Brief Introduction to Topological Insulators

$$\sigma_{xy} = \frac{e^2}{h} N_c$$
 (Precise)

$$\sigma_{xy} = \frac{e^2}{h} N_c$$
 (Precise)

Conductance quantum * Integer

$$\sigma_{xy} = \frac{e^2}{h} N_c$$

$$N_c = \sum_{n} \int_{BZ} \frac{\mathrm{d}^2 \vec{k}}{2\pi} F_n(\vec{k})$$

$$F(\vec{k}) = i \langle \vec{\nabla}_{\vec{k}} u_n(\vec{k}) | \times | \vec{\nabla}_{\vec{k}} u_n(\vec{k}) \rangle$$

$$\sigma_{xy} = \frac{e^2}{h} N_c$$

$$\sigma_{xy} = \frac{e^2}{h} N_c$$

One channel for each Chern number

Cannot be changed without band touching

Chern Number :: Topological invariant Always Integer when we calculate it on closed manifold

Simple example

$$H = \epsilon(\vec{k}) \ 1_{2\times 2} + \vec{d}(\vec{k}) \cdot \vec{\sigma}$$

Simple example

$$H = \epsilon(\vec{k}) \ 1_{2\times 2} + \vec{d}(\vec{k}) \cdot \vec{\sigma}$$

Simple example

$$H = \epsilon(\vec{k}) \ 1_{2\times 2} + \vec{d}(\vec{k}) \cdot \vec{\sigma}$$

Simple example

$$H = \epsilon(\vec{k}) \ 1_{2\times 2} + \vec{d}(\vec{k}) \cdot \vec{\sigma}$$

Why the magnetic field is important?

Time-Reversal Symmetry (TR)

Zero Chern number

Trivial?

Kane and Mele Model Spin 1/2 Fermions

Two copies of Haldane model: Without external magnetic field With Spin-Orbit coupling

Respect Time-reversal symmetry

Two phases exist

Two phases exist

Two phases exist

Spin Quantum Hall Effect

Kane and Mele model

Time Reversal Symmetry E_F

Spin Quantum Hall Effect

Kane and Mele model

Spin Quantum Hall Effect

Kane and Mele model

Summary

Quantum Hall Effect: Topological point of view

Simple model: Haldane Model

Time reversal symmetry

Kane and Mele Model

Z2 Topological Invariant