Spin dynamics in nonhomogeneous magnetic structures

Assistant Professor Department of Physics, KAIST

Outline

THz magnon

Summary and Prospect

Spintronics = Electronics + Magetics

What happens if the electron moves?

Spintronics = Electronics + Magetics

Flow of charge= current Flow of spin= ?

The study on the "moving spin" \rightarrow "spintronics"

Why now?

"spin" was already known at 100 years ago. Then, why the "flow of spin" becomes main topic only now?

Discovery of giant magnetoresistance

Parallel → low resistance Antiparallel → high resistance →Giant Magnetoresistance (GMR)

Spin plays an important role!

Discovery of giant magnetoresistance

9 October 2007

The Discovery of Giant Magnetoresistance

compiled by the Class for Physics of the Royal Swedish Academy of Sciences

Newly discovered phenomena

	(year) $ ightarrow$ demonstrated by experimentally
Fundamental mechanism	phenomena
Spin dependent scattering	→ Nobel prize in physics 2007
Spin dependent diffusion	Spin pumping effect (2002)
Spin dependent thermal conductivity	Spin seebeck effect (2008), Magnon Hall effect (2010)
Spin orbit interaction	Spin Hall effect (2004), Rashba effect
s-d exchange interaction	Spin transfer torque (2000), Spin-flip in cold electron (2015)
Antisymmetric exchange interaction	Interfacial Dzyaloshinskii-Moriya interaction (2013)
Spin rotation coupling	Spin hydrodynamic generation (2015)
Size effect in spin transport	Dimensional transition (2009)

Newly discovered phenomena

Outline

Brief introduction

Spintronics

Spin dynamics (domain wall dynamics)

By magnetic field By spin transfer toque By spin orbit torque

Some spin dynamics phenomena

Ferrimagnetic spin dynamics Topological spin objects THz magnon

Summary and Prospect

Spin dynamics induced by magnetic field

$$\frac{\partial \mathbf{M}}{\partial t} = -|\gamma| \mathbf{M} \times \mathbf{H}_{eff} || + \frac{\alpha}{M_s} \mathbf{M} \times \frac{\partial \mathbf{M}}{\partial t}$$
Precession
$$\mathbf{M} = -\frac{i}{\hbar} [\vec{m}, \mathbf{H}]$$

$$\mathbf{H} = -\vec{m} \cdot \vec{H}_{eff}, \quad \vec{H}_{eff} = -\frac{\delta E(m)}{\delta m}, \quad \vec{m} = \gamma \vec{S}$$
from
$$[S_i, S_j] = i\hbar S_k$$

$$\frac{d}{dt} \vec{m} = -\gamma \vec{m} \times \vec{H}_{eff}$$

Domain wall dynamics induced by magnetic field

Spin dynamics induced by spin transfer torque

- Spin torque > Damping torque → Switching
- Spin torque ~ Damping torque → Stationary Precession

Spin dynamics induced by spin transfer torque

Domain wall dynamics induced by spin transfer torque

<u>KJK</u> et al. IEEETM (2009) <u>KJK</u> et al. APEX (2010) KJK et al. PRL (2010)

Spin dynamics induced by spin orbit torque

Moving electron under electric field feels effective magnetic field!

 $H \propto \vec{s} \cdot \left(\vec{p} \times \nabla \phi(\vec{r}) \right)$ *H*_{eff}

Spin dynamics induced by spin orbit torque

Charge current (Jc) is converted to spin current (Js)

 $\frac{J_s}{J_c} = \theta_{SH} \frac{\hbar/2}{-e}$ θ_{SH} : Spin Hall angle

Kato et al. Science (2004)

Domain wall dynamics induced by spin orbit torque

Spin current injection by spin Hall effect

$$\frac{\partial \mathbf{M}}{\partial t} = -\left|\gamma\right| \mathbf{M} \times \mathbf{H}_{eff} + \frac{\alpha}{M_{s}} \mathbf{M} \times \frac{\partial \mathbf{M}}{\partial t} + \frac{\alpha_{sHE}}{M_{s}} \mathbf{M} \times (\boldsymbol{\sigma} \times \mathbf{M})$$

Spin Hall torque

Outline

Brief introduction Spintronics Spin dynamics? By magnetic field By spin transfer toque By spin orbit torque

Some spin dynamics phenomena

Ferrimagnetic spin dynamics Topological spin objects THz magnon

Summary and Prospect

Time scale in spin dynamics

What I have done so far...

What I have done so far...

Topological spin objects

These non-uniform magnetic configurations are protected topologically. \rightarrow Extraordinary stability \rightarrow memory devices

Is magnetic domain wall a topological object?

Magnetic soliton

Four-fold degeneracy Up \rightarrow Down and Down \rightarrow Up x Left-handed and right-handed helicity

Magnetic domain-wall

- If precessional motion occurs, \rightarrow helicity is changed
- → DW motion is generally not a topologically protected in the presence of a external field because the DW can be deformed by finite energy.

Magnetic domain wall dynamics in one dimension

Precessional regime

$$v = \gamma \Delta \frac{\alpha}{1 + \alpha^2} H$$

Steady regime

Walker breakdown field

$$v = \frac{\gamma \Delta}{\alpha} H$$

$$H_{W} = 2\pi\alpha M_{S} \left| N_{y} - N_{x} \right|$$

Magnetic domain wall dynamics in two dimension

Precessional regime

$$v = \gamma \Delta \frac{\alpha}{1 + \alpha^2} H$$

Precession \rightarrow Evolution of vertical Bloch lines

Interfacial Dzyaloshinskii–Moriya interaction (DMI)

S. Emori, et al., Nat. Mater. (2013)

Second order exchange interaction

K. S. Ryu et al., Nat. Nanotech. (2013)

Magnetic domain wall dynamics under DMI

Two controlled samples

Experimental results

Compare to the theory

- Theoretical model cannot explain the experimental results.
- DMI enhances the DW velocity in the precessional regime!

Compare to the simulation

Topological characteristics of vertical Bloch lines (VBLs)

Q = +1, C = +1/2 Q = +1, C = -1/2 Q = -1, C = +1/2 Q = -1, C = -1/2

Four-fold degeneracy Charge Q x chirality C

 \otimes

Topological characteristics of vertical Bloch lines (VBLs)

Four-fold degeneracy Charge Q x chirality C

 $\sum_{i} Q_{i}$ Total charge \square Topological charge of DW $\sum_{i} C_{i}$ Total chiraltiy \square Topological winding number of DW

Topological constraint

Topological characteristics of vertical Bloch lines (VBLs)

Topological characteristics of VBL under DMI

Topological characteristics of VBL under DMI

Energy splitting generates velocity difference

Unidirectional collision of VBLs

Locking of the azimuthal angle of DW under DMI

Locking of the azimuthal angle of DW under DMI

Soliton-like DW motion even above the Walker field

Class of magnet

Ferromagnet

Antiferromagnet

Ferrimagnet

Microscopically antiferromagnet Macroscopically ferromagnet

Possible to control by magnetic field

Transition Metal-Rare Earth ferrimagnet

Radu et al. Nature. **472**, 205 (2011) C.E.Graves et al. Nat. Mater. **12**, 293 (2013)

\bullet $T_{\rm M}$ of ferrimagnet

$T_{\rm M}$: Magnetization compensation temperature

* Another compensation temperature: T_A

* Previous studies on T_A

• Previous studies on T_A

C. D. Stanciu et al. PRB 73, 220402(R) (2006)

✤ Let's check it!

SiN (5 nm) GdFeCo (30 nm) SiN (5 nm)

<u>Films (Tsukamoto group @ Nihon University)</u> <u>Patterning and measurement (Ono group @ Kyoto University)</u>

How the measure?

Real-time DW detection technique

 \rightarrow Direct detection of DW using Oscilloscope

Remove the rising time of magnetic field

Monitoring signal

• Why the DW velocity is enhanced at T_A ?

• Why the DW velocity is enhanced at T_A ?

Micromagnetic simulation reproduces the exp. result.

By S.-H. Oh, K-J Lee Korea University

Applied physics?

Next generation magnetic memory

Summary

Future plan

고맙습니다.

