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nonlinear constrained optimization problem

Using a term like nonlinear science is like referring to
the bulk of zoology as the study of non-elephant ani-
mals.

Stanislaw Ulam



constrained optimization problem: definitions

min
x2X

f (x) subject to

(
c�(x) = 0; if � 2 E
c�(x) � 0; if � 2 I:

� A feasible set is a set 
 � X such that if x 2 
, then
c�(x) = 0 and c�(x) � 0 for � 2 E ; � 2 I.
� For x 2 
 an active set is a subset Ax � E [ I such that
E � Ax and c�(x) = 0 for all � 2 Ax.
� For x 2 
, we say that the linear independence constraint

qualification (LICQ) holds at x if @ac�(x) are linearly
independent for � 2 Ax.
� The Lagrangian function is

L(x; �) = f (x)�
X

�2E[I

��c�:



constrained optimization problem: KKT conditions

If
1. x� is a local minimizer, and
2. the LICQ holds at x�,

then there exists ��� such that

@aL(x�; ��) = 0;
c�(x�) = 0; 8� 2 E ;
c�(x�) � 0; 8� 2 I;

��� � 0; 8� 2 I;
��� c�(x�) = 0; 8� 2 E [ I:

(Karush–Kuhn–Tucker conditions)
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merit function: l1 penalty function

The l1 penalty function is given by

�1(x;�) = f (x) + �
X
�2E

jc�(x)j+ �
X
�2I

max(0;�c�(x)):

An exact metric function is a metric function �(x;�) if there
exists �� such that for any � > ��, a local minimizer of the
constrained optimization problem is a local minimizer of �(x;�).



filter

The infeasibility is given by

h(x) =
X
�2E

jc�(x)j+
X
�2I

max(0;�c�(x)):

Given a sequence of hxl : l = 1; 2; : : : ; k� 1i an iterate xk is
acceptable if f (xk) < f (xl) or h(xk) < h(xl) for l = 1; 2; : : : ; k� 1.
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slack variables

Instead of

min
x2X

f (x) subject to

(
c�(x) = 0; if � 2 E
c�(x) � 0; if � 2 I:

we can formulate the problem as

min
x2X;s2Y

f (x) subject to

8>><
>>:

c�(x) = 0; if � 2 E
c�(x)� s� = 0; if � 2 I
s� � 0:



KKT conditions

@af (x)�
X

�2E[I

��@ac�(x) = 0;

X
�2I

s��� = 0;

c�(x) = 0; � 2 E ;
c�(x)� s = 0; � 2 I;

s� � 0; �� � 0; � 2 I:



combinatorial complexity

X
�2I

s��� = 0$ �� = 0 if � =2 Ax�

leads to 2kIk choices.



barrier method and perutrbed KKT conditions

By introducing a barrier term

min
x;s

0
@f (x)� �

X
�2I

log s�

1
A

we have no combinatorial complexity.
Under some technical conditions there exists (x(�); s(�); �(�))
in an open set of a solution converging to the solution.



perutrbed KKT conditions

@af (x)�
X

�2E[I

��@ac�(x) = 0;

X
�2I

(s��� � �) = 0;

c�(x) = 0; � 2 E ;
c�(x)� s = 0; � 2 I;

s� � 0; �� � 0; � 2 I:



interior-point method: primal-dual system

Search for a Newton direction by solving
0
BBB@

@2
abL 0 �@ac�(x) �@ac�(x)
0 �� 0 s�

@ac�(x) 0 0 0
@ac�(x) �1 0 0

1
CCCA
0
BBB@
�xa

�s�

���

���

1
CCCA

=

0
BBB@
@af (x)�P�2E[I @ac�(x)��P

�2I(s��� � �)

c�(x)
c�(x)� s

1
CCCA



interior-point method: interior-point algorithm
Algorithm 1: interior-point algorithm
Data: x0; s0 > 0; �0 > 0; � > 0; � > 0; r 2 (0; 1); � 2 (0; 1).
Data: �(x; s;�; �) = f (x)� � log s + �kc�(x)k+ �kc�(x)k
compute �0 from KKT conditions;
while �(x; s;�; �) � � do

while kKKTk�k � �k do
solve the primal-dual system for (�x; �s; ��);
�s  max f� 2 (0; 1] : s + ��s � (1� r)sg;
�z  max

n
� 2 (0; 1] : s + ���� � (1� r)��

o
;

xk+1  xk + �s�x;
��k+1  ��k + �z��

�;
sk+1  sk + �s�s;
�
�
k+1  �

�
k + �z��

�;
end
�k  m 2 (0; ��k)

end


