# Explore two-dimensional world using photoemission technique

**Choongyu Hwang** 

Department of Physics Pusan National University

### Outline

#### 1. What are the grand challenges

#### 2. Angle-resolved photoemission spectroscopy (ARPES)

- From Einstein's photoemission to Present
- Conventional ARPES

#### **3. Future directions of ARPES**

- Time resolution
- Spin and time resolution

### **Grand challenges**

#### Energy problem

Solar energy, hydrogen fuel, nuclear energy ??

#### Understanding Emergent Phenomena

Phenomena which are not the properties of the individual elementary components BUT of the assembly of such components:

Strongly correlated electron systems : high  $T_{\rm C}$  superconductors Magnetism made of non-magnetic elements

#### • The ultra-fast

Sciences in the picosecond, femtosecond, attosecond time scale

### Why do we need to study electrons?



optical, thermal, and structural properties of matter depend on the behavior of electrons and location of atoms.

### **Highly correlated systems**

### Non-correlated system Correlated system



### Energy scale of importance

- Superconducting gap ~ 1 100 meV
- **Optical phonons** ~ 40 200 meV
- **Magnons** ~ 10 40 meV
- **Pseudogap** ~ 30 300 meV
- Multiphonons and multimagnons ~ 50 500 meV
- Orbital fluctuations ~ 100 meV 1.5 eV
- Mott gap  $\sim 1 \text{ eV} 3 \text{ eV}$

Requirement: High energy and momentum resolution with tunable photons with high flux at very low temperature

### World map of synchrotron



### **Dimensionality: 3-dimension**



### **Dimensionality: 2-dimension**



### **Dimensionality: 1-dimension**



### **Carbon Allotropes**



Potential medical use

- Drug delivery
- Target cancer cells

0d



Space elevator

1d

2d





Carbon Nanotube Benjamin Franklin Medal (2002)

Bulkyball Fullerene Nobel prize in chemistry (1996)



3d

Soft, layered substance Pencil, lubricant, electrode

Graphite

Hardest substance

Jewellery



### **Carbon Allotropes**



# Abnormal quantum Hall effect

# One atom thick honeycomb lattice

Half metallicity

chirality

Spin valve

Conductivity

Strength and plasticity 1 THz transistors

Quantum spin Hall effect

Magnetism

Flexible display

### **Dirac Fermions realized in the Lab**



### High energy physics in the space realized in a Lab

#### **Klein tunneling**



O. Klein, Zeitschrift fur Physik 53, 157 (1929)
M. I. Katsnelson et al., Nat. Phys. 2, 620 (2006)
A. F. Young et al., Nat. Phys. 5, 222 (2009)

#### Companies









Unleashing the Power of Graphene













#### Companies

#### Entertainment



Season 3, Episode 14

#### Companies

#### Entertainment

#### **Sports**



#### Companies

#### Entertainment

#### **Sports**



#### Graphene Ln, Tallahassee, FL, USA



### **Dirac Fermions realized in the Lab**



### Outline

#### 1. What are the grand challenges

#### 2. Angle-resolved photoemission spectroscopy (ARPES)

- From Einstein's photoemission to Present
- Conventional ARPES

#### **3. Future directions of ARPES**

- Time resolution
- Spin and time resolution

### Light as a wave: 1803







Thomas Young Light as a wave (1803)

Young's sketch of the light waves emerging from two narrow slits *A course of lectures on natural philosophy and the mechanical arts, Vol. 1 (1807)* 

### Maxwell

Describe the propagation of Electromagnetic radiation



James C Maxwell Electromagnetism (1865)

$$E_z = E_{z0} \cos[w(t - \frac{z}{c}) + \theta]$$
$$c = \frac{1}{(\varepsilon_0 \mu_0)^{1/2}}$$

### **Photoelectric effect**





Heinrich Hertz Photoelectric effect (1887)

### **Einstein's equation**

### Einstein's Photoelectric Equation

The electron leaves the body with energy

$$\frac{1}{2}mv^2 = hv - P$$

where *h* is planck's constant, *v* is the light frequency, and *P* is the work that electron has to do in leaving the body.



Albert Einstein Photoelectric equation (1905) Einstein's 1905 – age 26

"A storm broke loose in my mind"



**September** Consequence of Special Relativity E = mc<sup>2</sup>

### How to measure electrons?



### Three step model



### **Step I: photoexcitation process**

$$w_{i \to f} \propto \left| \langle \psi_{f} \mid \vec{A} \cdot \vec{p} \mid \psi_{i} \rangle \right|^{2} \delta(E_{f} - E_{i} - h\nu)$$
Typical photon wavenumber  

$$\kappa = 2\pi \frac{E}{hc} = 2\pi \frac{E \text{ [eV]}}{12400 \text{ [eV - Å]}}$$

$$= .01 \text{ to } .05 \text{ Å}^{-1} \text{ (for } E = 20 \text{ to } 100 \text{ eV})$$

$$\cdot \text{ Photon impact very little momentum in PES process}$$

$$\cdot \text{ Photon-stimulated transition not allowed transiti$$

 $\mathbf{E}_{\mathbf{f}} = \mathbf{E}_{\mathbf{i}} + h\mathbf{v}$ 

only"vertical" transitions

### **Step II: transport to surface**



### Photoemission core-level spectroscopy



### valence electron & momentum resolution?



Many properties of solids are determined by electrons near E<sub>F</sub> (conductivity, magnetoresistance, superconductivity, magnetism)

> Only a narrow energy slice around E<sub>F</sub> is relevant for these properties (*kT* = 25 meV at room temperature)

### Outline

#### 1. What are the grand challenges

#### 2. Angle-resolved photoemission spectroscopy (ARPES)

- From Einstein's photoemission to Present
- Conventional ARPES

#### **3. Future directions of ARPES**

- Time resolution
- Spin and time resolution

### **Providing momentum resolution**



Successful with QMs:

HTC cuprates CMR manganites Graphene Topological Insulators Energy conservation  $E_B = \hbar ω - E_K - Φ_A$ 

Angle / momentum conservation  $\mathbf{k}_{\parallel} \propto \sqrt{\mathbf{E}_{\mathbf{k}}} \sin \theta$ 

#### **Photoelectron intensity**

 $I(k,\omega) \propto A(k,\omega) |M(k,\omega)|^2 f(\omega)$ 

 $A(k,\omega)$  spectral function M(k) Matrix element f( $\omega$ ) Fermi function

### What do we learn from momentum resolution?

- Energy vs. wave vector (k) Band structure
- Fermi surface
- Charge carrier density



### What do we learn from momentum resolution?







Park, Hwang (2015)

### What do we learn from momentum resolution?



Hwang (2011)

### Graphene on a dielectric substrate





momentum

Hwang, Siegel (2011, 2012)

#### **1. Departure from linearity**

### Strong electron-electron interactions in graphene

#### Fermi liquid

$$E = \frac{\hbar^2}{2m^*} k^2$$



#### **Increasing electron-electron interactions**

**Charge neutral graphene** 

$$E = \hbar v_F^* \mathbf{k}$$

Non-Fermi liquid



### **Electron-phonon coupling**

#### **Electron-phonon coupling**



Ashcroft/Mermin, "Solid State Physics"

### Electron-phonon coupling in Yb/Graphene



### Anisotropic superconductivity



Z.X. Shen (1993)

### Magnetism in S/Graphene

#### **Graphene + S**

#### **Transport measurements**





Hwang (2016)

### Outline

#### 1. What are the grand challenges

#### 2. Angle-resolved photoemission spectroscopy (ARPES)

- From Einstein's photoemission to Present
- Conventional ARPES

#### **3. Future directions of ARPES**

- Time resolution
- Spin and time resolution

### The future of photoemission

#### What is missing? Time and Spin



# Spin resolved photoemission

To access spin degrees of freedom

### The mystery of high *T*<sub>c</sub> superconductivity

#### - Why do we need these additional resolutions?



We need time and spin resolutions

### **Time-resolved ARPES**

#### Pump-Probe, ultrafast ARPES:



Possibilities: Quasiparticle lifetimes Ultrafast phase transitions Closing/opening of gaps Coherent oscillations



Time Resolution  $A(k, \omega, t-t')$ 

#### **Photoelectron intensity**

 $I(k, \mathbf{M}, \mathbf{K}, \mathbf{M}, \mathbf{M}, \mathbf{M}, \mathbf{K}, \mathbf{M}, \mathbf{M},$ 

### What do we measure with time-resolved ARPES?

# Directly measure electronic response / recovery dynamics - (non-equilibrium)



Hwang (unpublished)

### The power of time + momentum resolution

#### **High-***T*<sub>c</sub> **superconductors**



Zhang, Hwang (2014)

### The future of photoemission

#### What is missing? Time and Spin



## Time resolved photoemission

To study excitation and phase transitions



### **Spin + time-resolved ARPES**

**Critical for: Fundamental magnetism** Magnetic phase transitions **Topological Insulators Colossal magnetoresistance FeAs superconductors** 

**Spin-ARPES** 

My My

Time resolution  $A(k, \omega, t-t')$ 

 $\mathbf{k}_{\parallel} \propto \sqrt{\mathbf{E}_{\mathbf{k}}} \sin \theta$ 

**Energy** conservation

**E<sub>F</sub> Angle / momentum conservation** 

 $E_B = \hbar \omega - E_K - \Phi_A$ 

Spin resolution P<sub>x</sub>, P<sub>y</sub>, P<sub>z</sub>

### Light-spin interactions in topological insulator



### What have we learned?

#### ARPES

A powerful tool to understand electronic properties of a material

#### **Electron band structure**

Fermi surface Geometric structure Quantum mechanical phases Many-body effects







#### **Future of ARPES**

#### **Time-resolved ARPES**

: study excitation and phase transitions

#### **Spin-ARPES**

: fundamentals of magnetism

