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 Spintronics = Electronics + Magetics

 Magnetic properties

 Electrical Properties

What happens if the electron moves?
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 Spintronics = Electronics + Magetics

eee

eee

Flow of charge= current

Flow of spin= ?

The study on the “moving spin”  “spintronics＂
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 Why now?

• Non conservative!

Spin is only conserved 

in a few fs time scale (spin-flip scattering time)

in a few nm length scale (spin diffusion length)

Spin is not preserved.
 Difficult to define the “flow”, but…

If the device is 
smaller than this?

“spin” was already known at 100 years ago.
Then, why the “flow of spin” becomes main topic only now?
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 Discovery of giant magnetoresistance

Low resistance

Large current

High resistance

Small current

Parallel  low resistance
Antiparallel  high resistance
Giant Magnetoresistance (GMR)

Spin plays an important role!
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 Discovery of giant magnetoresistance
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 Newly discovered phenomena

(year)  demonstrated by experimentally

Spin dependent scattering

Spin dependent diffusion

Spin dependent thermal conductivity

Spin orbit interaction

s-d exchange interaction

Antisymmetric exchange interaction

Spin rotation coupling

Size effect in spin transport

Fundamental 
mechanism

phenomena

…
.

Giant magnetoresistance (1989)
 Nobel prize in physics 2007

Spin pumping effect (2002)

Spin seebeck effect (2008), Magnon

Hall effect (2010)

Spin Hall effect (2004), Rashba effect 

(2010 in metal), spin Hall MR (2012)

Spin transfer torque (2000), Spin-flip 

in cold electron (2015)

Interfacial Dzyaloshinskii-Moriya 

interaction (2013) 

Spin hydrodynamic generation (2015)

Dimensional transition (2009)

…
.
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 Newly discovered phenomena

Spin dependent scattering

Spin dependent diffusion

Spin dependent thermal conductivity

Spin orbit interaction

s-d exchange interaction

Antisymmetric exchange interaction

Spin rotation coupling

Size effect in spin transport

Fundamental 
mechanism

…
.

Giant magnetoresistance (1989)
 Nobel prize in physics 2007

Spin pumping effect (2002)

Spin seebeck effect (2008), Magnon

Hall effect (2010)

Spin Hall effect (2004), Rashba effect 

(2010 in metal), spin Hall MR (2012)

Spin transfer torque (1998), Spin-flip 

in cold electron (2015)

Interfacial Dzyaloshinskii-Moriya 

interaction (2013) 

Spin hydrodynamic generation (2015)

Dimensional transition (2009)

…
.
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 Spin dynamics induced by magnetic field
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 Domain wall dynamics induced by magnetic field

‘up’ ‘down’
Magnetic field 

50 μm
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STT

(adiabatic)

(damping-like torque, DLT)
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• Spin torque > Damping torque  Switching

• Spin torque ~ Damping torque  Stationary Precession
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(non-adiabatic)

(field-like torque, FLT)

 Spin dynamics induced by spin transfer torque
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Single domain nanowire

Domain and domain wall

Magnetic domain wall

Mpol
M

I 

spin polarized current

 Spin dynamics induced by spin transfer torque
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KJK et al. IEEETM (2009)

KJK et al. APEX (2010)

KJK et al. PRL (2010)

Pt/Co/Pt

Scanning MOKE

vs

 Domain wall dynamics induced by spin transfer torque
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Hall effect Spin Hall effect

Kato et al. Science (2004)

in semiconductor (GaAs)

First observation of spin Hall effect

Metal (Al) Metal (Pt,W,Ta)

: Spin Hall angle

Charge current (Jc) is converted to spin current (Js)

~10-1
x1000

10-4

eJ

J
SH

C

S


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2


SH

SH

 Spin dynamics induced by spin orbit torque
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Spin current injection by spin Hall effect
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 Domain wall dynamics induced by spin orbit torque

Nano letter 17, 1814 (2017)
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 Outline

Brief introduction
Spintronics

Spin dynamics?

Some spin dynamics phenomena

Ferrimagnetic spin dynamics
Topological spin objects
THz magnon

Summary and Prospect

By magnetic field
By spin transfer toque
By spin orbit torque
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ultrafast

dynamics

slow 

dynamics

fast 

dynamicsstatic

Damping/PrecessionThermal Activation flow Motion

EB >> kBT EB ~ kBT EB ~ 0

1 s 1 ms 1 s 1 ns 1 ps

Electrical detection Optical detection

1 Hz 1 KHz 1 MHz 1 GHz 1 THz

time

frequency

phenomena

Detection tech.

 Time scale in spin dynamics
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Field-driven STT-driven SOT-driven

statics

ultrafast

dynamics
(ps, THz)

slow 

dynamics
(ms, KHz

creep

criticality)

fast 

dynamics
(ns, GHz)

new phenomena

“Soliton behavior”
Nat. Phys. (2015)

“2D-1D transition”
Nature (2009)

“Universality”
PRL (2011)

“energy barrier”
Nat. Comm. (2013)

“energy barrier”
PRL(2011)

“superpara transition”
IEEETM (2009)

“Shift register”
APEX (2010)

“DW memory”
Nanotech.(2011)

“Jc reduction”
Nat. Nanotech (2012)

“SHE and DMI”
APEX (2014)

“DW oscillator”
APEX (2015)

“3D-2D-1D transition”
APEX (2015)

PRB (2015)

“THz magnon”
Submitted

“Ferrimagnetic DW”
Submitted

 What I have done so far…
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Field-driven STT-driven SOT-driven

statics

ultrafast

dynamics
(ps, THz)

“2D-1D transition”
Nature (2009)

“Universality”
PRL (2011)

“energy barrier”
Nat. Comm. (2013)

“energy barrier”
PRL(2011)

“superpara transition”
IEEETM (2009)

“Shift register”
APEX (2010)

“DW memory”
Nanotech.(2011)

slow 

dynamics
(ms, KHz

creep

criticality)

fast 

dynamics
(ns, GHz)

new phenomena

“Jc reduction”
Nat. Nanotech (2012)

“SHE and DMI”
APEX (2014)

“DW oscillator”
APEX (2015)

“3D-2D-1D transition”
APEX (2015)

PRB (2015)

“THz magnon”
Submitted

“Ferrimagnetic DW”
Submitted

“Soliton behavior”
Nat. Phys. (2015)

 Today’s topic is…
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Field-driven STT-driven SOT-driven

statics

ultrafast

dynamics
(ps, THz)

“Soliton behavior”
Nat. Phys. (2015)

slow 

dynamics
(ms, KHz

creep

criticality)

fast 

dynamics
(ns, GHz)

new phenomena

 Today’s topic is…
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Adv. Phys. 61, 1 (2012) Nat. Mater. 6, 269  (2007)

Magnetic soliton Magnetic vortex

Bloch pointMagnetic skyrmion

Nat. Nanotechnol.8,152 (2013) Magnetic domains, Springer

These non-uniform magnetic configurations are protected topologically.

 Extraordinary stabiltiy  memory devices

 Topological spin objects
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Yes

Four-fold degeneracy

Up  Down and Down  Up

x

Left-handed and right-handed helicity

No
If precessional motion occurs, 

 helicity is changed 

 DW motion is generally not a 

topologically protected in the presence 

of a external field because the DW can 

be deformed by finite energy.

Magnetic soliton

Magnetic domain-wall

 Is magnetic domain wall a topological object? 
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Soliton-like Not a soliton

H

v

Steady regime

Hv





Hv
21 







Precessional regime

HW

Walker breakdown field

xySW NNMH  2

 Magnetic domain wall dynamics in one dimension
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H

v

HW

Steady regime

Precessional regime

Hv





Hv
21 







Very complicate. 

But in analogous to precessional motion

Precession

 Evolution of vertical Bloch lines
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 Magnetic domain wall dynamics in two dimension
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 Interfacial Dzyaloshinskii–Moriya interaction (DMI)

 Second order exchange interaction

 Emerges at the interface 

(broken inversion symmetry)

 Prefers chiral spin structure

HDMI= -D12 • (S1 × S2), 

S. Emori, et al.,Nat. Mater. (2013) K. S. Ryu et al., Nat. Nanotech. (2013)

Nat. Nanotechnol.8,152 (2013)
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 Magnetic domain wall dynamics under DMI

H

v

HW H

v



32/69May 17, 2017

[asymmetric structure] [symmetric structure]

No DMIlarge DMI

[Ta(4)/Pt(2)/MgO(1)/Co(0.3)/Ni(0.6)/
Co(0.3)/Pt(2)/Ta(4)/ Si sub. (unit: n
m)]

[Ta(4)/Pt(2)/Co(0.3)/Ni(0.6)/Co(0.3)/Pt(2)
/Ta(4)/ Si sub. (unit: nm)]

Sample and measurement setup

 Two controlled samples
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P
in

n
in

g regim
e

P
in

n
in

g regim
e

[asymmetric structure] [symmetric structure]

Fast DW velocity.
v saturates in a wide range of H.

Slow DW velocity.
v gradually increases with H.

 Experimental results

No DMIlarge DMI
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 Theoretical model cannot explain the experimental results.
 DMI enhances the DW velocity in the precessional regime!

[asymmetric structure] [symmetric structure] No DMIlarge DMI

 Compare to the theory
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Simulation reproduces the experimental results very well!

[asymmetric structure] [symmetric structure] No DMIlarge DMI

 Compare to the simulation



36/69May 17, 2017

(+1,+1/2)

(-1,-1/2)

(Q,C)

=(+1,-1/2)

(-1,+1/2)

Four-fold degeneracy

Charge Q x chirality C

Q = +1, C = +1/2 Q = +1, C = -1/2 Q = -1, C = -1/2Q = -1, C = +1/2

 Topological characteristics of vertical Bloch lines (VBLs)
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Four-fold degeneracy

Charge Q x chirality C

Q = +1, C = +1/2 Q = +1, C = -1/2 Q = -1, C = -1/2Q = -1, C = +1/2

Topological constraint


i

iQ


i

iC

Total charge

Total chiraltiy

Topological charge of DW

Topological winding number of DW

 Topological characteristics of vertical Bloch lines (VBLs)
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 Topological characteristics of vertical Bloch lines (VBLs)

(+1,+1/2)

(-1,-1/2)

(-1,+1/2)

(+1,-1/2)

(-1,+1/2)

(+1,-1/2)

Nucleation of VBL Annihilation of VBL
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+
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+
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+
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‖ 

( 0, 0 )
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Nat. Nanotechnol.8,152 (2013)

 Topological characteristics of VBL under DMI

 DKK d
eff
d

 DKK d
eff
d
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 Topological characteristics of VBL under DMI

2
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(+1,-1/2) (-1,+1/2)

Without DMI

With DMI

HDMI

 DKK d
eff
d

Total energy VBL width VBL velocity

fast

slow

Energy splitting generates velocity difference
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D = 0 D != 0

Topological winding number changes

 Energy dissipation

 Unidirectional collision of VBLs
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 Locking of the azimuthal angle of DW under DMI
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 Locking of the azimuthal angle of DW under DMI
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H

v

2D + DMI

Soliton-like

H

v

Soliton-like   Locally, precessional motion

As a whole, steady motion

Yoshimura, KJK et al. Nat. Phys. (2015)
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 Soliton-like DW motion even above the Walker field
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Field-driven STT-driven SOT-driven

statics

ultrafast

dynamics
(ps, THz)

slow 

dynamics
(ms, KHz

creep

criticality)

fast 

dynamics
(ns, GHz)

new phenomena

“Ferrimagnetic DW”
Submitted

 Today’s topic is…
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Ferromagnet

Antiferromagnet

Ferrimagnet
Microscopically antiferromagnet

Macroscopically ferromagnet

Possible to control by magnetic field

 Class of magnet
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Radu et al. Nature. 472, 205 (2011)

C.E.Graves et al. Nat. Mater. 12, 293 (2013)

Transition Metal – Rare Earth Ferrimagnets

Two sublattices are antiparallel

Amorphous  

 Transition Metal-Rare Earth ferrimagnet
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T < TM T > TM

TM : Magnetization compensation temperature

 TM of ferrimagnet
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L 


Bgμ



FeGd gg  FeGd  

AM

FeGdA

FeFeGdGdFeGdM

TT

0:T

0:T







LL

LL 

TA : Angular momentum compensation temperature

 Another compensation temperature: TA
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TM : Magnetization compensation temperature

TA : Angular momentum compensation temperature

X. Jiang et al. PRL 97, 217202 (2006)

 Previous studies on TA



51/69May 17, 2017

C. D. Stanciu et al. PRB 73, 220402(R) (2006)

total

total

L


 

= 0

finite

If then, DW velocity also diverges!

 Previous studies on TA
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Films (Tsukamoto group @ Nihon University)

Patterning  and measurement (Ono group @ Kyoto University)

SiN (5 nm)

GdFeCo (30 nm)

SiN (5 nm)

 Let’s check it!
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Real-time DW detection technique

 Direct detection of DW using Oscilloscope

External field＜Hc

DW writing pulse

Monitoring signal

0 50 100 150 200

-5
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 t (us)

620 Oe

 

 

V
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m
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Remove the rising time of magnetic field

 How the measure?
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 Why the DW velocity is enhanced at TA?

H

v

Steady regime

Hv





Hv
21 







Precessional regime

HW

Walker breakdown field

xySW NNMH  2
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Micromagnetic simulation reproduces the exp. result.
By S.-H. Oh, K-J Lee

Korea University

H

v

Precessional motion  Steady motion at TA

 Why the DW velocity is enhanced at TA ?
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Field-driven STT-driven SOT-driven

statics

ultrafast

dynamics
(ps, THz)

slow 

dynamics
(ms, KHz

creep

criticality)

fast 

dynamics
(ns, GHz)

new phenomena

“Soliton behavior”
Nat. Phys. (2015)

“2D-1D transition”
Nature (2009)

“Universality”
PRL (2011)

“energy barrier”
Nat. Comm. (2013)

“energy barrier”
PRL(2011)

“superpara transition”
IEEETM (2009)

“Shift register”
APEX (2010)

“DW memory”
Nanotech.(2011)

“Jc reduction”
Nat. Nanotech (2012)

“SHE and DMI”
APEX (2014)

“DW oscillator”
APEX (2015)

“3D-2D-1D transition”
APEX (2015)

PRB (2015)

“THz magnon”
Submitted

“Ferrimagnetic DW”
Submitted

 Applied physics?
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Giant Magnetoresistance

(GMR)

Spin transfer torque

Quantum spin flip process

Spin orbit torques
spin Hall torque

Rashba effect

Dzyaloshinskii-Moriya interaction

1
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0
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2
0

1
5

1 0

HDD

Read head

MRAM

Basic research Technology

STT-MRAM

STT-Diode

STT-Oscillator

STT-Memristor

SOT-MRAM

SOT-oscillator

STT-MRAM

 Applied physics?
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read

e-

write

e-e-

 Next generation magnetic memory
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During last 12years…

Field-driven STT-driven SOT-driven

statics

ultrafast

dynamics
(ps, THz)

slow 

dynamics
(ms, KHz

creep

criticality)

fast 

dynamics
(ns, GHz)

new phenomena

“Soliton behavior”
Nat. Phys. (2015)

“2D-1D transition”
Nature (2009)

“Universality”
PRL (2011)

“energy barrier”
Nat. Comm. (2013)

“energy barrier”
PRL(2011)

“superpara transition”
IEEETM (2009)

“Shift register”
APEX (2010)

“DW memory”
Nanotech.(2011)

“Jc reduction”
Nat. Nanotech (2012)

“SHE and DMI”
APEX (2014)

“DW oscillator”
APEX (2015)

“3D-2D-1D transition”
APEX (2015)

PRB (2015)

“THz magnon”
Submitted

“Ferrimagnetic DW”
Submitted

6년

5년

1년

 Summary
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나에겐 아직 30년의 시간이 있습니다.

이 공간을 여러분과 함께 채워가고 싶습니다.

 Future plan
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고맙습니다.


