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Spintronic Transport and Kondo Effect in Quantum Dots
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We investigate the spin-dependent transport properties of quantum-dot based structures
where Kondo correlations dominate the electronic dynamics. The coupling to ferromagnetic
leads with parallel magnetizations is known to give rise to nontrivial effects in the local density
of states of a single quantum dot. We show that this influence strongly depends on whether
charge fluctuations are present or absent in the dot. This result is confirmed with numerical
renormalization group calculations and perturbation theory in the on-site interaction. In the
Fermi-liquid fixed point, we determine the correlations of the electric current at zero temper-
ature (shot noise) and demonstrate that the Fano factor is suppressed below the Poissonian
limit for the symmetric point of the Anderson Hamiltonian even for nonzero lead magne-
tizations. We discuss possible avenues of future research in this field: coupling to the low
energy excitations of the ferromagnets (magnons), extension to double quantum dot systems
with interdot antiferromagnetic interaction and effect of spin-polarized currents on higher
symmetry Kondo states such as SU(4).
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1. INTRODUCTION

The study of spin-polarized transport across in-
terfaces is a subject of long history [1,2]. The recent
advent of semiconductor-based electronic devices at
the nanoscale has revived the interest in transferring,
controlling and detecting spin currents. This research
area has been termed spintronics due to the exciting
possibility of future, successful spin-based electronic
technology [3], Nevertheless, spintronics is interest-
ing as well for fundamental physics, both experimen-
tally and theoretically, as its basic constituent—the
spin—is of quantum nature only.

The most simple building block of spintronic
transport systems is probably the magnetic tunnel
junction. It comprises two ferromagnetic electrodes
sandwiching a paramagnetic layer. Vertical trans-
port, where current flows across the interfaces, is
characterized by the tunneling magnetoresistance
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(TMR), which measures the relative change in
the junction resistance when the contacts’ magne-
tizations is changed from parallel to antiparallel
alignment [4]. The TMR is also important in investi-
gating the properties of spintronic resonant tunneling
diodes. Remarkably, such devices have been recently
built in all-semiconductor heterostructures, taking
advantage of diluted magnetic semiconductors
made of III–V [5–7] (hole-like transport) and II–VI
compounds [8] (electron-like transport).

When the size of the paramagnetic island in
a magnetic tunnel junction becomes comparable to
the carrier Fermi wavelength, the system behaves
effectively as zero-dimensional. Then, quantum ef-
fects arise from the quasi-localized nature of elec-
trons and from the phase-coherent transport. The ul-
timate miniaturization limit is just a single resonant
level coupled to a Fermi sea of itinerant electrons,
which may be regarded as an artificial realization of
the quantum impurity problem [9]. Extensive stud-
ies of the impurity problem have been performed
in semiconductor quantum dots [10], where the is-
land (an electron droplet) is formed by means of a
constriction in a two-dimensional electron gas. Both
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the discrete energy levels and the tunneling couplings
may be tuned almost at will. Very recently, a few ex-
perimental works have begun to deal with spin polar-
ized leads [11,12].

In this paper, we consider spintronic transport
through quantum dots with strong correlations. It is
well known that the electron–electron interaction in-
teraction plays a dominant role in the low temper-
ature transport through quantum dots [10]. In the
Coulomb blockade regime, the electron dynamics
can be described in terms of single-electron tunnel-
ing plus mean-field charging effects. Between two
Coulomb blockade peaks, transport is blockaded and
the electron number in the dot does not fluctuate.
When the electron number is odd, the topmost res-
onant level is singly occupied. However, when tem-
perature approaches the energy scale T ∼ TK, the
spin of the localized electron becomes screened by
an antiferro-magnetic interaction with the conduc-
tion band electrons. The resulting strong correlations
arise from the interplay of higher order tunneling
processes and the on-site Coulomb interaction. As
a consequence, the many-body state in the T = 0
limit is a singlet formed between the quantum im-
purity and the continuum electrons. The impact in
the transport properties of the system is strong; e.g.,
the temperature-dependent conductance results in a
universal function of T/TK, achieving the quantum
limit (e2/h per spin) at T = 0. This is the celebrated
Kondo effect [13] in quantum dots [14–16], which was
observed several years ago [17].

Now, an important condition for the Kondo ef-
fect to take place is the degeneracy (between spins up
and down) of the ground state of the dot. Such spin
degeneracy may be broken with an external mag-
netic field (Zeeman splitting) and is well understood
[18,19]. But will the Kondo effect be preserved when
the spin transfer across the tunnel barrier is spin-
dependent? How will the conventional picture of the
Kondo resonance in quantum dots be affected within
a spin-polarized medium? To answer these questions
various theoretical groups have lately contributed
[20–31]. Although these works differ in some predic-
tions due to the range of applicability of the distinct
approaches used therein and their limitations, the
analysis of the problem with numerical renormaliza-
tion group [26,27] have led to the conclusion that the
Kondo state is robust enough (though with a lower
TK) against nonzero spin polarizations in the leads
when particle-hole symmetry is not broken and real
charge fluctuations are completely suppressed [27].
Note that particle-hole asymmetry may be induced

in the dot with nearby electric gates, shifting the reso-
nant level away from the symmetric point (see below)
[32]. We predict that this would give rise to a sharp
decrease of the linear-response conductance. Since
the phenomenon is absent when the magnetizations
of the electrodes point along opposite directions (an-
tiparallel alignment), we propose [27] the TMR as
a possible experimental signature of this spintronic
Kondo effect.

Another important element of many theories
of spintronic transport is the description of intrin-
sic “spin relaxation” mechanisms that allow for
nonequilibrium spin populations to relax. Long spin
coherence times τsf have been reported in semicon-
ductor quantum wells [33] and dots [34], The ef-
fect of spin relaxation is known to reduce the TMR
for a Coulomb-blockaded quantum dot [35] and it
leads to a suppression of the Fano factor (shot noise)
in the antiparallel configuration [36]. At lower tem-
peratures (T < TK), spin decoherence causes the de-
struction of the Kondo effect due the failure of the
formation of the many-body singlet state. One could
also think about more coherent “spin-flip” process,
e.g., arising from the potential spin-orbit coupling
which causes the rotation of electron spin in the dot
(this effect of spin-orbit coupling for the localized
electron should be distinguished from that of the
spin-orbit coupling of conduction electrons, which
due to time-reversal symmetry has no influence on
the Kondo effect [37]). More specifically, when the
amplitude of spin flip scattering rate is larger than
the Kondo temperature, h/2τsf � TK, the density of
states (DOS) at the impurity site is expected to de-
velop a splitting and thus a decrease of the lin-
ear conductance. This prediction has been confirmed
with equation-of-motion technique [21], slave-boson
mean-field theory [23,30] and numerical renormal-
ization group [27]. Therefore, spin-flip processes, co-
herent or incoherent, tend to suppress the Kondo
effect.

2. HAMILTONIAN AND THEORETICAL
APPROACHES

We model the quantum dot as a single discrete
level with energy εd, σ containing an unpaired spin-
1/2 electron with σ = {↑,↓} and charging energy U.
Therefore, the dot is an electronic impurity tun-
nelling coupled to continuum electrons with a model
Hamiltonian given by the Anderson Hamiltonian:

H = Hleads + Hdot + Hcoupling, (1)
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Fig. 1. (Color online). Schematic picture of the quantum dot at-
tached to ferromagnetic leads. The dot is a single resonant level
which may be shifted through a capacitative coupling to a gate.
In (a) we show the parallel configuration. Dashed arrows denote
the majority spins and solid arrows are for minority ones. Case
(b) corresponds to the antiparallel alignment.

where (see Fig. 1)

Hleads =
∑
kασ

εkασc†kασckασ, (2)

Hdot =
∑

σ

εd,σn̂σ + Un̂↑n̂↓ + (Rd†
↑d↓ + H.c.), (3)

Hcoupling =
∑
kασ

(Vkασc†kασdσ + H.c.), (4)

are written in terms of the creation and annihila-
tion operators in the dot d†

σ, dσ (the occupation num-
ber is defined as n̂σ = d†

σdσ) and in the leads c†kασ, ckασ

with k the wavevector and α labeling left (α = L) and
right (α = R) reservoirs. Tunneling of electrons from
the dot to the leads is described by the hopping pa-
rameter Vαkσ. In Hdot included is an internal spin-flip
process with rate τ−1

sf ∼ 2R/h [35,36]. Notice that in
this framework the spin-flip process is purely coher-
ent, and precisely speaking it does not account for in-
coherent spin relaxation processes. It may originate
either from the transverse component of an applied
magnetic field or from a tunable spin-orbit coupling
of the Rashba-Dresselhaus type in the dot [3] (see the
introduction and compare with Ref. [37]). Since the
spin-flip processes, coherent or incoherent, have sim-
ilar influence on Kondo effect, we leave the term in
R in Hdot phenomenological. What is important here
is that R lifts the degeneracy of the discrete level and
that it cannot be eliminated with a unitary transfor-
mation since the lead magnetizations already mark
a privileged spin direction. For R = 0 and p �= 0, the
SU(2) symmetry is broken and the spin symmetry of
the problem is U(1) whereas in the presence of both

spin flip scattering and ferromagnetic electrodes, the
U(1) spin symmetry is explicitly broken.

Due to coupling to the leads, the electron
in the dot becomes quasilocalized with a escap-
ing rate related to the hybridization broadening,
�ασ(ω) = π

∑
k |Vkασ|2δ(ω − εkασ). This is the imagi-

nary part of the hopping self-energy, which is spin-
dependent because tunneling is spin-dependent. This
can be achieved by coupling the dot to ferromagnetic
leads. We take constant tunneling coefficients Vα

and equal tunnel barriers (symmetric couplings: VL =
VR). In the wide-band limit, the energy dependence
of �ασ(ω) is unimportant (which is a good approxi-
mation for low voltages). Moreover, we assume that
the degree of spin polarization on lead α is given by

pα = �α↑ − �α↓
�α↑ + �α↓

, (5)

Notice that Eq. (5) is already a gross simplification as
it might well be that pα has little to do with the real
magnetization of the reservoir. In fact, various defini-
tions for p are possible depending on the experiment
[38]. In addition, we neglect proximity effects such
as stray fields coming from the ferromagnets and
consider that the bandwidth D is spin independent.
[We prefer not to delve into details since already the
simple form of Eq. (5) gives rise to nontrivial effects
which can be directly measured].

We consider collinear magnetizations, both
in parallel (P) and antiparallel (AP) configura-
tions. With the approximations discussed above, we
have for the P case (pL = pR ≡ p)�L↑ = �R↑ = (1 +
p)�0/2 and �L↓ = �R↓ = (1 − p)�0/2, where �0 ≡
�α↑ + �α↓, whereas the AP case (pL = −pR ≡ p)
yields �L↑ = �R↓ = (1 + p)�0/2 and �L↓ = �R↑ =
(1 − p)�0/2.

Let us first provide an intuitive picture of the in-
fluence of spin-polarized transport in the Kondo res-
onance at R = 0. We take EF = 0. For P alignment
in the fully polarized case (pL = pR = 1), the singlet
state cannot form due to the lack of spin down elec-
trons. Hence, we expect a decrease of the Kondo
temperature (TK is roughly the binding energy of the
singlet state) with increasing p. In the AP configura-
tion (pL = −pR = 1), however, the Kondo effect sur-
vives since an spin up (down) localized electron may
be screened by the right (left) electrods. Of course,
the conductance would be zero unless a vanishingly
small R is allowed to come into play. Now, in the
P case there may arise an exchange field [24] acting
on the dot as an effective Zeeman splitting [39]. Is
the Kondo effect robust against this exchange field?
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The answer is yes! [27]. When the gate voltage is
tuned in such a way that εd = −U/2 (the symmetric
Anderson model), charge fluctuations become sup-
pressed. Only when particle-hole symmetry is broken
(εd �= −U/2) do we find a splitting in the Kondo peak
of the local DOS.

We briefly review now the different theoretical
methods employed to solve Eq. (1). The equation-
of-motion technique [40] is useful to study nonequi-
librium situations (for finite bias) at relatively “high”
temperatures (T � TK). Although it reproduces qual-
itatively the DOS peaks, it fails to describe properly
the strong coupling regime, where Kondo physics
completely quenches the impurity spin. When ap-
plied to our problem, it predicts the exchange field
induced splitting but not its disappearance at εd =
−U/2. On the other hand, slave-boson mean-field
theory [41] correctly accounts for the Fermi-liquid
fixed point of the Kondo problem at T = 0. As a re-
sult, it is only valid when the particle-hole symmetry
is not broken (no splitting). The noncrossing approx-
imation [42] is another slave-boson based approach
and offers a consistent picture of the Kondo effect at
T ∼ TK. However, it does not take into account ver-
tex corrections and produces spurious peaks at EF in
the presence of a magnetic field. Finally, a numer-
ical renormalization group calculation [43] encom-
passes the whole regime but remains valid only at
equilibrium.

In the following, we report results using the in-
terpolative U-finite perturbation theory [44] since
it gives a good description of the dynamical prop-
erties of Eq. (1) for a wide range of parame-
ters. It can describes both, the Kondo regime and
the mixed-valence regime (where the dot level is
close to EF,−�0 � εd � 0). However, in this approach
the width of the Kondo resonance decreases alge-
braically instead of having an exponentional decay.
Then, we elaborate as well on a numerical renormal-
ization group analysis, which leads to nonperturbative
results for all the regimes listed above.

3. DOS SPLITTING AND TMR

As indicated above, the Kondo resonance for a
quantum dot coupled to two ferromagnets with par-
allel magnetizations, splits away from the symmetric
case (εd �= U/2) where charge fluctuations are impor-
tant. Figure 2 shows our results using the interpola-
tive U-finite perturbation theory including magnetic
leads. The DOS for the symmetric Anderson model

Fig. 2. (Color online). (a) Density of states for the symmetric An-
derson model, εd = −U/2 at T = 0 with U/π�0 = 2.5. Solid line for
p = 0, and dashed line for p = 0.6(�↑ρ↑ = �↓ρ↓). (b) Density of
states for the asymmetric Anderson model corresponding to the
mixed valence regime, εd = −�0 at T = 0. The nonmagnetic case
corresponds to the solid line. Spin up and down density of states
for p = 0.6 are shown with the dashed lines.

is plotted in Fig. 2(a) for the unpolarized case p = 0
and for nonzero polarization p = 0.6 in the P config-
uration. For unpolarized leads, the DOS shows the
usual Kondo resonance reaching the unitary limit and
two broad peaks at ±U/2 corresponding to the two
mean-field (electron-like and hole-like) peaks. The
main effect of the polarized reservoirs is to make
the Kondo resonance narrower but keeping the same
DOS height at EF; i.e., for εd = −U/2 the lead mag-
netizations preserve the unitary limit.

The physical scenario changes dramatically
when charge fluctuations are important as in the
mixed valence regime. The solid line in Fig. 2(b) cor-
responds to εd = −�0 for p = 0. The DOS displays
a strongly renormalized level by the charge fluctu-
ations close to EF with no evidence of the mean-
field peaks. For a finite spin polarization p = 0.6,
Fig. 2(b) depicts both the spin up ρ↑(ω) and the spin
down ρ↓(ω) contributions to the local DOS ρ(ω) =
ρ↑(ω) + ρ↓(ω). Here, ρ↓(↑)(ω), moves toward posi-
tive (negative) frequencies. As a result, ρ(ω) shows
a splitting at low frequencies and the quantum occu-
pations per spin change appreciably: 〈n̂↑(p = 0)〉 <

〈n̂↑(p = 0.6)〉 and 〈n̂↓(p = 0)〉 > 〈n̂↓(p = 0.6)〉. This
demonstrates the sensitivity of the spintronic Kondo
effect to variations of the external gate voltage.

We now use a numerical renormalization group
calculation to investigate both the linear conductance
and the splitting in the total DOS as a function of the
gate voltage εd and the polarization of the leads p.
Figure 3(a) shows the splitting δ of the Kondo peak
as a function of the gate voltage [27]. It increases
linearly from zero as the gate moves away from the
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Fig. 3. (a) Splitting δ of the Kondo peak as a function of εd for p =
0.25 and U = 0.4D (D is the continuum bandwidth). (b) δ versus p
for εd = −0.1D and U = 0.45D. (c) TMR versus p for εd = −0.1D
and U = 0.4D, (d) TMR as a function of εd for p = 0.25 and U =
0.4D. In all cases �0 = 0.02D.

symmetric point εd = −U/2. In terms of the lead po-
larization p (the arrangement is parallel), δ is linear
as well [see Fig. 3(b)].

In Fig. 3(d) we plot the TMR defined as

TMR = GP − GAP

GAP
, (6)

where GP(GAP) is the linear conductance in the P
(AP) case. For the symmetric Anderson model, the
Kondo effect survives even for a finite value of po-
larization |p| < 1. Then, at εd = −U/2 we find that
TMR = p2/(1 − p2), in excellent agreement with the
numerical result. Away from the symmetric point,
i.e., εd �= −U/2, gP gets strongly suppressed as p in-
creases. Then, the system exhibits a strong nega-
tive TMR [see Fig. 3(c)]. As a result, we predict a
sharp peak of the TMR by varying the gate potential
[see Fig. 3(d)]. The origin of this peak is exclusively
due to the particularities of the spintronic Kondo
effect.

We have so far discussed the case of a quan-
tum dot symmetrically coupled to the leads, i.e., �L =
�R = �0. As we have seen, the P configuration leads
to nontrivial effects in the transport properties of the
dot for εd �= −U/2 since εd,↑ and εd,↓ are not equally
coupled to the leads whereas for the AP configu-
ration both εd,↑ and εd,↓ are renormalized by the
Kondo correlations in the same manner. This sce-
nario is modified when we take an asymmetric quan-
tum dot, �L �= �R. In this case, both configurations
(P and AP) give rise to a split DOS since εd↑ is cou-
pled to the leads with �L↑ + �R↑ unlike εd↓ (with
�L↓ + �R↓). In general, there will be splitting pro-
vided �L↑ + �R↑ �= �L↓ + �R↓.

4. SHOT NOISE

The shot noise are the dynamical fluctuations
of the current (current–current correlations) that ap-
pear in electric conductors due to the quantization
of the charge. Research on shot noise in mesoscopic
physics has developed into a fruitful area of research
[45]. Nevertheless, there have hitherto been very few
attempts to investigate shot noise in Kondo impuri-
ties [23,46–51].

Here, we consider the the noise power (the
Fourier transform of the time correlator of the elec-
tric current) at zero frequency:

Sαβ(ω = 0) = 2
∫

dτ〈{δÎα(τ), δÎβ(0)}〉

= 2
∫

dτ[〈{Îα(τ), Îβ(0)}〉 − 〈Îα〉〈Îβ〉], (7)

where δÎα = Îα − Iα describes the fluctuations of the
current away from its average value Iα = 〈Îα〉. We
shall work at T = 0 so that the current will fluctuate
due to quantum fluctuations only (we disregard ther-
mal fluctuations).

Within slave-boson mean-field theory, the shot
noise in a two-terminal geometry is shown [50] to
have the well known expression S ∼ T̃ (1 − T̃ ), i.e.,
the conventional result for the partition noise but
with renormalized transmissions T̃ . This is valid as
long as we restrict ourselves to the Fermi-liquid fixed
point of the Kondo problem.

It is customary to define the Fano factor:

γ = S(0)
2e〈I〉 . (8)

Since we are dealing with a two-terminal system, we
have dropped the lead indices. Now, for a classi-
cal conductor with no correlations, the Fano factor
equals 1 (Poissonian limit). Deviations of this limit
are usually due to the application of Pauli principle or
to the effect of strong electron–electron interactions
as those giving rise to the Kondo effect. In Fig. 4(a),
we plot the influence of spin flips in γ. The polar-
ization in the leads is taken as pL = pR = 0.5. At low
bias, γ behaves as 1 − T̃ (EF) [45]. Since for R = 0 the
Kondo resonance achieves the unitary limit at zero
bias, the Fano factor is completely suppressed down
to zero. As R increases, spin flips induce decoherence
in the correlated motion of the electrons which leads
to the singlet formation. Hence, the transmission at
EF departs from its unitary limit and, as a conse-
quence, γ increases at zero bias (Vdc = 0). For larger
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Fig. 4. Fano factor γ versus applied dc voltage Vdc of a quantum
dot in the Kondo regime attached to ferromagnetic leads and in
the presence of spin flip scattering with rate R. Voltage is units
of the Kondo temperature kBT0

K = D exp(−π|εd|/2�). We take
εd = −6� and D = 100�. (a) Lead polarizations are pL = pR = 0.5.
(b) R = 0 and p = pL = pR (parallel alignment).

voltages, notice that at R = 0 we recover the limit γ =
1/2 of a double-barrier resonant system [45]. For R >

0 the behavior of γ at larger Vdc depends on the par-
ticular two-peak structure of the transmission [23].

In Fig. 4(b), we calculate the Fano factor for
R = 0 and different values of the lead magnetizations
(P configuration, p = pL = pR). We find that γ in-
creases with the polarization p at a given voltage bias
(except at Vdc = 0). This is caused by the suppression
of the Kondo effect for Vdc > 0. For AP alignments
(not shown here), γ increases less rapidly due to the
independence of TK on the lead polarization.

Notice that in slave-boson mean-field theories
the fluctuations of the boson field are neglected.
However, we do not expect large deviations from the
results reported here when T 	 TK. The boson fluc-
tuations will evidently become important as temper-
ature approaches TK.

5. POSSIBLE FUTURE ADVANCES

We have demonstrated that rich physics appears
when the formation of the Kondo state in a quan-
tum dot competes with the presence of spin-polarized
tunneling currents and spinflip processes. We discuss
now possible extensions of the theory that could dra-
matically alter the effects exposed above. We are
confident that the field will still offer unexpected re-
sults and that, consequently, future calculations and
experiments will be full of rewards.

5.1. Magnon-Assisted Transport

We have thus far considered metallic free-
electron ferromagnets as the injecting and receiving

contacts. In reality, transition-metal electrodes are
described by exchange Hamiltonians. In these mod-
els, it is assumed that electrical conduction is carried
by itinerant s-electrons while (insulator) magnetism
is caused by a different group: localized d-electrons.
Interaction between free electrons and localized mo-
ments gives rise to electron-magnon coupling [52].

It has been suggested that magnon-assisted tun-
neling in magnetic tunnel junctions may lower the
TMR as a function of the bias voltage [53,54], giv-
ing rise to a zero-bias anomaly in nonlinear current-
voltage characteristics [55] (see, e.g., Ref. [56] for a
more detailed review on the subject). The peak width
is given by the energy involved in the spin excita-
tions, which is of the order of the Curie temperature
(TC) of the metal. As TC 
 TK, one would naively ex-
pect that the Kondo effect will be always destroyed
by emission and absorption of magnons via spin-flip
processes. Within the tunneling Hamiltonian formal-
ism, we replace Hleads in Eq. (1) with

Hleads =
∑
kασ

εkασc†kασckασ − Jdd

∑
〈i,j 〉α

�Sαi · �Sαj

− Jsd

∑
i

ψ†
ασ( �Sσσ′ · �Sαi)ψασ′ , (9)

where the first term describes the conduction band
electrons, the second term is the Heisenberg interac-
tion between localized moments �Sαi, �Sα j at neighbor-
ing sites i and j of lead α and the third term is the
interaction between a localized moment at site i and
an itinerant electron with creation operator ψ

†
ασ =

 �ke−i �kα·�rαic†kασ. After applying the Holstein-Primakoff
transformation, the ferromagnet low-energy spin ex-
citations can be written in terms of a bosonic collec-
tive bath (magnons), each carrying a magnetic mo-
ment eh/mc. Thus, electron-magnon interaction Hem

at the interface induces spin mixing [53]:

Hem = −J̃sd

∑
k,k′,q

[c†kα↑ckα↓(a†q + aq) + H.c.], (10)

where the J̃ sd is a renormalized coupling constant
(which is taken as momentum independent for sim-
plicity) and a†q ∼ N−1/2 ∑

αi exp(−i �q · �rαi)S−
i is the

magnon creation operator.
In Eq. (10), we have written down only the spin-

flip part of the electron-magnon interaction. It will
lead to nontrivial correlations when combined with
the Hamiltonian Hdot of a Coulomb-blockade quan-
tum dot in Eq. (1). In fact, Hem involves spin-flip
inelastic transitions (the term proportional to R in
Eq. (3) is simply elastic), inducing decoherence in the
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Kondo resonance by means of emission (dominant at
low T) and absorption of magnons of energy hωq. (At
low temperatures, ωq, depends approamately on q in
a quadratic way, ωq ∼ q2). Furthemore, subtle out of
equilibrium effects such as interlayer exchange inter-
action [57] may arise as well.

We should mention that magnon excitations
may also act as a dissipative bath. Since the stan-
dard spectral density for a three-dimensional (cubic)
ferromagnet goes as ω1/2 [54], we would deal with
a subohmic bath. (The spectrum of the bath is cut
off by a maximum magnon frequency due, e.g., to
an anisotropy energy). For comparison, the DOS of
magnons in antiferromagnetic two-dimensional sys-
tems varies as ω, which amounts to an ohmic bath.

5.2. Double Quantum Dots

Double-quantum-dot (DQD) systems have re-
cently attracted much attention since that they form
the simplest artificial systems showing molecule-like
correlations at the nanoscale. As a consequence, a
DQD has been proposed as a basic constituent of a
solid-state quantum computer [3].

Two quantum dots can be coupled either in se-
ries or in parallel, allowing for tunneling and capac-
itive couplings in between. As far as Kondo physics
is concerned, a DQD may be regarded as an artifi-
cial realization of the two-impurity Kondo problem
[58–62]. It consists of two Kondo impurities with spin
�S1 and �S2 interacting via an antiferromagnetic (AF)
exchange coupling, JAF �S1 · �S2:

HAF = JAF

∑
σσ′

d†
1σ

d1σ′d†
2σ′d2σ, (11)

where d†
1σ

(d†
2σ′) creates an electron at dot 1 (2) with

spin σ(σ′). It has been shown that the ratio JJF/TK

determines the ground state of the system. In par-
ticular, when JAF 
 TK the two dots are locked into
a antiferromagnetic singlet state whereas for JAF 	
TK each dot forms its own Kondo state with con-
tinuum electrons in the leads. The critical value at
which the transition from the Kondo state (KS) to
the AF phase takes place can be obtained by com-
paring their ground state energies. Thus, the critical
point depends on the Kondo temperature for each
dot (T1

K, T2
K) as follows

(
JAF

T1
K

)
c

= 4
π

(
1 + T2

K

T1
K

)
. (12)

Fig. 5. (Color online). Schematic picture of the parallel double
quantum dot attached to ferromagentic leads. JAF is the interdot
exchange coupling between the spin of the dots. (a) Parallel con-
figuration of the leads polarization. Dashed arrows correspond to
the majority spins and solid arrows are for minority ones. (b) An-
tiparallel alignment of the leads polarization.

For a symmetrically coupled DQD with a common
gate ε1 = ε2 one has (JAF/TK) = 8/π. In general for
0 ≤ T2

K ≤ T1
K we have 4/π ≤ (I/T1

K)c ≤ 8/π. Since T1
K,

and T2
K depend exponentially on the tunneling cou-

plings and the level positions, a small asymmetry be-
tween these parameters induces a huge change in the
ratio T2

K/T1
K.

Let us consider a parallel DQD (see Fig. 5) con-
nected to two ferromagnetic leads. The Kondo tem-
perature for the dot i ∈ {1, 2} depends on the config-
uration of the polarization of the leads (parallel or
antiparallel). To simplify, we take the same polar-
ization for the leads p > 0 (P alignment) and identi-
cal dots T2

K(p) = T1
K(p) = TK(p). Now the transition

from KS → AF singlet state is achieved more easily
by increasing p. We keep the antiferromagnetic cou-
pling fixed JAF 	 TK(p = 0) and vary p. In this way,
TK(p) becomes smaller leading to a weaker Kondo
effect. Here, the width of the zero-bias anomaly
(ZBA) decreases with p and the conductance reaches
the unitary limit as in the case of a single dot [23,27].
By further increasing p, the AF coupling is much
stronger than the Kondo scale leading to the transi-
tion Kondo → AF when JAF/TK(p) > 8/π.

5.3. Higher Symmetry Kondo States

In DQD systems with a strong interdot Coulomb
interaction, the total charge allowed in both dots at
the same time is just one electron. As a consequence,
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there are four ground states with the same en-
ergy, namely, {1 ↑, 1 ↓, 2 ↑, 2 ↓}. Quantum fluctua-
tions between these states due to coupling to the
leads yield, in the low temperature limit, a highly cor-
related state with SU(4) symmetry [63]. Note that
these fluctuations do not involve only spin flips in
the DQD (spin Kondo effect) but also flips in the or-
bital sector [64]. To describe these new processes, we
define the pseudospin as a fictitious spin that points
along +(−)z when the electron lies at the dot 1(2).
Then, it is shown that the spin Kondo state becomes
intermingled with a pseudospin Kondo state, giving
rise to a complete entanglement between the spin
and charge degrees of freedom.

The spin-pseudospin entanglement develops
from the correlated tunneling that involves a flip
of the spin and the pseudospin of the DQD sys-
tem at the same time. Technically, it arises from the
Schrieffer-Wolff transformation [13] which maps the
DQD Hamiltonian into an effective exchange cou-
pling between the localized spin and pseudospin and
the conduction electrons. In the DQD Hamiltonian,
one replaces Hdot in Eq. (1) with the Hamiltonian of
two dots plus a charging energy U12 between them:

Hinter =
∑
i=1,2

U12n̂1n̂2. (13)

n̂i denotes the occupation number on dot i. We de-
note with �T the pseudospin operator in the DQD
system. The resulting Kondo Hamiltonian formally
reads:

HSU(4)
K = J SU(4) �S · (ψ† �σ�rψ) · �T, (14)

where ψ† = ∑
k ψk is the field operator with .ψk =

[c†e,k,↑, c†o,k,↑, c†e,k,↓, c†o,k,↓] a spinor in the representa-
tion of even and odd channels of the lead opera-
tors [65]. In Eq. (14) J SU(4) is a coupling constant
which goes to the strongly fixed point in the flow di-
agram. We recall that the SU(4) Kondo state takes
place provided there are two conduction channels
(described by the matrix �τ). The latter equation ex-
plains the entanglement between the spin and the or-
bital electronic degrees of freedom.

The transport properties of a SU(4) Kondo state
strongly differ from the conventional SU(2) Kondo
state, both at equilibrium and out of equilibrium
[65]. First, the Kondo temperature inferred from
Eq. (14) is largely enhanced (around 200 times) as
compared to TK of a spin Kondo system [66]. This
means that the differential conductance peak (which
mimics the DQD density of states) becomes greatly

broadened in a transition from the SU(2) to the
SU(4) Kondo physics. Such a transition can be tuned
with a magnetic flux in an Aharonov-Bohm inter-
ferometer with one dot at each arm [65]. Second,
the Kondo resonance is no longer peaked at EF but
at ∼EF + TK to fulfill the Friedel-Langreth sum rule
[13].

How would spintronic transport modify a SU(4)
Kondo resonance? In the presence of ferromagnetic
leads and away from the particle-hole symmetry
point, we expect the spin part of the Kondo state to
slowly vanish with increasing lead polarization. Ex-
perimentally, one would see a splitting of the Kondo
resonance into three peaks. The centered peak would
still correspond to the pseudospin Kondo state,
which is not sensitive to the magnetization at the
leads. At the same time, TSU(4)

K decreases but the
linear conductance would increase since the SU(2)
Kondo resonance associated to the orbital Kondo
effect peaks at EF again. To further destroy the
pseudospin Kondo state, two possibilities emerge
from an analogy with the spin case. First, one allows
for tunneling between the dots, which breaks the
fourfold degeneracy favoring the formation of a
bonding (symmetric) state between the dots. Then,
interdot tunneling acts as an external Zeeman split-
ting in the spin sector. Second, one could consider
asymmetric couplings of the DQD to the leads; e.g.,
the DQD system may be coupled strongly to the
left lead, �L > �R. This way, we regard the leads as
pseudospin polarized much like the spin-dependent
tunneling due to ferromagnetic leads in the spin case.
We may even define the pseudospin polarization for
each spin species as

pσ = �σL − �σR

�σL + �σR
, (15)

[cf. Eq. (5)]. At this point, more calculations are
needed to further exploit this analogy between spins
and pseudospins, which may give rise to a unifying
picture of the influence of real and pseudo-spin po-
larized leads in the transport through quantum-dot
structures.

6. CONCLUSIONS AND EXPERIMENTAL
RELEVANCE

We have investigated the spintronic properties
of a quantum dot in the Kondo regime. We have
considered a dot attached to ferromagnetic leads
and in the presence of intradot spin flip scatter-
ing. Using both perturbation theory in the on-site
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interaction and the NRG method, we have shown
that the Kondo effect is not necessarily suppressed
by the spin polarizations of the leads: for the sym-
metric Anderson model, where charge fluctuations
are completely suppressed, the Kondo effect is ro-
bust even for finite polarizations. For the asymmetric
Anderson model, the Kondo peak does split into two.
This is due to the presence or absence of particle-hole
symmetry. In the presence of particle-hole symme-
try, the Kondo peak at the Fermi level remains un-
split even at finite polarizations and the linear con-
ductance achieves the unitary limit. This remains true
as long as only spin fluctuations are present in the
QD. On the contrary, when particle-hole symme-
try is absent, the conductance is suppressed due to
the visible splitting of the Kondo peak. Since the
Kondo resonance is mostly unaltered for antiparal-
lel magnetizations, we have calculated the TMR in
the Kondo, mixed-valence, and empty-level regimes.
The TMR shows a characteristic behavior for each
of them. In addition, we have shown that the TMR
is strongly affected in the presence of spin flip
processes.

We have studied the form of the shot noise when
charge fluctuations are completely suppressed. We
have shown that the Fano factor approaches the Pois-
sonian limit when the spin flip scattering rate is of
the order of the Kondo temperature. For parallel ar-
rangements, the Fano factor enhances with increas-
ing lead polarizations.

Moreover, we have suggested and discussed pos-
sible new advances in this field such as the influ-
ence of magnons in the Kondo state of a quantum
dot, the effect of spin-polarized currents on double-
quantum-dot systems mimicking the two-impurity
problem and on more exotic Kondo states with
higher symmetry.

The physics addressed in this paper is realistic
and can be visible within the scope of present tech-
niques as the energies we treat are within the Kondo
scale. In particular, a change has been detected in
the resistivity of a Kondo alloy due to spin-polarized
currents [67]. Furthermore, it is already possible to
attach ferromagnetic leads to a carbon nanotube
[68], and a carbon-nanotube quantum dot has been
shown to display Kondo physics below an unusually
high temperature [69]. Finally, a quantum dot cou-
pled to ferromagnetic electrodes has been proposed
as a promising candidate for spin injection devices,
and studied experimentally both in the Coulomb
blockade regime [70] and in the Kondo regime
[71].
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28. R. Lü and Z.-R. Liu, cond-mat/0210350 (unpublished) (2001).
29. J. Ma, B. Dong, and X. L. Lei, cond-mat/0212645 (unpub-

lished) (2001).
30. J. Ma and X. L. Lei, cond-mat/0309520 (unpublished) (2003).
31. Y. Tanaka and N. Kawakami, cond-mat/0406490 (unpub-

lished) (2004).
32. In the recent preprint J. Martinek et al., cond-mat/0406323 (un-

published) (2004), the gatecontrolled splitting investigated in
Ref. [27] is studied in the presence of structured DOS, adding
details to the overall picture.



260 Sánchez, López, and Choi
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