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Exotic Quantum States of Circuit Quantum Electrodynamics
in the Ultra-Strong Coupling Regime

Mahn-Soo Choi

The quantum coherent behaviors of superconducting devices at macroscopic
scales and recent technical advances in fine tunability have brought the
conventional cavity quantum electrodynamics (QED) to superconducting
circuits. With an ultra-strong cavity photon–artificial atom coupling and the
inherent nonlinearity of the Josephson junctions, the so-called circuit QED
offers new opportunities to explore new realms of physics that have remained
a challenge for conventional cavity QED. Circuit QED has even attracted
public attention as the leading architecture for quantum computation. In this
article, a pedagogical review of recent studies and activities on exotic
quantum states that can be attributed to ultra-strong coupling is provided. A
progress report on attempts to seek the smallest unit of the topological matter
and its fundamental interaction with light is also provided.

1. Introduction

Roughly speaking and according to our current understanding,
the universe consists of energy (possibly including dark en-
ergy) and matter (possibly including dark matter). Light is rep-
resentative of energy while matter is composed of atoms. The
light–atom interaction has naturally attracted significant atten-
tion from the general public. One particular system is notable:
the cavity quantum electrodynamics (QED) system. It is a min-
imal system where “photons”, or light quanta, confined inside
the cavity interact with “qubits”, two-level quantum systems, that
serve as the smallest unit of atoms (hence matter). Despite the
simplicity of the cavity QED system, it contains all essential ingre-
dients regarding the light–matter interaction. On that account, it
is no wonder that ever since the early age of quantummechanics,
the cavity QED systems have been the subject of a vast amount
of research. They have revealed many intriguing features of the
light–matter interaction as well as quantized light and quantum
matter themselves. However, conventional cavity QED systems
bear two important drawbacks: first, the photon–qubit coupling
is too weak and (as illustrated recently in other architectures with
ultra-strong coupling) the observable physical effects are rather
limited. Second and more importantly, the usual qubit does not
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properly represent the topological matter,
which has risen as a major topic in the field
of condensed-matter physics.
The resolution to weak photon–qubit

coupling has come from an unprecedented
architecture based on superconducting
circuits. The so-called superconducting
circuit QED system (see Figure 1) is a
planar superconducting transmission
line of a few centimeters in length that
interacts electrically and/or magnetically
with superconducting qubits embedded
within it. As pointed out in ref. [1] and
soon after demonstrated experimentally in
ref. [2], the small effective mode volume
makes microwave photon–qubit coupling
in the circuit QED systems very strong.
Such an ultra-strong coupling provides an

outstanding platform for various exotic strong-coupling quan-
tum effects[3] that would have been elusive in conventional cav-
ity QED systems. In Sections 2–7, we will provide a pedagogical
review of the recent developments and activities concerning the
fundamental ultra-strong coupling effects in circuit QED that are
difficult to observe in conventional cavity QED.
On the other hand, even the circuit QED systems studied so

far involve usual qubits exploiting no topological characteristics.
Recently, there have been some valuable attempts to couple Ma-
jorana Fermion modes in topological superconductors with a cir-
cuit resonator[4,5]; see also Section 9. Unfortunately, however, the
coupling strength is small, and most activities have focused on
examining new experimental tools to probe certain specific topo-
logical properties.
A natural question at this stage is: What is the smallest unit

(if any) of topological matter? That is, could one conceive of a
simple yet quintessence-seizing model for the topological matter
that will eventually reveal the fundamental principle of the light-
topological matter interaction? Sections 8 and 9 are devoted to
this issue and report on the progress of some attempts to seek
answers to the question.

2. Circuit QED Systems

Circuit quantum electrodynamics (QED)[1,2,6] is a re-
implementation of the atomic cavity QED[7,8] in supercon-
ducting circuits. It replaces the traditional optical cavity with a
superconducting transmission line and the atoms with artificial
atoms, that is, qubits. Unlike the typical cavity QED that involves
millions or billions of atoms floating “in the space”, the circuit
QED deals with just a few qubits fixed inside circuit and provides
greater tunability. Further, the coupling between the qubit and
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Figure 1. a) Schematic diagram of the circuit quantum electrodynamics (QED) system consisting of the superconducting circuit resonator (shown in
cyan) and the superconducting qubit (in orange and white). The electromagnetic field (arrows in red) of the resonance mode (sine wave in red) along
the central wire piece (a few centimeters long and a few nanometers wide) electrically and/or magnetically modulates the qubit parameters, and ultra
strong coupling is accordingly achieved between the microwave photon and the qubit. The entangled photon–qubit states can be probed by means
of microwave transmission and/or reflection through the input and output ports connected capacitively to the central resonator piece. The outermost
superconducting plates are ground plates confining the electromagnetic wave within the trench. More details are present in ref. [1]. b) Equivalent circuit
of the circuit QED system.

the cavity field is several thousand times larger (relative to the
resonant frequency) than the one in cavity QED. These two
factors and the other technical aspects allow the circuit QED to
explore the regime that is difficult to reach in cavity QED. One of
the main purposes of this article is to survey the studies of such
exotic quantum regimes and their associated quantum states.
Of course, it should also be noted that combined with a long

decoherence time of the transmon qubit,[9,10] the circuit QED has
provided easily accessible experimental tools to process quantum
information such that circuit QED has become one of the lead-
ing architectures for quantum computation. The public has got
to regard superconducting quantum computers as realistic.[11]

In this article, however, we will focus more on the quantum
physics originating from the ultra-strong light–matter interac-
tion rather than in the context of quantum information pro-
cessing and scalable quantum computation, which is referred to
ref. [12].
A circuit QED system consists of a superconducting circuit res-

onator and a superconducting qubit as is schematically shown
in Figure 1. The resonator is typically centimeters long and sur-
rounded by superconducting ground plates to prevent electro-
magnetic radiation loss. The qubit can be of any type, including
charge,[13] flux,[14] and phase[15] qubits, but in most applications
the so-called transmon qubits[9,10,16] are used due to their long
decoherence time.

2.1. Quantization of the Resonator

For the cavity, a transmission line in the form of a coplanar wave
guide[1,2] is the most common, but recently, a 3D cavity[17] has
also been widely used. To simplify the discussion, here we focus
on the coplanar wave guide.
The charge in the superconducting transmission line cannot

remain still due to the zero-point quantum fluctuation effect, and
its fluctuations propagate along the transmission line with the
speed of light, microscopically governed by Maxwell’s equations.
Since the transmission line is centimeters long, the elementary
modes are expected to have wavelengths of a similar scale. This
means that it is enough to quantize the charge fluctuations at the
macroscopic level in terms of the capacitance per unit length and
the inductance per unit length of the transmission line. This is

the approach that is taken in ref. [1] and the charge fluctuations
were described by a continuous field variable.
Here, we take a similar approach but discretize the transmis-

sion line of length 𝓁 into N segments. In this picture, the trans-
mission line is equivalent to the circuit containing a series of
capacitors and inductors; see Figure 1b. The Kirchhoff’s law on
each loop gives the relation

In =
n∑
j=1

dQj

dt
(1)

among the currents In through the inductors and the charge Qn
on the capacitors. The boundary conditions are

I0 = IN = 0 (2)

from the fact that the circuit is open, and

Q1 +Q2 +⋯ +QN = 0 (3)

from the charge neutrality. It is useful to define auxiliary
variables

Φ0 = 0, Φn =
n∑
j=1

Qj (n = 1, 2,… , N) (4)

so that

Qn = Φn − Φn−1, In =
dΦn

dt
(n = 1,… , N) (5)

Note that the total charge neutrality condition gives

ΦN = 0 (6)

The Lagrangian is given by

 = 1
N

N∑
n=1

[
1
2
LrΦ̇2

n −
(Φn − Φn−1)

2

2Cr

]

= 1
N

N∑
n=1

[1
2
LrΦ̇2

n −
1
2
Lr𝜔

2
LC(Φn − Φn−1)

2
]

(7)
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where Cr and Lr are the total capacitance and inductance, re-
spectively, of the transmission line, and 𝜔LC := N∕

√
LrCr is the

LC frequency of each segment. Recall that Φ0 = ΦN = 0. The
Lagrangian is formally the same as that of a loaded string. To find
the normal modes, we take a discrete Fourier sine transform

Φn =
√

2
N

N−1∑
m=1

𝜙m sin
(mn𝜋

N

)
(n = 1,… , N − 1) (8)

upon which the Lagrangian is reduced to

 = 1
N

N−1∑
n=1

(1
2
Lr�̇�

2
n −

1
2
Lr𝜔

2
n𝜙

2
n

)
(9)

with

𝜔n := 2𝜔LC sin
( n𝜋
2N

)
(10)

The corresponding Hamiltonian is given by

H =
N−1∑
n=1

[
𝜋2n

2Lr∕N
+ 1
2
(Lr∕N)𝜔2

n𝜙
2
n

]
(11)

where 𝜋n := (Lr∕N)�̇�n is the canonical momentum conjugate to
𝜙n. Obviously, it is a collection of simple Harmonic oscillators
with natural frequencies 𝜔n.
So far the description is all classical. Now, we quantize the

model by replacing the classical variables 𝜙n and 𝜋n by the op-
erators �̂�n and �̂�n, respectively, which satisfy the canonical com-
mutation relations

[�̂�m, �̂�n] = i𝛿mn. (12)

Furthermore, we introduce the annihilation operator

ân :=
1√
2

[√
𝜔nLr∕N�̂�n + i�̂�n∕

√
𝜔nLr∕N

]
(13)

which satisfies the commutation relations

[âm, â
†
n] = 𝛿mn, [âm, ân] = [â†m, â

†
n] = 0 (14)

Putting these together, we obtain the Hamiltonian

Ĥcavity =
N−1∑
n=1

𝜔nâ
†
nân (15)

In the continuum limit (N → ∞), the normal-mode frequency𝜔n
in (10) is reduced to

𝜔n = vkn (16)

where v := 𝓁∕
√
LrCr is the “speed of light” and kn := 𝜋n∕𝓁 is the

wave number of the mode. With 𝓁 ≈ 1 cm, the frequency of the
fundamental mode 𝜔1 ≈ 5GHz. In applications, one chooses a
particular mode 𝜔n and assumes the other modes are well sep-
arated and do not affect the system in question. In this regards,

from now on, we drop the subscript index for the mode of choice
and simply write the mode frequency as 𝜔.
The voltage due to the (quantized) cavity field is given by

V̂ = Vrms(â + â†) (17)

with the root-mean-square value Vrms =
√
𝜔∕Cr (we have put

ℏ = 1).

2.2. Superconducting Qubits

Many hybrid systems have been experimentally realized with var-
ious quantum devices coupled to the superconducting resonator,
including carbon nanowire quantum dots,[18] semiconductor
spin qubits,[19] diamond nitrogen-vacancy color centers,[20] and
many other of varyingmaterials. Here, we will focus on the trans-
mon qubit: the coupling of other types of qubits and quantum
devices is essentially similar in the relevant low-energy regime.
A transmon qubit[9,10,16] is a Cooper box[13] with the relative

magnitudes of Josephson and charging energies reversed. It is
described by the Hamiltonian

Ĥtransmon = 4EC(n̂ − ng )
2 − EJ cos �̂� (18)

where EC := e2∕2C is the charging energy of the superconduct-
ing island with a total capacitance C and EJ is the Josephson en-
ergy of the junction. The gate charge ng (in units of the Cooper
pair charge 2e) is tuned via the gate voltage Vg across the gate
capacitance Cg . The number of Cooper pairs, n̂, and the super-
conducting phase difference between the superconducting island
and reservoir, �̂�, are canonical conjugates of each other satisfying
the commutation relation

[n̂, �̂�] = i (19)

In the large Josephson energy limit (EJ ≫ EC), the system de-
scribed by the Hamiltonian (18) can be regarded as a harmonic
oscillator with nonlinearity with n̂ playing the role of the “po-
sition” and �̂� the momentum. In this limit, the nonlinearity is
small (yet sufficiently large for two-level approximation, see be-
low) which can be seen by expanding the “potential” (up to an
irrelevant constant energy shift)

Ĥtransmon ≈ 4EC(n̂ − ng )
2 +

EJ
2
�̂�2 −

EJ
24

�̂�4 +⋯ (20)

Effectively, the Hamiltonian of the transmon qubit reads as

Ĥtransmon ≈ Ω

[
b̂†b̂ −

ng𝛽√
2
(b̂ + b̂†) − 𝛽

16
b̂†b̂(b̂†b̂ − 1)

]
(21)

where b̂ := (
√
𝛽n̂ + i�̂�∕

√
𝛽)∕

√
2 is the annihilation operator of

the “oscillator”, [b̂, b̂†] = 1, and 𝛽 :=
√
8EC∕EJ is the McCumber

parameter. Here Ω :=
√
8ECEJ is the natural frequency of the

fictitious oscillator. The factor 𝛽∕16 governs the nonlinearity of
the oscillator.
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The electric field of the cavity field affects the transmon
through the gate charge ng . The voltage between the center and
ground plates given in Equation (17) leads to the coupling term

Ĥcoupling = g(â† + â)(b̂† + b̂) (22)

where the coupling constant is given by [9]

g :=
Cg

C

√
2𝜔ECr

, ECr
:= e2

2Cr
(23)

In typical circuits,Ω ≈ 𝜔 ≈ 5GHz and g ≈ 300MHz[6] so that the
ultra-strong coupling is within the reach (g∕𝜔 ≈ 10−2).[3,21–23]

The biggest advantage of the transmon device is that with large
Josephson energy the charge dispersion is weak enough to sup-
press the decoherence while the sufficiently large nonlinearity,
𝛽∕16, allows to selectively control transitions between different
levels.[9,16] In typical applications for quantum information pro-
cessing, one chooses the two lowest levels. Upon the two-level
approximation, the combined circuit QED system consisting of
the resonator and the transmon qubit is given by the so-called
Rabi Hamiltonian

ĤRabi = 𝜔â†â + 1
2
Ω�̂�z + g(â + â†)�̂�x (24)

So far we have ignored the photon loss of the cavity and the
decoherence of the qubit. The rates of those effects are tradition-
ally denoted by 𝜅 and 𝛾 , respectively. In conventional cavity QED,
just two parameter regimes are considered, the weak-coupling
(g ≲ 𝜅, 𝛾) and strong-coupling (𝜅, 𝛾 ≪ g) regimes, assuming that
g ≪ 𝜔 in realistic experiments. With superconducting circuits,
while 𝜅 ≈ 50MHz and 𝛾 ≈ 1MHz[10] and sufficiently smaller
than other energy scales𝜔,Ω, and g, the coupling g can be as large
as the order of 𝜔. In circuit QED, it is thus necessary to consider
a wider range of parameters and distinguish the regimes with
g ≪

√
𝜔Ω and g ≈

√
𝜔Ω. The latter is called the ultra-strong cou-

pling regime as the word “strong coupling regime” has already
been common in cavity QED. Although very difficult to reach
in realistic experiments, it is also theoretically useful to consider
an even stronger coupling regime (deep strong coupling regime)
with g ≫

√
𝜔Ω.

3. Rabi Hamiltonian: Exact Properties

We have seen that the Rabi Hamiltonian

Ĥ = 𝜔â†â + 1
2
Ω�̂�z + g(â + â†)�̂�x (25)

is the elementary model for the circuit QED in the ultra-strong
coupling regime. The eigenstates of the Rabi Hamiltonian are
usually strongly entangled states between the qubit and the cavity
photons, and hence they are called the “dressed states”.[31,35] In
this section, we examine several features of the RabiHamiltonian
that are valid regardless of the parameter regime, which produce
interesting insights into the mathematical structure of the Rabi
Hamiltonian and its eigenstates. Further properties depending
on the specific parameter regimes are discussed in Section 4.

3.1. Parity Symmetry

The Rabi Hamiltonian possesses an important symmetry,
that is

[Π̂, Ĥ] = 0, Π̂ := exp(i𝜋n̂)�̂�z (26)

where n̂ := â†â. It is an overall number parity, and we will call
it just “parity”. As Π̂2 = 1, the eigenvalues of P̂ are ±1, which
we call “even” and “odd”, respectively. Note that the quadrature
X̂ := â + â† and P̂ := −i(â − â†) of the cavity mode and the qubit
flip operator �̂�x are all odd under parity transformation

Π̂X̂Π̂ = −X̂ , Π̂P̂Π̂ = −P̂, Π̂�̂�xΠ̂ = −�̂�x (27)

It is useful to decompose the Hilbert space  into subspaces
invariant under Π̂, = e ⊕o. In each sector, one can choose
the parity Fock basis,

|Πe∕o
n ⟩ := (�̂�x)n |n, ↑∕↓⟩ = (â†)n√

n!
|0⟩⊗ (�̂�x)n |↑∕↓⟩ (28)

where we have adopted the short-hand notation |n, 𝜎⟩ := |n⟩⊗|𝜎⟩ for the product of the photon and qubit states.
It is also interesting and useful to note that within each parity

subspace, the operator

b̂ := â�̂�x (29)

behaves as a canonical Bosonic operator, that is, [b̂, b̂†] = 1. It
turns out that the parity Fock basis in (28) is the eigenstate of
n̂b := b̂†b̂

n̂b |Πe∕o
n ⟩ = n |Πe∕o

n ⟩ (30)

and hence the name. Naturally, it is even under parity

Π̂b̂P̂ = b̂ (31)

and unlike X̂ and P̂, the quadratures X̂b := b̂ + b̂† and P̂b := −i(b̂ −
b̂†) are all even under parity

Π̂X̂bΠ̂ = X̂b, Π̂P̂bΠ̂ = P̂b (32)

3.2. Displaced Fock States in the Parity Basis

Here, we will develop another parity basis, which turns out to be
the eigenstates of the Hamiltonian to a good approximation over
an almost entire parameter range.[24,25] The relatively small error
in the regime g ≈

√
𝜔Ω can be further improved using the gen-

eralized rotating wave approximation described in Section 4.4.
First note that the Hamiltonian in each parity subspace is

given by

Ĥe∕o = 𝜔(b̂ + g∕𝜔)†(b̂ + g∕𝜔) ± 1
2
Ω exp[i𝜋n̂b] (33)

Upon the unitary transformation

D̂b(g∕𝜔)Ĥe∕oD̂
†
b(g∕𝜔) = 𝜔n̂b ±

1
2
Ω exp(i𝜋n̂b)D̂b(−2g∕𝜔) (34)
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Figure 2. The energies of the displaced Fock states in the parity basis as a
function of g (dashed lines). For comparison, the exact eigenenergies are
also shown with solid lines. Here 𝜔 = Ω has been assumed.

with the displacement operator

D̂b(z) := exp(zb̂† − z∗b̂) (35)

It is natural to construct a basis consisting of the displaced Fock
states

|Π̃e∕o
n ⟩ = D̂†

b(g∕𝜔) |Πe∕o
b ⟩ (36)

Their energies are given by

Ee∕o
n = n𝜔 + ⟨Π̃e∕o

n | Ĥ |Π̃e∕o
n ⟩ = n𝜔 ± (−1)n 1

2
ΩDnn(−2g𝜔) (37)

where

Dmn(z) := ⟨m| D̂b(z) |n⟩ = e−|z|2∕2
√

n!
m!

Lm−n
n (|z|2)zm−n (m ≥ n)

(38)

and Lnm(x) is the Laguerre polynomial. Interestingly, as Figure 2
shows, the energies in Equation (37) are already close to the true
eigenvalues of Ĥ. In fact, they are the exact eigenstates in both
g → 0 and g → ∞ limits. To see it, note that the matrix elements
of the Hamiltonian in the basis are given by

⟨Π̃e∕o
m | Ĥ |Π̃e∕o

n ⟩ = ±1
2
ΩDmn(−2g∕𝜔) (39)

Form ≠ n, Dmn(z) → 0 as either |z| → 0 or |z| → ∞. In the inter-
mediate regime (g ≈

√
𝜔Ω), the matrix elements are finite and

the displacement Fock states in the parity basis are not exact
eigenstates. However, the matrix elements remain small com-
pared to𝜔 and hence they are still eigenstates of Ĥe∕o to a good ap-
proximation.
We have just shown that the displaced Fock states in the

parity basis in Equation (36) provide a convenient basis as a
good starting point for further approximations. Nevertheless,
one drawback is noted concerning the ground state: the lowest-
energy state among the displaced Fock states in the parity basis
is clearly a separable state. The variational wavefunctions[24,26–28]

or direct numerical calculations suggest that the ground state is
an entanglement between the cavity photon and the qubit.

3.3. Exact Solution

In 2011, Braak found an analytic solution for the quantum Rabi
model in the Bargmann–Fock space of analytic functions and
gave the energy spectrum.[29–31] Since Braak’s analytic solution,
different methods were used to reproduce his result includ-
ing the Bogoliubov transformation[32] and the confluent Heun
functions,[33,34] and a flood of other works followed to study the
analytic structure of the Rabi Hamiltonian. A detailed review on
the activities in the direction is available in refs. [31, 35].
Here, we will follow ref. [32], whose presentation is more

physicists friendly than Braak’s original work, to summarize the
analytic solution. We explicitly represent the qubit part in the
eigenbasis of �̂�x, so as to rewrite the Rabi Hamiltonian in (25)
into the following matrix form

Ĥ =
[
𝜔â†â + g(â + â†) Ω∕2

Ω∕2 𝜔â†â − g(â + â†)

]
(40)

In this representation, the wave function is represented by two
components as

|𝜓⟩ = [
𝜓+
𝜓−

]
(41)

Upon the unitary transformation D̂(g∕𝜔), where D̂(z) :=
exp(zâ† − z∗â) with a complex number z, the Hamiltonian
in Equation (40) is recast to

Ĥ′ = D̂(g∕𝜔)ĤD̂†(g∕𝜔)

=
[
𝜔â†â − g2∕𝜔 Ω∕2

Ω∕2 𝜔â†â − 2g(â + â†) + 3g2∕𝜔

]
(42)

One expands the wave function in the Fock basis in the rotated
frame

|𝜓 ′⟩ = [∑
n An

√
n |n⟩∑

n Bn

√
n |n⟩

]
(43)

Putting it into the eigenvalue equation

Ĥ′ |𝜓 ′⟩ = E |𝜓 ′⟩ (44)

leads to a recursion relations

An = −
Ω∕2

n𝜔 − g2∕𝜔 − E
Bn (45a)

nBn = Fn−1Bn−1 − Bn−2 (45b)

where

Fn :=
1
2g

(
n𝜔 +

3g2

𝜔2
−

(Ω∕2)2

n𝜔 − g2∕𝜔 − E

)
(46)
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Figure 3. a) Interesting parameter regions and their typical characteristics of the Rabi Hamiltonian. The quantum exotic regime is around the red solid
line. b) The squeezing in the ground state as shown in the standard deviation ΔP of the quadrature P̂ := i(â† − â). The squeezing is most pronounced
in the quantum exotic regime.

One could choose the unitary transformation D̂(−g∕𝜔)

Ĥ′′ = D̂ĤD̂† =
[
𝜔â†â + 2g(â + â†) + 3g2∕𝜔 Ω∕2

Ω∕2 𝜔â†â − g2∕𝜔

]
(47)

The wave function

|𝜓 ′′⟩ = [∑
n B

′
n

√
n |n⟩∑

n A
′
n

√
n |n⟩

]
(48)

leads to another recursion relations

A′
n = −

Ω∕2
n𝜔 − g2∕𝜔 − E

B′
n (49a)

nB′
n = Fn−1B

′
n−1 − B′

n−2 (49b)

Now note that if the eigenvalue is not degenerate, the two wave
functions should represent the same state, |𝜓 ′⟩ = z |𝜓 ′′⟩ for
some complex number z. Eliminating z and noting that Bn and
B′
n satisfy the same recursion relation, one can get the condition

for the energy E as

G±(E) =
∞∑
n=0

Bn

(
1 ∓

Ω∕2
E + (g2∕𝜔) − n𝜔

)( g
𝜔

)n
= 0 (50)

The integrability of the Rabi Hamiltonian has been revealed
through its analytical solution. Braak[29] has extended this ap-
proach to a generalized Rabi model with a parity breaking term
𝜖�̂�x and found the exact solution, the first example of exact solu-
tion for a nonintegrable system. Nevertheless, the solution given
above is not presented in a simple closed form. For a clearer phys-
ical insights into the Rabi Hamiltonian, various approximation
methods have been developed focusing on the particular param-
eter regimes of physical interests.

4. Interesting Parameter Regimes

For a very simple form, the Rabi Hamiltonian exhibits surpris-
ingly rich quantum effects. In this section, we examine various
parameter regimes and interesting quantum effects that are

representative of such regimes. Although the exact solution
discussed in Section 3.3 reveals the deep mathematical structure
of the Rabi Hamiltonian, it is not easy to obtain physical insights
into the diverse quantum effects since the solution is not given
in a simple, closed form. It turns out that the individual param-
eter regimes allow for simple approximation methods that give
direct insights into the quantum effects in particular regimes.
In this section, we examine various parameter regimes of the
Rabi Hamiltonian, develop relevant approximation methods,
and investigate the interesting quantum effects based on the
approximations.
Figure 3a provides the overall picture of the various parame-

ter regimes and summarizes their properties in terms of the ap-
propriate approximations. Physically, the regime around the line
2g =

√
𝜔Ω is the most interesting regime. As a representative

example of the exotic quantum features in the regime, consider
the strong squeezing effect[24] of the cavity photons as shown in
Figure 3b. All other exotic quantum effects are most pronounced
around the line (Section 6). On this ground, the regime around
the line is called the quantum exotic regime.

4.1. Rotating Wave Approximation (g ≪

√
𝛀𝝎)

The most common approximation made on the Rabi Hamilto-
nian is the so-called rotating wave approximation (RWA). Note
that the qubit-resonator coupling term can be split into to two
terms

g(â�̂�+ + â†�̂�−) + g(â�̂�− + â†�̂�+) (51)

In the first term, a quantum of energy is reduced by destroying
a photon, but it is compensated by the flipping the qubit, and
vice versa. On the other hand, the second term only contains pro-
cesses that either simultaneously increase or decrease the energy
in both the cavity and the qubit. Naturally, the latter processes
occur less frequently than the former. The RWA corresponds to
ignoring the second term and is supported by the above observa-
tion. This argument can be made more precise by moving to the
interaction picture by the rotation

Û(t) = exp
(
i𝜔tâ†â + iΩt�̂�z∕2

)
(52)
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A B

Figure 4. Eigenstates of the Jaynes–Cummings model. a) Zero-detuning (Δ = 0) case. b) Finite-detuning case.

to get

Ĥeff = Û(t)ĤÛ†(t) − Û(i𝜕tÛ
†)

= g(e−itΔâ�̂�+ + h.c.) + g(eit(Ω+𝜔)â�̂�− + h.c.) (53)

whereΔ := 𝜔 − Ω is the detuning. As typically𝜔 ≈ Ω, the second
term varies much faster than the first one, and self-cancels itself.
In this sense, the first term is called the rotating term and the
second counter-rotating term.
Dropping the counter-rotating term, the Rabi Hamilto-

nian is reduced to the so-called Jaynes–Cummings (JC)
Hamiltonian[36]

HJC = 𝜔â†â + 1
2
Ω�̂�z + g

(
â�̂�+ + â†�̂�−) (54)

The JC model has been widely used in conventional cavity QED
as the coupling constant is usually very small (g∕𝜔 ≲ 10−6).
Unlike the Rabi Hamiltonian, the JC Hamiltonian allows for a

simple solution. This is because for each n, the state |n, ↑⟩ is only
coupled to |n + 1, ↓⟩. Here, we have adopted a simplified notation|n, 𝜎⟩ := |n⟩⊗ |𝜎⟩ for the product of the photon Fock state |n⟩
(n = 0, 1, 2,…) and the qubit logical basis state |𝜎⟩. Within the
subspace spanned by |n, ↑⟩ and |n + 1, ↓⟩ the Hamiltonian has
the matrix representation of the form

H
.
=

[
n𝜔 + Ω∕2 g

√
n + 1

g
√
n + 1 (n + 1)𝜔 − Ω∕2

]
(55)

The eigenvalues are given by

E±(n) = 𝜔

(
n + 1

2

)
± 1
2

√
(1 + n)(2g)2 + Δ2 (56)

and the corresponding eigenvectors are

|n,+⟩ = + cos(𝜃∕2) |n, ↑⟩ + sin(𝜃∕2) |n + 1, ↓⟩ (57a)

|n,−⟩ = − sin(𝜃∕2) |n, ↑⟩ + cos(𝜃∕2) |n + 1, ↓⟩ (57b)

where tan 𝜃 := (2g∕Δ)
√
n + 1. Figure 4 shows the level struc-

ture of the JC model. The hybridization of the states |n, ↑⟩ and|n + 1, ↓⟩ is maximal at the resonance (Figure 4a), and it de-
creases as the detuningΔ increases (Figure 4b). It is also interest-
ing to notice that the splitting due to the hybridization increases
with n, leaving the spectrum with a irregular level spacing. This
observation is important to understand the photon blockade or
similar effects; see Section 6.3.
The above level structure of the eigenstates of the Jaynes–

Cummings Hamiltonian can be directly observed in experi-
ments. Consider an experiment with the spin in the excited state|↑⟩ and the oscillator in the number state |n⟩. The probability to
find the system in the state |n + 1, ↓⟩
P(t) = sin2

[
tΩn∕2

]
(58)

oscillates in time with the so-called quantum electrodynamic
Rabi frequency

Ωn :=
√
(n + 1)(2g)2 + Δ2 (59)

In particular, the frequency

Ω0 =
√
(2g)2 + Δ2 (60)

describes the oscillation between |0⟩⊗ |↑⟩ and |1⟩⊗ |↓⟩. The ef-
fect has received great interest and has been designated with the
name vacuum Rabi oscillation since it involves the the vacuum
state of the cavity field, “no electromagnetic field” in some sense,
casting a contrast with conventional Rabi oscillation driven by the
finite electromagnetic field.

Adv. Quantum Technol. 2020, 2000085 © 2020 Wiley-VCH GmbH2000085 (7 of 20)
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Figure 5. The energy levels of the dispersive Hamiltonian; to be compared
to the energy levels of the Jaynes–Cummings model with a large detuning
in Figure 4b.

4.1.1. Dispersive Regime

The large detuning limit |Δ| ≫ g features further interesting
properties of the JCmodel. To see it, consider the state |n, ↑⟩. The
only allowed transition for it is the one to |n + 1, ↓⟩. However, if
the energy costΔ for the process is bigger than the transition am-
plitude g

√
n + 1, the state immediately (within the time ≈ 1∕Δ)

returns back to the original state. If the system starts in the state|n + 1, ↓⟩, the effect is similar; the transition to |n, ↑⟩ releases en-
ergy Δ larger than g

√
n + 1, and the reverse transition immedi-

ately pushes the system back to the state |n + 1, ↓⟩. Nevertheless,
through these virtual transitions, the corresponding states obtain
energy gains due to the uncertainty principle. The energy gains
for |n, ↑⟩ and |n + 1, ↓⟩ are
∓
g2(n + 1)

Δ
(61)

respectively. In the operator form, they are described by

−
g2

Δ
â†â�̂�z − 1

2
g2

Δ
�̂�z + (constant) (62)

Therefore, the energy gains corresponds to the ac Stark shift,
(2g2∕Δ)(n + 1∕2) for the atom, or alternatively, the dispersive
shift, 𝜎z g

2

Δ
for the cavity. Overall, the effective Hamiltonian in the

large detuning limit is given by

Ĥdis =
(
𝜔 −

g2

Δ
�̂�z

)
â†â + 1

2

(
Ω −

g2

Δ

)
�̂�z (63)

The energy levels of the effective Hamiltonian are compared to
the exact energy levels of the JC Hamiltonian in Figure 5. The
same effective Hamiltonian can also be obtained by a unitary
transformation

Ĥdis = ÛĤJCÛ
† (64)

with

Û = exp
[
−
g
Δ
(â�̂�+ − â†�̂�−)

]
(65)

An important aspect of the dispersive Hamiltonian is that the
qubit-cavity coupling termnow commuteswith the qubit and cav-
ity Hamiltonians. This means that when the cavity is used as a
probe for the quantum states of the qubit, themeasurement satis-
fies the quantum non-demolition (QND) condition. The opposite
is also true, that is, one can probe the photon states in the cavity
by using the qubit as a QND probe. Such QND measurements
have played crucial roles for the development of the quantum in-
formation processors based on circuit QED.[2,37–44]

4.2. Born–Oppenheimer Approximation (𝛀 ≫ 𝝎, g)

When the qubit transition frequency Ω is much larger than the
cavity mode frequency 𝜔 and the coupling g (this is a further ex-
treme of the dispersive regime discussed in Section 4.1.1), there
is a clear separation of the time scales in the dynamics of the qubit
and the cavity mode. That is, the dynamics of the qubit is so fast
that the cavity field looks almost static to the qubit. This means
that one can regard the cavity field variables as static parameters
when solving the qubit. Diagonalizing the two by two matrix for
the qubit, one obtains the two branches of the energy function

Ĥ±
eff = 1

2

[
𝜔
(
p̂2 + x̂2

)
±
√
Ω2 + 8g2x̂2

]
(66)

which is now regarded as the effective Hamiltonian for the cavity
mode alone and is solved separately. Here

x̂ = â + â†√
2

, p̂ = â − â†

i
√
2

(67)

are the two standard quadrature variables (i.e., the “position” and
“momentum” of an oscillator) for the cavity mode. The approxi-
mation just made is reminiscent of the Born–Oppenheimer ap-
proximation in solid-state physics,[45] where the splitting of time
scales exists between the light and fast electrons and the heavy
and slow ions.
Let us focus on the lower branch Ĥ−

eff , which dominates the
low-energy physics. The effective potential

V(x) := 1
2
𝜔x2 −

√
Ω2 + 8g2x2 (68)

becomes bistable for 4g2∕𝜔Ω > 1; see Figure 6. The minima of
the effective potential is located at ±x0 given by

x20 =
1
2
Ω
𝜔

[
4g2

𝜔Ω
− 𝜔Ω
4g2

]
(4g2 > 𝜔Ω) (69)

Physically, the bistability is not easy to observe as it requires the
condition

Ω ≫ g ≫ 𝜔 (70)
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Figure 6. The effective potential, V(x), in Equation (68), in the Born–
Oppenheimer approximation. Three representative cases are shown for
2g2∕𝜔Ω = 0.8 (orange), 1 (blue), and 1.2 (green), respectively.

However, it is still useful to analyze the bistability regime since
the regime g ≫

√
𝜔Ω is ultimately related to the (easier-to-

reach) weak-coupling regime by the duality as we will discuss in
Section 5.

4.3. Adiabatic Approximation (𝛀 ≪ 𝝎, g)

In the opposite limit, where Ω ≫ 𝜔, g, the separation of the time
scales is pronounced again, but the slow variables are the qubit’s.
This regime has been previously studied by several groups in dif-
ferent forms.[46–49] Here we mainly follow the lines in [49].
We start with Ω = 0. In this extreme case, the qubit state is

completely frozen in the either eigenstate |±1⟩ of �̂�x. Therefore,
the Hamiltonian for the cavity mode has two branches

Ĥ±
eff = 𝜔â†â ± g(â + â†) + g2∕𝜔 = 𝜔(â ± g∕𝜔)†(â ± g∕𝜔) (71)

(We have added a constant energy shift for simplicity.) It is imme-
diately clear that the model is nothing but the shifted oscillator
and the eigenstates are displaced Fock states

|ñ±⟩ := D̂†(±g∕𝜔) |n⟩ (72)

The overall eigenstates of the total system are thus given by|ñ±,±⟩ with (degenerate) eigenvalues n𝜔.
For finite and small Ω, it causes transitions between |m+,+⟩

and |n−,−⟩. As the difference (m − n)𝜔 in their (unperturbed) en-
ergies are bigger thanΩ form ≠ n, the transitions are negligible.
Therefore, it is sufficient to treat its effect ofΩ perturbatively con-
sidering only two-by-two block spanned by |ñ±,±⟩[

n𝜔 1
2
ΩDnn(−2g∕𝜔)

1
2
ΩDnn(−2g∕𝜔) n𝜔

]
(73)

where Dmn(z) are the same as in Equation (38). The eigenstates
and the corresponding eigenvalues are given by

|ñ+,+⟩ ± |ñ−,−⟩ , n𝜔 ±Dnn(−2g∕𝜔)Ω∕2 (74)

Figure 7. The approximate energies as a function of g (dashed lines) from
the generalized rotating wave approximation. For comparison, the exact
energies are also shown with solid lines.

4.4. Generalized Rotating Wave Approximation

The central spirit of the rotating wave approximation is to focus
on the transitions among the levels of similar energies (see Sec-
tion 4.1). It has been suggested that within the spirit, one can go
beyond the conventional rotating wave approximation by choos-
ing a proper basis. Irish[50] started with the eigenbasis from the
adiabatic approximation (see Section 4.3). The Hamiltonian is
rewritten in the basis of the adiabatic eigenstates. Then, the argu-
ment about energy conservation that led to the RWA is applied in
the new basis, and the approximate energy levels are calculated.
Earlier, ref. [51] had used the same idea but they also took into
account the parity conservation.
Here, we present still another approach to generalize the con-

ventional rotating wave approximation, starting with the dis-
placed Fock basis with a definite parity. In Section 3.2, we have
seen that the displaced Fock states in the parity basis already
form a good approximate eigenbasis of each parity sector Ĥe∕o.
The small yet finite error is most pronounced around the regime
g ≈

√
𝜔Ω. For a small g∕

√
𝜔Ω, the displaced Fock states |Π̃e

2m⟩
and |Π̃e

2m+1⟩ form a close pair in the even parity subspace whereas
such pair is formed by |Π̃o

2m+1⟩ and |Π̃o
2m+2⟩ ; see Equations (36)

and (37). The relevant 2 × 2 block in each sector reads as

[
Ee
2m

1
2
ΩD2m,2m+1(−2g∕𝜔)

1
2
ΩD2m,2m+1(−2g∕𝜔) Ee

2m+1

]
(75)

and[
Eo
2m+1

1
2
ΩD2m+1,2m+2(−2g∕𝜔)

1
2
ΩD2m+1,2m+2(−2g∕𝜔) Eo

2m+2

]
(76)

respectively, with m = 0, 1, 2,…. Note that in this approxima-
tion, the state |Π̃o

0⟩ in the odd subspace is singled out (decou-
pled), and it gives the (approximate) ground state [with energy
− 1

2
ΩD00(−2g∕𝜔)] of the Rabi Hamiltonian. The accuracy of the

generalized RWA is illustrated in Figure 7.
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5. Duality

In the previous section, we have examined various parameter
regimes, their properties and relations to each other. Here, we
point out that both the extreme parameter regimes g ≪

√
𝜔Ω

and g ≫
√
𝜔Ω are unitarily equivalent.[24,52] That is, when the pa-

rameter regimes in Figure 3a is folded along the line 2g =
√
𝜔Ω,

the overlapping regimes share the same properties.
Start with the limit, g ≫

√
𝜔Ω. In short, we will eventually

make the transformation

Ĥ′′ = Ûy(𝜃)D̂(𝛼)ĤD̂†(𝛼)Û†
y (𝜃) (77)

Upon the displacement,

Ĥ′ := D̂(𝛼)ĤD̂†(𝛼) = 𝜔â†â − 𝜔𝛼(â + â†) + g(â + â†)�̂�x

+ 1
2
Ω�̂�z − 2g𝛼�̂�x (78)

Combine the last two terms to get a single longitudinal term by
means of the rotation Ûy(𝜃) with

cos 𝜃 = Ω
Ω′ , sin 𝜃 =

4g𝛼
Ω′ , Ω′ :=

√
Ω2 + (4g𝛼)2 (79)

Ĥ′′ = Ûy(𝜃)Ĥ
′Û†

y (𝜃) = 𝜔â†â − 𝜔𝛼(â + â†) − g sin 𝜃(â + â†)�̂�z

+ g cos 𝜃(â + â†)�̂�x + 1
2
Ω′�̂�z (80)

We want to remove the term

−𝜔𝛼(â + â†) − g sin 𝜃(â + â†)�̂�z (81)

for the ground state |↓⟩, which leads to the condition
𝜔𝛼 = g sin 𝜃 ≡

4g2𝛼
Ω′ (82)

or equivalently

Ω′

Ω
=
4g2

𝜔Ω
(83)

Putting it back into the last equation in (79),

𝛼 = 1
2

√
Ω
𝜔

(
4g2

𝜔Ω
− 𝜔Ω
4g2

)
(84)

Note that this displacement parameter is exactly the same as
the one obtained in the Born–Oppenheimer approximation, see
Equation (69). Overall Ĥ′′ takes the same form as Ĥ

Ĥ′′ = 𝜔′â†â + g′(â + â†)�̂�x + 1
2
Ω′�̂�z + (irrelevant terms) (85)

with renormalized parameters 𝜔′ = 𝜔, Ω′ given in (83), and g′

given by

g′

g
:= cos 𝜃 = Ω

Ω′ =
𝜔Ω
4g2

(86)

In particular, we note that the dimensionless coupling constant
is renormalized

4g′2

𝜔′Ω′ =
𝜔Ω
4g2

→ 0 (87)

so that the effective Hamiltonian Ĥ′′ is now in the weak-
coupling limit.
The duality picture explains why the quantum exotic regime

(g ≈
√
𝜔Ω) is special, and it is the only regime that bears the true

ultra-strong coupling physics. The duality feature is directly im-
plied in the recurrent photon-blockade effect to be discussed in
Section 6.4.

6. Exotic Quantum States in the Ultra-Strong
Coupling Regime

In Sections 4, we have examined various parameter regimes and
their properties. In Section 5, we have seen that the exotic quan-
tum effects due to ultra-strong coupling is most pronounced in
the so-called exotic quantum regime, where g ≈

√
𝜔Ω. In this

section, we now survey those exotic quantum effects due to ultra-
strong coupling.

6.1. Vacuum Rabi Splitting

The first implication of the ultra-strong coupling effects in the
circuit QED can be observed in the phenomenon known as the
vacuumRabi splitting, the splitting of the resonance spectral line
of the vacuum Rabi oscillation into extra lines.[53]

The zero-point quantum fluctuation of the vacuum gives rise
to oscillatory transitions of two-level atoms.[54] Such an effect is
called the vacuum Rabi oscillation, and it is explained well by
the Jaynes–Cummings (JC) model (see Section 4.1), the “weak”-
coupling (g ≪

√
𝜔Ω) approximation of the Rabi Hamiltonian.

Within the JCmodel, only the pairwise states |n, ↑⟩ and |n + 1, ↓⟩
are coupled. In particular, the state |0, ↑⟩ involving the vacuum
of the cavity mode is coupled only to |1, ↓⟩, which results in a
well-defined Rabi oscillation.
As the coupling grows stronger (g ≈

√
𝜔Ω), the rotating wave

approximation starts to break down, and the JC model is not
enough to describe the system properly in this regime. One
has to take into account the counter-rotating term in Equa-
tion (51). Let us investigate the effect of the counter-rotating
term perturbatively, regarding the JC model as the unperturbed
Hamiltonian. The counter-rotating term induces transitions
between the eigenstates of the JC Hamiltonian in Equation (57)
(Figure 8).
Such transitions between the JC levels have been observed in

spectroscopic experiments on the circuit QED system with a su-
perconducting qubit.[53,55] The effect has also been observed with
the superconducting qubit replaced by a semiconductor double
quantum dot.[56,57] These experiments were performed with the
coupling strengths that are not typically called as ultra strong.
However, the effect comes from the counter-rotating term, and it
indicates that the ultra-strong coupling effects set in.
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Figure 8. Vacuum Rabi splitting in a circuit QED system. Reproduced with
permission from Figure 3 of ref. [53]. Copyright 2009, Springer Nature.

6.2. Ground-State Squeezing

The ultra-strong coupling between the cavity photon and the
qubit results in an entanglement to a large extent. It is common
that a strong entanglement between two subsystems results
in decoherence in each subsystem when observed separately.
The unique feature of the photon–qubit entanglement in the
circuit QED systems is that the strong entanglement makes the
cavity field non-classical, that is, it leads to strong squeezing
effects.
Figure 3b shows the profile in the parameter space of the

standard deviation ΔP of the quadrature P̂ := −i(â − â†) from
exact numerical calculations. Clearly ΔP is less than the stan-
dard quantum limit ΔP = 1, revealing a squeezing effect in the
ground state. The ground-state squeezing can be understood

Figure 9. Schematic of two coupled circuit QED systems. The two res-
onators are coupled capacitively, and the photons can tunnel from one
cavity mode to another as well as interact with the two qubits. The
strong photon–qubit coupling induces nonlinearity (effectively an indirect
photon–photon interaction) of the cavity field, and it results in the photon-
blockade effect.

through variational wavefunctions.[24,25] In passing, the ground-
state squeezing should be distinguished from the squeezing
effects achieved by dynamical driving.[58] In a recent experiment
on superconducting circuit resonator with a large array of
Josephson junctions with microwave pump, the nonlinearity
of the Josephson junctions was exploited to achieve the para-
metric amplification and squeezed radiation.[59] The resulting
squeezed radiation[60] has been used to explore the effects of the
squeezed radiation on (artificial) atoms, which has until recently
remained a long standing challenge in atomic physics.[61] While
the dynamical approach is valuable in many applications for the
coherent manipulation of quantum states and opens new pos-
sibilities (see Section 7), the ground squeezing is interesting in
that it reveals the equilibrium quantum properties of circuit QED
systems.

6.3. Photon Blockade

Photons themselves do not interact with each other, and in
principle an infinite number of photons can occupy the same
mode. However, a photon–photon interaction can be induced by
the medium through light–matter interaction. A typical exam-
ple is the Kerr nonlinearity induced on optical light through the
medium.[54] In the circuit QED, such an indirect photon–photon
interaction turns out to be repulsive and the photons already oc-
cupying a mode prevent other photons from occupying the same
mode, which is called the photon-blockade effect.[62,63]

Consider two circuit QED systems coupled capacitively with
each other as shown in Figure 9. Through the capacitor, the pho-
tons can hop from one resonator to the other. The system is de-
scribed by the two JC Hamiltonians coupled with each other

Ĥ =
∑
j=L,R

[
𝜔â†j âj +

1
2
Ω�̂�z

j + g(âj�̂�
+
j + h.c.)

]
+ J(â†1â2 + h.c.) (88)

where J is the photon-hopping amplitude between the two
resonators and we have assumed two identical circuit QED
systems for simplicity. We initially prepare a certain number
of photons N0 ≈ 10 in one resonator and observe the evolution
in time of the photon number in both resonators. In a most
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simplified accounts, the dynamics can be understood by making
a semiclassical approximation[62]

⟨âj⟩ =: Xj + iPj

2
, ⟨�̂�±

j ⟩ = Sxj + iSyj
2

, ⟨�̂�z
j ⟩ = Szj (89)

where we have introduced semiclassical variables Xj, Pj, S
x
j , S

y
j ,

and Szj . The semiclassical evolution is then governed by the
following set of equations

+ẊL = PL − gSyL − JPR (90a)

−ṖL = XL + gSxL − JXR (90b)

+ẊR = PR − gSyR − JPL (90c)

−ṖR = XR + gSxR − JXL (90d)

ṠxL = −SyL − gPLS
z
L (90e)

ṠyL = +SxL − gXLS
z
L (90f )

We choose the gauge such that

PL = XR = 0, SL = (0, sin 𝜃L, cos 𝜃L), SR = −(sin 𝜃R, 0, cos 𝜃R)

(91)

to get

ẊL = −g sin 𝜃L − JPR (92a)

ṖR = +g sin 𝜃R + JXL (92b)

�̇�L = −gXL (92c)

�̇�R = −gPR (92d)

Without the photon–qubit coupling (g = 0), the two resonators
are just two linearly coupled harmonic oscillators. Indeed, the
photon imbalance z(t) := ⟨n̂L(t)⟩ − ⟨n̂R(t)⟩ = cos(2Jt) oscillates
with frequency 2J. With g increasing, the oscillation becomes
nonlinear, and over a critical value gc, the oscillation frequency
diverges, meaning that no photon can hop between the two
resonators. Recalling that Xj ≈ Pj ≈

√
N0, one can expect that

gc ≈
√
N0. Indeed, the numerical simulation in ref. [62] shows

that gc ≈ 2.8J
√
N0. The transition can be seen clearly in Fig-

ure 10, and the effect has been observed experimentally on a
double circuit QED system.[63]

As emphasized in ref. [62], it is important to notice that the
JC nonlinearity is enough to explain the photon-blockade effect.
This stands in contrast with similar self-trapping effects observed
in optical fibers,[64] molecules,[65] cold atom,[66–68] and polari-
ton Bose–Einstein condensates.[69] The self-trapping in circuit
QED is due to the Jaynes–Cummings nonlinearity rather than a
Kerr/Bose–Hubbard-like nonlinearity.[70,71] More importantly (in
our context), the prediction cannot be extended beyond the RWA,
that is, the JC model. An interesting question then is what would
happen if g increases even further into the ultra-strong coupling
regime g ≈

√
𝜔Ω or far beyond.

Figure 10. Photon imbalance z(t) := ⟨n̂L(t)⟩ − ⟨n̂R(t)⟩ and the inversion
of the qubits 𝜎zL∕R(t) := ⟨�̂�zL∕R(t)⟩ as a function of time. Reproduced with
permission from Figure 2 in ref. [62]. Copyright 2010, American Physical
Society.

6.4. Recurrent Phase Transition

We consider again a setup of two circuit QED systems cou-
pled capacitively with each other, as illustrated schematically in
Figure 9. The photon-blockade effect in the previous section
has shown an interesting consequence of the competition be-
tween the qubit-cavity coupling and the photon hopping is a self-
trapping transition,[62] as recently observed in an experiment us-
ing two capacitively coupled superconducting transmission lines
and transmon qubits.[63] In fact, the self-trapping transition in
tunnel-coupled quantum systems can also be observed in a broad
range of systems when the on-site interaction energy becomes so
dominant that it prevents quantum tunneling through the tun-
nel barrier.[66,67,72] The photon-blockade effect can be understood
along the same line: when the nonlinearity induced by the qubit-
cavity coupling exceeds the inter-cavity photon hopping, the pho-
ton population dynamics undergoes a sharp transition from a de-
localized (tunneling) to a localized (self-trapping) regime.[62,63]

However, that argument casts a curious observation: as shown
in Section 3.2 in terms of the displaced Fock states in the par-
ity basis, the cavity field in a circuit QED system recovers the
linearity in the deep strong coupling regime g → ∞. In such a
regime, although difficult to reach experimentally, the photon-
blockade effect should disappear. Then, what would happen if
g increases into the ultra-strong coupling regime g ≈

√
𝜔Ω or

even further? The question cannot be answered in the semiclas-
sical picture based on the JC model, which ignores the counter-
rotating term. The latter term plays crucial roles in the ultra-
strong coupling regime.
Indeed, numerical simulations and careful analyses show that

the photon-blockade effect disappears and the system returns
to the photon delocalization phase.[73] Figure 11 shows the rich
phase diagram across the parameter space of g and J. When the
photon–qubit coupling g increases from zero, the dynamics un-
dergoes double transitions first from a delocalized to a localized
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Figure 11. Phase diagram for the average photon population imbalance
zavg for the initial state |20, ↓⟩L |0, ↓⟩R. (inset) zavg at J∕𝜔0 = 0.01 for
different initial states and damping conditions: The filled circle is for
the Fock state |20, ↓⟩L |0, ↓⟩R, the empty circle for the coherent state|√20, ↓⟩L |0, ↓⟩R, and the empty diamond for |20, ↓⟩L |0, ↓⟩R with finite
cavity damping time 𝜏𝛾 = 104∕𝜔0 (averaged over 300 quantum trajecto-
ries). Reproduced with permission from Figure 1 of ref. [73]. Copyright
2016, American Physical Society.

phase and then to another delocalized phase. The existence of the
second transition can be understood based on the weak-strong
coupling duality in the Rabi Hamiltonian that was discussed in
Section 5. Just like in the weak coupling limit (g → 0), the system
becomes linear in the g → ∞ limit, and therefore photons should
eventually get delocalized again.
The recurrent photon localization–delocalization transition

clearly demonstrates the competition between two qualitatively
distinctive nonlinear behaviors of the circuit QED systems in
the ultra-strong coupling regime: one nonlinear regime, which is
commonly associated with the photon-blockade effect and is re-
sponsible for the first delocalization–localization transition, has
been explored in various contexts in previous works.[74–76] How-
ever, the other nonlinear regime, responsible for the second
localization–delocalization transition and the quasi-equilibration
dynamics of the photon population, has been widely overlooked.
Interestingly, the same picture also explains the absence of the
photon blockade in the single photon transfer dynamics studied
previously in ref. [77].
Another intriguing feature is that the latter phase is character-

ized by the quasi-equilibration of photon population, despite that
the system is finite and closed.

7. Tunable Parametric Couplings

Combining with the inherent nonlinearity of the Josephson
effect, the parametric modulation of the Josephson junctions in
superconducting circuits provide additional tunability. It not only
allows to overcome many challenging technical problems but

also offers circuit QED new opportunities to explore fundamen-
tally new physics including strong quantum nonlinear effects
that are difficult to observe using conventional quantum optical
setups.[12,58] In particular, the tunable parametric coupling of
qubits motivates a new QED model whose physical implications
are yet to be explored.

7.1. Parametric Architectures

Tunable parametric couplings between flux qubits were origi-
nally put forward to achieve frequency selective entangling gates
between otherwise weakly interacting qubits.[78,79] Recently, a
great number of schemes have been proposed and experimen-
tally demonstrated to achieve tunable parametric coupling be-
tween resonators and qubits in circuit QED.[80–87]

One noticeable direction of the efforts is the fast and accu-
rate quantum non-demolition (QND) measurement of the quan-
tum states.[88–90] In conventional dispersive measurement (see
Section 4.1.1), although satisfying the QND, the coupling be-
tween the readout resonator and the qubit is static and weak.
To fulfill high-fidelity measurements at a high speed, trade-offs
between the qubit-cavity coupling and cavity-feed line coupling
are required, and it often leads to additional decoherence in the
system.
Another interesting direction that will be briefly discussed

here is the independent control of the couplings of the rotat-
ing and counter-rotating terms in the Rabi Hamiltonian.[82,84,86]

Consider a circuit QED systems with a transmon qubit and a
resonator transmission line both grounded at the same node
through a DC SQUID. The Josephson inductance Lg of the DC
SQUID can be tuned by the external fluxΦext through the SQUID
loop according to the relation

Lg (Φext) = L0
|||||sec

(
𝜋
Φext

Φ0

)||||| (93)

where Φ0 is the flux quantum and L0 is the inductance scale spe-
cific to the device. As the qubit and the resonator share the same
inductance Lg , the tunable inductance implies the tunable cavity-
qubit coupling. The Hamiltonian for such a circuit QED system
with tunable coupling is given by

Ĥ(t) = 𝜔â†â + 1
2
Ω�̂�z + g1(t)(â�̂�

+ + h.c.) + g2(t)(â
†𝜎+ + h.c.) (94)

Here, the coupling constants of the rotating and counter-rotating
terms are given by

g(1,2) = Lg (Φext)

√
𝜔Ω
LrL

∓
Cg

2

√
𝜔Ω
CrC

(95)

where L and Lr are the inductance of the qubit and the resonator,
respectively, and C and Cr are the respective capacitance. When
the external flux through the loop of the DC SQUID loop is
modulated periodically with driving frequency 𝜔d, the coupling
constants take multiple harmonic components

g(1,2) = g(0)(1,2) +
∑
n

g(n)(1,2) sin(n𝜔dt) (96)
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Suppose that a certain harmonic component is near the reso-
nance with the counter-rotating process, n𝜔n ≈ 𝜔 + Ω. In the
interaction picture and after ignoring far-from-resonance terms
in the spirit of RWA, the Hamiltonian reads as

Ĥ = 𝜔′â†â + 1
2
Ω′�̂�z + g′1(â�̂�

+ + h.c.) + g′2(â
†�̂�+ + h.c.) (97)

where

𝜔′ := 𝜔 − n𝜔d∕2, Ω′ := Ω − n𝜔d∕2, g′1 := g(0)1 , g′2 := g(n)2

(98)

The Hamiltonian in Equation (97) looks formally similar to
the Rabi Hamiltonian but with the coupling constants of the
rotating and counter-rotating terms being different. We call it the
generalized Rabi Hamiltonian. Another important difference of
the generalized Rabi Hamiltonian is that the coupling constants
g1 and g2 can be brought easily in the ultra-strong coupling
regime g1, g2 ≈

√
𝜔Ω with proper choice of driving frequency

and resonance condition. New physical implications of the
generalized Rabi Hamiltonian are discussed below.

7.2. Generalized Rabi Hamiltonian

The tunable parametric couplings between the cavity and the
qubit in circuit QED introduces the generalized Rabi Hamilto-
nian

Ĥ = 𝜔′â†â + 1
2
Ω′�̂�z + g′1(â�̂�

+ + h.c.) + g′2(â
†�̂�+ + h.c.) (99)

We have kept the prime symbol in each parameter to remind that
the Hamiltonian has been written in the interaction picture and
that the parameters are not the bare parameters.
The physical properties of the generalized Rabi Hamiltonian

in (99) has not been explored before. Here, we briefly examine
one interesting feature, leaving deeper investigations for the fu-
ture works.
The simplest non-trivial case is the full resonance, where 𝜔′ =

Ω′ = 0. In this case, the Rabi Hamilton allows an exact solution.
Suppose that g′1 > g′2. Then one can take the Bogoliubov transfor-
mation

b̂ :=
g′1â + g′2â

†√
g′21 − g′22

(100)

The new operator b̂ satisfies the canonical commutation relation
[b̂, b̂†] = 1 for Bosons. In terms of the new Bosonic operator b̂,
the generalized Rabi Hamiltonian at the full resonance takes a
simple form

Ĥ = geff (b̂�̂�
+ + h.c.) (101)

with geff :=
√
g′21 − g′22 . The resulting Hamiltonian in Equa-

tion (101) is formally the same as the JC model with both cavity

and qubit frequencies vanishing. The eigenstates and their cor-
responding eigenvalues are given by

|n⟩b ⊗ |↑⟩ ± |n + 1⟩b ⊗ |↓⟩ , ±
√
ngeff (102)

respectively, plus there is additional state exactly at the zero en-
ergy (hence, a “dark” state in some sense)

|D⟩ = |0⟩b ⊗ |↓⟩ (103)

that is, the product of the b̂-vacuum and the ground state of the
qubit. An interesting feature of the zero-energy state |D⟩ is re-
vealed when it is represented back in the basis of â. Taking the
inverse of the Bogoliubov transformation in (100), one can see
that in the â-basis, the b̂-vacuum is a squeezed vacuum state

|0⟩b = Ŝ(𝜃∕2) |0⟩a (104)

where Ŝ(z) is the unitary squeezing operator

Ŝ(z) := exp
(1
2
zâ†â† − h.c.

)
(105)

and 𝜃∕2 is the squeezing parameter determined by the relation

tanh 𝜃 =
2g′1g

′
2

g′21 + g′22
(106)

In short, the zero-energy state |D⟩ of the generalized Rabi
Hamiltonian is i) always a product state regardless of the cou-
pling strength, and ii) the cavity mode is in a squeezed vacuum
state. We have observed in Section 6.2 that in general the Rabi
Hamiltonian also exhibits squeezing effect. However, there is a
strong entanglement between the photons and the qubit, the pho-
tons alone are in a mixed state. In the present case, the cavity
mode resides in the pure-state squeezed vacuum. Recently, in
ref. [59], they took advantage of the nonlinearity of Josephson
junctions in a parametrically driven circuit resonator contain-
ing a large array of Josephson junctions to generate Josephson
parametric amplification and squeezedmicrowave radiation. The
method based on the zero-energy state of the generalized Rabi
Hamiltonian can further facilitate the generation of squeezedmi-
crowave photons.

8. Minimal Model for Topological Qubits

In the Nature, there already exist several types of topological
materials, such as topological insulators, topological supercon-
ductors, and Weyl semimetals. Figure 12 illustrates the simplest
form, the Kitaev model. However, the strengths of their coupling
with single photons are very weak, because of the relatively large
mode volume for conventional cavity QED and due to a large
scale difference for the circuit QED. The bad controllability of
the material parameters of natural topological materials causes
another (and, depending on the purposes, even more serious)
difficulties. For this reason, there are attempts to use an artificial
topologicalmaterial based on another type of synthetic spin–orbit
coupling[91] where spin–orbit coupling is induced by an external
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Figure 12. a) Kitaev model for 1D topological superconductor.[98] It is a
1D tight-binding model of spinless Fermions with nearest-neighbor pair-
ing potential Δ, and difficult to realize in itself. b) A physical system, “Ki-
taev quantum wire”, that is equivalent to the Kitaev model at low ener-
gies. It is a 1D nanowire with strong spin–orbit coupling, in proximity to a
s-wave bulk superconductor, and under an external magnetic field.[99,100]

c,d) Illustration of the two topologically distinct states of the Kitaev quan-
tum wire. The arrowed lines (in blue) depict the trajectories of the electron
spin on the Bloch sphere (yellow). In the non-topological state (c), the tra-
jectory can be continuously deformed to a single point whereas it is not
possible in the topological state (d).

spatially rotating (or spiraling) magnetic field. Therefore, it is de-
sirable to devise an artificial topological matter, especially, in the
form of a topological “qubit” that couples strongly with the single
photons in the circuit resonator.
Recalling that the resonator in the circuit QED system is essen-

tially a series of capacitors and inductors, as seen in Figure 1b,
the artificial topological system must have large mutual capaci-
tance or inductance. To this end, here we foremost examine the
following two types of topological qubits: i) the synthetic Kitaev
quantum wire (see Section 8.1 and Figure 13 below) and ii) the
Moebius Josephson ladder (see Section 8.2 and Figure 15 below).
The former is a synthetic analogy of the Kitaev quantum wire
(Figure 12) for the 1D topological superconductor while the lat-
ter is a direct implementation of the Moebius-strip topology in
the presence of the exciton condensate. For that reason, we will
put a higher priority on the Moebius Josephson ladder in this
work. Both types require the fabrication of large-scale uniform
Josephson junction chains, which is already available in current
technology.[92–94]

There are several works on topological states of large arrays
of circuit QED systems.[95–97] Here, we seek the fundamental
and minimal model. In the present and next section, we will fo-
cus instead on the question: What is the smallest unit (if any)
of the topological matter? More explicitly, we propose plausi-
ble and efficient methods to realize topological qubits based on
the Josephson junction arrays and examine the possibility to
achieve a topological QED architecture, where the topological
qubit is strongly coupled to a superconducting circuit resonator,
and finally, through the studies of those basic elements. Through
it, we hope to explore the fundamental principle of the light–
topological matter interaction. At this stage it is a progressive re-
port rather than a complete work, and the primary spirit of the
work is an utmost simplification.

8.1. Synthetic Kitaev Quantum Wire

The Kitaev model[98] for the 1D topological superconductor is
the simplest model of the topological system. Being a tight-
binding model of spinless Fermions with a nearest-neighbor
pairing potential (see Figure 12a), it is difficult to realize in it-
self. A more realistic system that is equivalent at low energies
has been recently proposed theoretically[99,100] and engineered
experimentally.[101–103] It is based on a 1D nanowire with strong
spin–orbit coupling in proximity to a conventional superconduc-
tor and under an external magnetic field (Figure 12b). We call it
a “Kitaev quantum wire”.
The crucial element of the Kitaev quantum wire is the spin–

orbit coupling. In this work, we propose to simulate the spin–
orbit coupling artificially based on the Josephson ladder and by
regarding the chain index as an isospin: Consider two chains of
Josephson junctions and couple them with each other via either
four-way cross coupling (Figure 13a) or avoided cross coupling
(Figure 13c). While the four-way junction involved in the former
scheme is challenging to fabricate, it is easier to understand in-
tuitively and hence may inspire further ideas for an experimental
realization of a synthetic Kitaev chain.
One applies a proper amount of flux through each correspond-

ing loop by means of a uniform magnetic field perpendicular to
the device plane. Then, taking into account the charging energy
and the Josephson tunneling of the Cooper pairs on the super-
conducting islands leads to the following tight-binding model

H =
L−1∑
𝓁=0

∑
𝜎=↑,↓

[
𝜖𝓁b

†
𝓁𝜎b𝓁𝜎 − t

(
b†𝓁,𝜎b𝓁+1,𝜎 + h.c.

)]
− 𝛼t

∑
𝓁

[(
b†𝓁,↑b𝓁+1,↓ − b†𝓁,↓b𝓁,↑

)
+ h.c.

]
(107)

where b†𝓁,𝜎 creates a Cooper pair on the 𝓁th site of the chain 𝜎

(𝜎 =↑, ↓ for the upper and lower chain, respectively). The Hamil-
tonian in the above equation is formally equivalent to the quan-
tum wire with spin–orbit coupling. Two differences are i) that
the chain index plays the role of isospin (𝛼 then corresponds
to the dimensionless spin–orbit coupling strength) and ii) that
we are dealing with Bosons (rather than Fermions). The latter
does not put a serious limitation as long as the charging energy
(corresponding to the large on-site repulsion for Bosons) is suffi-
ciently large.[104] In principle, there is a wide interval from which
to choose the ratio of the charging energy to the Josephson energy
in the ladder. In the case where the Josephson energy is much
larger than the charging energy, the tight-binding model in (107)
is not valid to describe the system. However, topological proper-
ties are not affected as long as bands are well separated.
No fabrication is perfect, and one needs to carefully ana-

lyze the effects of various imperfections: First, the Josephson
coupling strengths over the ladder may vary from junctions to
junctions because of the junction fabrication flaws. Second, the
external gate and fluxmay have spatial inhomogeneity. Third, the
gate charge and external flux may fluctuate dynamically, causing
undesirable transitions from the (topological) ground-state man-
ifold to (non-topological) excitations. Fortunately, the system is
expected to operate in the topological regime, which is robust
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Figure 13. Two different methods to realize “synthetic spin–orbit coupling” in Josephson junction arrays in order to realize the synthetic Kitaev quantum
wire (see Figure 12b). In (a) each superconducting island is Josephson coupled to the nearest neighbors as well as the next nearest neighbors. In (c),
apart from the nearest-neighbor coupling along the chain, each island is Josephson coupled in zigzag manner to those belonging to different chain.
Note that the superconducting islands in red and green are laid on different vertical layers. In (b) and (d), the numbers denote the required “flux angle”
𝜑 := 2𝜋Φ∕Φ0, where Φ is the external magnetic flux threading the loop in question and Φ0 := h∕2e is the flux quantum. Both required flux angles can
be easily achieved with a uniform magnetic field.

Figure 14. Schematic diagram of the capacitively coupled Josephson junc-
tion ladder with exciton condensates (superfluid). Two chains of Joseph-
son junctions are coupled capacitively with each other. When the coupling
capacitance is sufficiently large compared to the intra-chain capacitance,
the elementary excitations are excitons (a particle-hole pair or, more pre-
cisely, a pair of excessive and deficit Cooper pairs). The excitons undergo
a quantum phase transition fromMott insulator to superfluid as the intra-
chain Josephson coupling increases. More details are referred to in refs.
[105, 106].

against local fluctuations as long as the fluctuations and inho-
mogeneities are sufficiently small compared to the bulk energy
gap. Nevertheless, with the finite bulk energy gap and temper-
ature, those dynamical fluctuations and spatial imperfections
can affect the system characteristics and need to be carefully
analyzed.

8.2. Moebius Josephson Ladder

Here, we propose another type of topological qubit based on the
Josephson junction array, the Moebius Josephson ladder. As ex-
plained below, it is a direct implementation of the real-space[107]

Moebius-strip topology, and it will be investigated with higher
priority in this work.
Before discussing the Moebius Josephson ladder, let us first

consider the capacitively coupled Josephson ladder as shown
in Figure 14.[92,105,106] If the coupling capacitance is sufficiently
larger than the intra-chain capacitance, then the charges (either
excessive or deficit Cooper pairs) in different chains across

Figure 15. a) A topological qubit realized by the Moebius Josephson lad-
der (MJL) with twisted boundary condition (TBC). The idea was put for-
ward by Kitaev[108,109] and built upon our own earlier works.[105,106] b) A
normal Josephson ladder (JL) with a periodic boundary condition (PBC)
for a comparison with the MJL. c) and d) The deformations of (a) and (b),
respectively, to pronounce the topological difference between the MJL and
normal JL. The MJL in (a) is considered as one of the prototypes for the
“topological qubit” in this work.

the rungs are correlated. Accordingly, in such a regime the
elementary excitations of the capacitively coupled Josephson
ladder are “excitons”, the particle-hole pairs (i.e., the pairs of
excessive and deficit Cooper pairs) across the rungs of the ladder.
Furthermore, as the Josephson coupling increases, the excitons
undergo a quantum phase transition from the Mott insulator to
the superfluid.[105,106] It is stressed that the excitons have opposite
charges across each rung of the ladder, and hence the exciton
superfluid implies that the supercurrents along the different
chains are opposite in direction but the same in magnitude.
With a simple yet ingenious idea, Kitaev[108] has turned the ca-

pacitively coupled Josephson ladder into a topological qubit by in-
troducing the twisted boundary condition (TBC); see Figure 15a.
Since its real-space topological structure is identical to the cele-
brated Moebius strip as illustrated in Figure 15c, we call it the
“Moebius Josephson ladder (MJL)”.
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Figure 16. An example of possible coupling schemes between the syn-
thetic Kitaev quantum wire (see Figure 13) to the superconducting circuit
resonator. The electric field of the quantized microwave mode (depicted
as a sine wave in red) changes dynamically the chemical potentials of the
superconducting islands belonging to the, say, upper chain of the JL. As
the upper and lower chain correspond to the isospin ↑ and ↓, respectively,
the photon mode effectively modulates the magnetic field (and hence the
topological properties) of the synthetic Kitaev quantum wire.

Themeasurement schemes and gate operations on theMJL for
the purpose of the universal topological quantum computation
have been detailed in ref. [108]. All of those gate operations are
potentially useful for coupling the MJL to the circuit resonator,
and certainly worth examining. In Section 9, we will examine
two additional schemes based on switching between theMJL and
the normal Josephson ladder with periodic boundary condition
(Figure 15c,d).
Apart from its obvious advantages over the synthetic Kitaev

quantum wire in Section 8.1, the MJL has one drawback: the ex-
citation gap above the topological ground-state manifold scales
as 1∕L, where L is the length of the MJL. In this work, we thus
need to optimize between the excitation energy gap ≈ 1∕L and
the ground-state energy splitting ≈ exp(−L∕L0); L0 ≈ 1. As with
the synthetic Kitaev quantum wire, various imperfection effects
must also be investigated.

9. Light–Topological Matter Interaction

9.1. Coupling Schemes

Above, we have examined two possible prototypes for topologi-
cal qubits, whose scales are macroscopic and comparable to the
length of the typical superconducting circuit resonators. Now, we
discuss schemes to couple themwith the circuit resonator to con-
struct topological QED systems.
In the case of the synthetic Kitaev quantum wire (Section 8.1),

the idea is rather straightforward as it is a plain analogy of the Ki-
taev quantum wire. Putting it in the trench between the central
resonator line and the ground plates (Figure 16), the electric field
(so-called “vacuum field”) of the resonator photon mode directly
modulates the gate charges of one chain of the synthetic Kitaev
quantum wire. Since the relative gate charges of the two chains
of the synthetic Kitaev quantum wire corresponds to the external
magnetic field, the photon mode can affect the topological prop-
erties of the synthetic Kitaev quantum wire.
In the case of the Moebius Josephson ladder, the coupling re-

quires a bit more sophistication. In principle, one can exploit the
gate operations on theMJL for the universal topological quantum

Figure 17. An example of possible coupling schemes between the Moe-
bius Josephson ladder (MJL) and the superconducting circuit resonator.
The electric field of the quantized microwave mode (depicted as a sine
wave in red) in the resonator dynamically shifts the gate charge of a su-
perconducting island (marked in blue) of the MJL. Properly tuning the
coupling capacitance, the shift in the gate charge oscillates between ±e
with the mode frequency so that the Josephson ladder (JL) is effectively
switched between the MJL and the normal JL.

computations that have been proposed in ref. [108]. This is cer-
tainly worth investigating, and in this work, we will examine two
additional schemes.
Figure 17 shows a scheme, where the electric field of the

resonator photon mode is capacitively coupled to one single
superconducting island of the MJL. By properly tuning the
coupling capacitance, one can allow the field of the photon mode
to modulate the gate charge of the affected island between the
particle-hole symmetry point (the average gate charge Qg = 0)
and the maximal charge frustration point (Qg = e). As the charge
frustration breaks the exciton stability, the modulation effectively
switches the system between the topological (MJL) phase and
the normal JL phase. Therefore, unlike the coupling scheme in
Figure 16 for the synthetic Kitaev chain, where the topological
properties are modulated by means of model parameters, the
scheme for the Moebius Josephson ladder affects the topological
structure itself of the system.
Another potentially interesting scheme (not illustrated in the

figure) is to put one of the long superconducting arms, which is
used for the twisted boundary condition, within the circuit res-
onator. As pointed out by many works since the seminal work by
the Yale group,[1,2] the largest coupling to the circuit resonator is
achieved via inductive coupling.[93,110–112] The long superconduct-
ing arm making the twisted boundary condition may lead to an
ultra-strong coupling regime or even beyond for the topological
QED system.

9.2. Exploring the Fundamental Model for the Light–Topological
Matter Interaction

As discussed in the earlier part of the article, conventional cavity
QED systems, whose coupling is very weak, are well described
by the Jaynes–Cummings (JC) model in Equation (54). Although
the JC model is so simple to allow for exact analytical solutions,
the implied physics is highly non-trivial. For example, the vac-
uum Rabi oscillation is a representative quantum phenomenon
vividly illustrating the zero-point quantum fluctuations, and it
has stirred many further studies.
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The JC model is not sufficient for the circuit QED systems be-
cause the photon–qubit coupling is very large. One has to ap-
ply the full Rabi Hamiltonian in Equation (25). For its simple
form, the Rabi Hamiltonian had remained as a notoriously dif-
ficult problem until an exact solution was recently found.[29–31]

Unfortunately, the exact solution is not in a closed analytic form.
Accordingly, the RabiHamiltonian exhibits even richer and exotic
quantum phenomena such as the ground-state photon squeez-
ing, the photon blockade effect, the localization-delocalization re-
entrance transition, and so on.
In contrast, there is no general theoretical model for the light–

topological matter interaction. One partial reason is related to the
fact that unlike the conventional phase transitions, the topolog-
ical phase transitions are not described by continuous order pa-
rameters but only by discrete topological quantum numbers. On
the other hand, it is clear that one can expect various combined
effects implied in the Rabi Hamiltonian and the corresponding
topological characteristics. We therefore hope that this work can
reveal them to the extent possible.
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