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Local and nonlocal contents in N-qubit generalized Greenberger-Horne-Zeilinger states
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We investigate local contents in N -qubit generalized Greenberger-Horne-Zeilinger (GHZ) states. We suggest
a decomposition for correlations in the GHZ states into a nonlocal and fully local part, and find a lower and upper
bound on the local content. Our lower bound reproduces the previous result for N = 2 [V. Scarani, Phys. Rev. A
77, 042112 (2008)] and decreases rapidly with N .
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I. INTRODUCTION

Bell’s theorem has revealed that local variable theories
cannot reproduce all statistical predictions of quantum theory,
and it highlights the statistical incompatibility between clas-
sical local variable theories and quantum theory [1,2]. When
the Bell-type inequalities are violated, nonlocality appears.
However, even if the observations on a given system of particle
pairs exhibit nonlocality, it does not necessarily imply that all
individual pairs in the system behave nonlocally. It may be
possible that some fraction of the pairs behave nonlocally,
while the other pairs behave locally.

This issue was investigated carefully first by Elitzur,
Popescu, and Rohrlich (their approach is referred to here as
EPR2) [3] in terms of the local contents in a given nonlocal
correlation. Since then, several authors have generalized and
further discussed the idea [4–9]. For example, the EPR2
approach has been related to another noticeable question,
the simulation of quantum correlations with other resources,
which has been proved useful in the task of simulating
entanglement [4]. Barrett et al. [6] gave an upper bound
of the weight of the local component in a d × d system.
Scarani [5] presented an improved lower and upper bound
of the local content in the family of pure two-qubit states and
the first example of a lower bound of the local content in a
pure two-qutrit system. Later, Zhang et al. [7] extended this
lower bound to the mixed two-qubit states. In [9], a new EPR2
decomposition has been given, which can make their local
content reach the upper bound in a wide range of two-qubit
pure states.

In this paper, we investigate local contents in N -qubit
generalized Greenberger-Horne-Zeilinger (GHZ) states. In
Sec. II, we first examine general requirements for optimization
of the weight of the local part in a convex decomposition of
a given quantum distribution into local and nonlocal parts.
Guided by the requirements, we suggest local probability
distributions for N -qubit GHZ states, which give the lower
bound of the local contents of such states, in Sec. III. Our
result for N = 2 reproduces the lower bound in [5]. It is also
noted that the lower bound on the local content decreases
rapidly with N . In Sec. IV, we briefly discuss the upper bound
based on Bell-type inequalities.
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II. EPR2 APPROACH

Before we go further, here we first review the notion of local
content suggested first by Elitzur, Popescu, and Rohrlich [3].
We follow the conventions in Ref. [5].

Consider a system of N parties, labeled by 1,2, . . . ,N . On
each party j , one measures any observable Aj in a given set
Aj . The measurement output of Aj is denoted by rj . The joint
probability distribution for measurements on the system is
denoted by P (r1,r2, . . . ,rN |A1,A2, . . . ,AN ). If the parties are
noncommunicating but share classical information, the joint
probability distribution takes the following form:

P (r1,r2, . . . ,rN |A1,A2, . . . ,AN )

=
∫

dµ(λ)P (r1|A1,λ)P (r2 | A2,λ) . . . P (rN |AN,λ), (1)

where λ ∈ � denotes the collective local hidden variables that
represent the shared classical information and � is the space of
all hidden variables. The form of the distribution in (1) leads
to a set of constraints on the joint distributions (Bell-type
inequalities) for any fixed number of measurements on each
party. If there exist joint probability distributions that violate
the inequalities, they would not be written as (1) and are thus
nonlocal.

The quantum correlations are obtained by general measure-
ments on quantum states, and the joint probability distribution
is given by

PQ(r1,r2, . . . rN |A1,A2, . . . ,AN ; ρ

= Tr
(
�A1

r1
⊗ �A2

r2
⊗ · · · ⊗ �AN

rN
ρ
)
. (2)

Here ρ is the density matrix for a quantum state of the system
of N parties. �

Aj

rj
is the projector on the subspace associated

to the measurement result rj of the observable Aj performing
on party j . There exist quantum probability distributions that
are not local, as proved by Bell [1].

The EPR2 approach is a quantitative notion of nonlocality
[3]. The main idea is to consider the possible decomposition
of PQ into a local part PL and a nonlocal part PNL:

PQ = w(ρ)PL + [1 − w(ρ)]PNL, (3)

where the weight w ∈ [0,1] of the local component is required
to be independent of the measurements and the outcomes.
Obviously, the convex combination (3) is not unique. The
point is to find the local part PL that maximizes the weight
w. The resulting optimal value wopt of w is defined as the
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local content in the joint probability distribution PQ. The local
content wopt(ρ) should be 1 if ρ is a product state, and 0 if ρ

is a maximally entangled state [3,6].
The full optimization of the local part PL is highly

nontrivial. Several authors have investigated the local contents
in two-qubit and two-qutrit states, and proposed upper and
lower bounds on the local contents [3,5–7,9]. Here we intend
to give lower and upper bounds of the local content wopt in the
N -qubit generalized GHZ states of the form

|�n(α)〉 = cos α|0 . . . 0〉 + sin α|1 . . . 1〉, (4)

where α ∈ [0,π/4].

III. LOWER BOUND ON THE LOCAL CONTENT

Here we provide the lower bound w<
opt of the local content

wopt by finding reasonable local probability distribution func-
tion PL guided by the following requirements: (i) As the the
nonlocal part PNL is a probability distribution and nonnegative,

PQ(r1,r2, . . . rN |A1,A2, . . . ,AN ; ρ)

� wPL(r1,r2, . . . ,rN |A1,A2, . . . ,AN ) (5)

for all possible local measurements Aj and outcomes rj .
In particular, PL should be zero whenever PQ is zero.
(ii) As PL(r1,r2, . . . ,rN |A1,A2, . . . ,AN ) is a real probability
distribution,∑

r1,r2,...,rN

PL(r1,r2, . . . ,rN |A1,A2, . . . ,AN ) = 1. (6)

For an arbitrary N -qubit state ρN , the joint probability
distribution is given by

PQ(r1, . . . ,rN |A1, . . . ,AN ; ρN ) = Tr
(
�A1

r1
⊗ · · · ⊗ �AN

rN
ρN

)
(7)

with the the projectors defined by

�
Aj

rj
= 1

2 (I + ri �ni · �σ ), (8)

where r1,r2 = ±1, �σ denotes the three Pauli matrices, and �ni =
(sin θi cos ϕi, sin θi sin ϕi, cos θi). Without loss of generality,
by readjusting the quantization axis if necessary [10], we
assume that

ϕ1 + · · · + ϕN = π. (9)

Then the quantum joint probability distribution corresponding
to the N -qubit GHZ state in Eq. (4) can be written as

PQ = cos2 α

2N

N∏
j=1

(1 + rj cos θj ) + sin2 α

2N

N∏
j=1

(1 − rj cos θj )

− sin(2α)

2N

N∏
j=1

rj sin θj . (10)

A. N = 2 case

The original EPR2 paper [3] proposed an explicit local
probability distribution PL, which leads to a decomposition of
the form in (3) with w(α) = [1 − sin(2α)]/4. This is the first
known lower bound on wopt(α). They proved that the bound is

tight for the maximally entangled state and under a reasonable
continuity assumption; the singlet state of two qubits is fully
nonlocal. However, for the product state which is fully local, w
equals 1/4 instead of 1. So this decomposition is not optimal.
Later, Scarani suggested a modified explicit local probability
distribution PL, which can lead to an EPR2 decomposition
with w<

opt(α) = 1 − sin(2α) [5].
Here we exploit a method to find local distribution function

PL, which can be easily extended to the cases with N > 2.
In order to optimize w in the decomposition (3) as much as
possible, we take a note of the requirement as discussed in
Sec. II that PL = 0 whenever PQ = 0 and that PL should
approach PQ as much as possible. In the special case of r1 =
r2 = 1 and θ1 = θ2 = θ , the quantum probability distribution
in (10) reduces to

PQ = 1
4 {2 cos θ [1 + cos(2α)] − sin2 θ [1 + sin(2α)]}. (11)

We note that PQ = 0 only when θ = θ0, where

cos θ0 ≡ −1 − tan α

1 + tan α
. (12)

That means that we must have PL = 0 at θ = θ0. Besides, PL

should approach PQ as close as possible. We thus suggest a
local probability distribution PL of the form

PL = 1

4

[
1 + sgn(cos θ1) min

(
1,

∣∣∣∣cos θ1

cos θ0

∣∣∣∣
)]

×
[

1 + sgn(cos θ2) min

(
1,

∣∣∣∣cos θ2

cos θ0

∣∣∣∣
)]

. (13)

It is easy to see that this form can ensure that PL = 0 whenever
PQ = 0. Obviously, in the special situation that θ1 = θ2 = θ ,
if PQ = 0, then PL is zero. In a general situation that θ1 �= θ2

and PQ = 0, it follows from the form in (10) that PQ = 0 at
(θ1,θ2) such that either cos θ1 > cos θ0 > cos θ2 or cos θ2 >

cos θ0 > cos θ1. When cos θ1 > cos θ0 > cos θ2, the second
factor in Eq. (13) vanishes, and vice versa.

Previously, we discussed the situation that r1 = r2 = 1, but
a valid local probability distribution should contain all local
measurements and outcomes. So we give the complete local
probability distribution PL as

PL = 1

4

2∏
j=1

[
1 + rj sgn(cos θj ) min

(
1,

∣∣∣∣cos θj

cos θ0

∣∣∣∣
)]

. (14)

Note that this form of the local distribution function is identical
to the one in Ref. [5] ( 1+tan α

1−tan α
= cos 2α

1−sin 2α
). Once the local

component PL is fixed, the weight w(α) is optimized to give
the lower bound w<

opt on the local content by minimizing the
function f (θ ), defined by

f (θ ) ≡ PQ(θ )

PL(θ )
, (15)

where PQ(θ ) and PL(θ ) is the quantum and local joint
probability functions, respectively, in the special case θ1 =
θ2 = θ . For the present case (N = 2),

f (θ ) = 1 + 2 cos(2α) cos θ + cos2 θ − sin(2α) sin2 θ[
1 + sgn(cos θ ) min

(
1,

∣∣ cos θ
cos θ0

∣∣)]2 . (16)
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FIG. 1. (Color online) Lower bound w<
opt on the local content

wopt in pure N -qubit generalized GHZ states as a function of α for
N = 2,3,4,5 (top to bottom).

The local distribution function proposed in (14) allows the
resulting lower bound w<

opt to reach 1 − sin(2α) obtained
previously by Scarani [5]. The profile of the lower bound
w<

opt(α) of local content versus α is shown in Fig. 1 (N = 2).
Clearly, w<

opt(α) decreases with α, eventually vanishing at
α = π/4, as it should since the degree of entanglement in the
GHZ state in Eq. (4) increases with α, reaching the maximal
entanglement at α = π/4.

B. N = 3 case

As before, we first consider the special situation r1 = r2 =
r3 = 1 and θ1 = θ2 = θ3 = θ , where the quantum probability
distribution (10) is reduced to

PQ = 1
16 [cos(α − 3θ/2) + 3 cos(α + θ/2)]2. (17)

PQ = 0 only when θ = θ0, where

cos θ0 ≡ −1 − tan
2
3 α

1 + tan
2
3 α

. (18)

Following the same lines as in the case of N = 2, we suggest
for the local probability distribution

PL = 1

8

3∏
j=1

[
1 + rj sgn(cos θj ) min

(
1,

∣∣∣∣cos θj

cos θ0

∣∣∣∣
)]

. (19)

Given the form of local distribution function (19), the lower
bound on the local content is again determined by minimizing
the function f (θ ) in Eq. (15). Note that unlike the previous
case, the lower bound of local content cannot reach 1 − sin(2α)
except for the maximally entangled state and the product state.
For example, when α = π

12 , w<
opt = 0.28. The profile of w<

opt(α)
versus α is shown in Fig. 1 (N = 3). As in the previous case
with N = 2, the lower bound on local content decreases with
α and vanishes at α = π/4. It is interesting to note that the
lower bound on local content decreases faster in this case than
for N = 2. As we will see below for N -qubit states, this trend
is general and our lower bound on local contents in the GHZ
state (4) decreases rapid with N .

C. General N-qubit case

Following similar lines as above, we define θ0 by

cos θ0 ≡ −1 − tan
2
N α

1 + tan
2
N α

, (20)

at which PQ = 0 only when θ1 = · · · = θN = θ0. We then
suggest the following form of the local probability distribution
PL:

PL = 1

2N

N∏
j=1

[
1 + rj sgn(cos θj ) min

(
1,

∣∣∣∣cos θj

cos θ0

∣∣∣∣
)]

. (21)

It is interesting to note that the resulting lower bound w<
opt on

the local content decreases rapidly with N . Its profile versus α

for N = 2,3,4,5 is shown in Fig. 1.

IV. UPPER BOUND ON THE LOCAL CONTENT

So far we have focused on the lower bound w<
opt(ρ) on the

local content wopt(ρ). Let us now briefly discuss the upper
bound w>

opt(ρ). As pointed out in Ref. [6], any Bell inequality
can lead to an upper bound on wopt(ρ). Following Refs. [5,6],
suppose that a Bell inequality P � P ∗

L with a constant P ∗
L

holds for all local probability distributions. Let P ∗
NS be the

maximum value of P under the nonsignaling condition. Then
by Eq. (3) and the Bell inequality, P ∗

Q(ρ) � wopt(ρ)P ∗
L + [1 −

wopt(ρ)]P ∗
NS where P ∗

Q is the quantum value of P for the best
choice of measurements. That is, the upper bound of the local
content is given by

w>
opt = P ∗

NS − P ∗
Q

P ∗
NS − P ∗

L

. (22)

An upper bound w>
opt for N = 2 was obtained based on this

method in Ref. [5]. Here we thus focus on the case of N � 3,
where a Bell-type inequality was derived and shown to be vio-
lated maximally by GHZ states in Ref. [11]. One can show that
I ∗
L = 1, P ∗

NS = 2N−2, and P ∗
Q =

√
2N−2 sin2(2α) + cos2(2α).

It immediately follows that

w>
opt = 2N−2 −

√
2N−2 sin2(2α) + cos2(2α)

2N−2 − 1
. (23)

Obviously, for product states (α = 0), the upper bound
reaches 1, which is optimal. However, for the maximally
entangled state (α = π/4), the upper bound is not optimal,
and approaches 1 as N → ∞ (to be compared with the result
in the bipartite case, N = 2, in Ref. [6]).

One can also consider the upper bound based on the
Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality [12]
for the GHZ states (4). In this case, we find that the upper
bound is 0 for the maximally entangled state. However, for
the generalized GHZ states such that sin(2α) � 1/

√
2N−1, the

upper bounds based on the MABK inequality are 1 again. This
is because such states do not violate MABK inequalities [13].

V. CONCLUSION

In this paper, we have provided a decomposition for
correlations in N -qubit generalized GHZ states into a nonlocal
and fully local part. A general form of nontrivial local
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probability distribution PL of N qubits has been proposed
based on the properties of the convex decomposition of the
quantum joint probability distribution into local and nonlocal
parts, and thereby a lower bound on the local content in the
GHZ states has been suggested. The improved local probability
distribution in [5] for pure two-qubit states turns out to be a
special case of our results. Moreover, for a fixed value of α,
our lower bound on the local content decreases rapidly with

N . We have also investigated the upper bound on the local
content based on Bell-type inequalities.
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