)

IN SITU TEM IMAGING WITH GRAPHENE LIQUID CELL

Atomic resolution imaging enabled by graphene liquid cells

Pt nanoparticle growth and dynamics

J. Yuk et al., Science 336, 61 (2012)

DYNAMICS OF DNA-AU NANOCONJUGATES

Q. Chen et al., Nano Lett. 13, 4556 (2013)

ACKNOWLEDGMENTS

- Graduate Students
 - Yangjin Lee
 - Jun-Yeong Yoon
 - Jeongsu Jang
 - Jeongheon Choe
 - Sol Lee
- Undergraduate Students
 JinHui Seo
 - Salizhan Kylychbekov

- Collaborators
 - Prof. H. Y. Jeong (UNIST)
 - Prof. Z. Bao (Stanford Univ.)
 - Prof. Z. Lee (UNIST)
 - Prof. W. C. Lee (Hanyang Univ.)
 - Prof. J. Park (Seoul Natl Univ.)
 - Prof. H. Lee (Konkuk Univ.)
 - Prof. Y. S. Kim (Univ. of Ulsan)
 - Prof. H. S. Shin (UNIST)
 - Prof. J. M. Yuk (KAIST)
 - Prof. K. Park (UNIST)

...

Thank you!

