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We study the Josephson current through a serial double quantum dot and the associated 0� � tran-

sitions which result from the subtle interplay between the superconductivity, the Kondo physics, and the

interdot superexchange interaction. The competition between them is examined by tuning the relative

strength �=TK of the superconducting gap and the Kondo temperature, for different strengths of the

superexchange coupling determined by the interdot tunneling t relative to the level broadening �. We find

strong renormalization of t, a significant role of the superexchange coupling J, and a rich phase diagram of

the 0 and �-junction regimes. In particular, when both the superconductivity and the exchange interaction

compete with the Kondo physics (�� J � TK), there appears an island of �0 phase at large values of the
superconducting phase difference.
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In a metal containing magnetic impurities the competi-
tion between the Kondo physics, which favors screening of
the localized spins by the itinerant conduction-band elec-
trons [1], and the antiferromagnetic (AF) exchange inter-
actions between the impurities leads to a quantum phase
transition [2]. Even more interesting properties emerge
when the metal turns superconducting. For s-wave super-
conductors, Cooper pairs formed by itinerant electrons [3]
are yet another competing singlet state. The intriguing
interplay of these phenomena, which might actually coex-
ist in complex materials such as heavy-fermion supercon-
ductors, governs the low temperature physics of these
systems.

Nanoscale systems allow us to tune the ratio between the
relevant parameters (Kondo temperature TK, AF exchange
interaction J, superconducting gap �) and enable con-
trolled investigations of such competition. In the simplest
case of a single quantum dot (QD) attached to supercon-
ducting reservoirs, where only Kondo physics and super-
conductivity are relevant, a sign change of the Josephson
current (from positive 0-junction to negative �-junction
behavior) signals a quantum phase transition between a

singlet and a doublet ground state as TK=� decreases

[4–6]. This 0 to �-junction transition has been experimen-
tally realized, confirming some of these [7] and other
physical aspects [8]. A double QD (DQD) coupled to
normal metals constitutes a physical realization of the
two-impurity Kondo model [9–11], as demonstrated ex-
perimentally [12,13]. When the reservoirs become super-
conducting, this system is then a minimal artificial
realization of the competition among the three different
spin-singlet ground states. In this Letter we analyze the

Josephson current which, as a ground state property, shows
signatures of this subtle competition.
Previous studies of this problem were based on the

slave-boson mean-field theory (SBMFT) and were not
able to fully account for the exchange interaction J. In
this work we address the problem with highly reliable
numerical renormalization group (NRG). The main results
are summarized in Figs. 1 and 2. The interplay between the
superconductivity and the Kondo physics is studied by
tuning the ratio �=TK. The role of the superexchange
coupling is tuned by the interdot tunneling t relative to
the dot level broadening �. The key finding is a renormal-
ization of t and a significant role of the superexchange
coupling J compared with the previous works [9,10,14].
Moreover, we find a rich phase diagram of the 0-� tran-
sition. In particular, when all three interactions are in close
competition (�� J � TK), there appears an unexpected
island of �0 phase at large values of the superconducting
phase difference �. We provide clear interpretation by
examining the spin-state-resolved Andreev bound states
inside the superconducting gap.
Model.—The system that we consider is a DQDmodeled

as a two-impurity Anderson model connected to two super-
conducting leads: H ¼ HD þHL þHT> where

HD ¼ X
i

ð�ni þUni"ni#Þ � t
X
�

½dy1�d2� þ ðH:c:Þ� (1)

HL ¼ X
‘k

½�kn‘k � f�‘e
i�‘cy‘k"c

y
‘�k# þ ðH:c:Þg� (2)

H T ¼ V
X
‘k�

½cy‘k�d‘� þ ðH:c:Þ�: (3)

Here c‘k� describes an electron with energy �k, momen-
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tum k, and spin� on the lead ‘ ¼ 1, 2, and di� an electron

in the dot i ¼ 1, 2; n‘k � P
�c

y
‘k�c‘k� and ni �P

�d
y
i�di�. � is the single-particle energy on each dot

that is tuned by the gate voltages, and U is the on-site
Coulomb interaction. The electrons can tunnel between the
two dots with the amplitude t. �‘ is the superconducting
gap, and �‘ the phase of the order parameter.

The two leads are assumed to be identical except for the
superconducting phases. The hybridization between the
dots and the leads is � ¼ ��V2, where � is the density
of states in the leads. Since we are interested in the Kondo
correlations, we concentrate on the Kondo regime with
localized level �� � � and large charging energy U �
2j�j. For the representative results shown below, we choose
� ¼ 0:014D or � ¼ 0:02D, fix � ¼ �0:2D, and take the
large U ¼ 1 limit. We examine the results by varying
�=TK, t=�, and � � �L ��R.

We solve the Hamiltonian using the NRG [15]. Because
of the relatively low symmetry of the problem, the NRG
iteration is numerically very demanding and special atten-
tion is necessary to obtain reliable results. Using a new
discretization scheme the numerical artifacts due to a large
discretization parameter� are almost completely canceled
out [16].

Two crucial effects established in a previous work on the
DQD with normal leads [11] remain important in the
present case. First, the interdot tunneling t is significantly
renormalized compared with the predictions based on the
SBMFT [9,10,14]. Second, there are two main contribu-
tions to the interdot exchange coupling: (i) JI generated by
virtual tunneling events that involve conduction-band elec-
trons in the reservoirs (dominant in the large-U limit), and
(ii) the direct superexchange JU � 4t2=U (dominant for
intermediate U values). Therefore for any U, even in the
U ! 1 limit, it is important to take into account the
interplay of the superexchange coupling (with a total
strength J ¼ JI þ JU) with the superconductivity and the
Kondo effect.

Strong coupling limit (TK � �).—Figure 1 shows
normal-state conductance [(a), (b)] and the critical
Josephson current [(c), (d)]. In the strong coupling limit,
�=TK ¼ 0:1 (black circles), the critical Josephson current
I shows similar features as the normal-state conductance
G: it peaks at equal values of t=� and, remarkably, when
the conductance in the normal state is unitary, the
Josephson current reaches the single-mode quantum limit
Isc ¼ e�=@. This is expected since the Kondo effect domi-
nates over the superconductivity; therefore, the transport is
determined by the competition between the Kondo physics
and the interdot superexchange (for t=�< 5) or interdot
molecular orbitals (t=�> 5). As we analyzed in detail in
the previous work [11], the peaks in G and Ic at t=� � 0:4
(for � ¼ 0:014D) result from the crossover from the
‘‘Kondo singlet’’ to the ‘‘superexchange singlet.’’ For
t=�< 0:4, J < TK, whereas for 0:4< t=�< 5, J > TK.
We stress that the crossover is significantly shifted to

smaller t=� ¼ 0:4 compared with the SBMFT results that
predict a peak at t=� ¼ 1. As t=� increases beyond 5, the
DQD starts to form molecular orbitals and ef-
fectively behaves as a single QD. The associated Kondo
scale rapidly decreases with increasing t. Eventually, TK �
� and a 0 to � phase transition is observed, just like in a
single-dot system [4–6]. The transition line is plotted in
Fig. 2 and it is only weakly dependent on �.
For comparison, we have also calculated the critical

Josephson current as I ¼ max�Ið�Þ, with [17]

Ið�Þ
Isc

¼ g

2
sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gsin2ð�=2Þ

q
; (4)

where g ¼ G=G0 is the (dimensionless) normal-state con-
ductance obtained from a NRG calculation. These relations
are applicable if the QD state is only weakly affected by the
superconductivity. As can be seen in Fig. 1, for t=� & 5,
the result from the effective theory (dashed lines) and the
full NRG calculation show a qualitative agreement. For
larger t (t=�> 5), we enter the single-dot regime, the
Kondo effect is suppressed and the superconductivity be-
comes dominant, leading to the deviation between the
results.
Weak coupling limit (TK � �).—The results, shown in

Figs. 1 and 2 for �=TK ¼ 10 indicate that the supercon-
ducting correlations in the leads suppress the Kondo effect
and the Josephson current remains small until the system
enters the single-dot regime. It is remarkable that the S-
DQD-S system behaves as a 0 junction in the weak cou-
pling limit in contrast to the S-QD-S case where the �
junction appears in the same regime. In single QDs, the
appearance of � junction is due to the reversal of the order
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FIG. 1 (color online). Normal-state conductance [(a),(b)] and
the critical Josephson current in the superconducting state [(c),
(d)] as a function of t=� for � ¼ 0:014D (a),(c) and
� ¼ 0:02D (b),(d). The results are expressed in the units of
the conductance quantum G0 ¼ 2e2=h and the supercurrent
quantum Isc. In the superconducting case [(c),(d)], the different
curves are for �=TK ¼ 0:1 (black circles), 3.6 (red squares), and
10 (blue diamonds). The dashed line is from an effective non-
interacting theory, Eq. (4).

PRL 105, 116803 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

10 SEPTEMBER 2010

116803-2



of the electrons forming Cooper pairs after tunneling.[4] In
the DQD the order is, however, preserved so that no addi-
tional phase factor arises from the tunneling; thus, 0 junc-
tion is formed even in the Coulomb blockade regime.
Specifically, the perturbation theory applied in the weak
coupling limit for U ! 1 gives

I

Isc
¼ sin�

X
kq

2�t2V4

EkEq½ð�� EqÞ2 � t2�½ð�� EkÞ2 � t2�

	
�

1

Eq þ Eq

þ 1

2j�j
�

(5)

with Ek �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k þ �2

q
. Our NRG calculations confirm that

the ground state is a spin singlet as long as the 0 junction is
formed. Hence, in contrast to the single QD system, in a
large part of the parameter space there is no phase tran-
sition as we move from the weak to the strong coupling
limits by varying �=TK.

Subsequent transition into � junction for very large t=�
in Figs. 2(e) and 2(f) is ascribed to the competition be-
tween effective spin-1=2 Kondo correlation and supercon-
ductivity as in the strong coupling limit. Since the
superconducting gap is now larger than in the strong
coupling limit the transition takes place at somewhat

smaller values of t=� for which the effective Kondo tem-
perature TK is higher. Moreover, the critical current is
relatively large even though the system is in the weak
coupling limit, unlike in the single QD where the critical
current in this limit is very small (I=Isc < 0:1) [5]. A very
likely explanation is that the one-electron spin-1=2 Kondo
state is formed at smaller values of t=� and that strong
superconductivity is responsible for it. The (one-electron)
Kondo assisted tunneling then makes the junction more
transparent and enhances the critical current. Hence, the
physical origin of the peak in the critical current is different
in the weak and strong coupling limits.
Intermediate coupling (TK � �).—In this regime, the

superconductivity, the superexchange, and the Kondo
physics can all be in close competition. This subtle inter-
play keeps the Josephson critical current finite, somewhere
between the current in the weak coupling and strong cou-
pling limits, Figs. 1(a) and 1(d), except for very large t=�,
where single QD physics again governs the transport.
More interestingly, the phase diagrams in Figs. 2(c) and

2(d) reveal the reentrance behavior as a function of t=� for
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FIG. 3 (color online). Left panels: Josephson current vs phase
difference near the �0 phase (�=TK ¼ 3:6, t=� ¼ 0:1, 0.2, 0.3,
0.4, and � ¼ 0:02D from top to bottom). Right panels: Corre-
sponding spin-state-resolved Andreev bound states inside the
superconducting gap. Spin doublet states are depicted by (red)
circles and singlets by (black) squares. The changes in the spin
states are closely related to the island of �0 phase in Fig. 2(c)
[similar spin-state-resolved Andreev states for corresponding
parameters will also explain the island in Fig. 2(d)].
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FIG. 2 (color online). Phase boundaries between the 0 and �
states for � ¼ 0:014D (left panels) and � ¼ 0:02D (right pan-
els). When both the interdot superexchange coupling and the
superconductivity are in close competition with the Kondo effect
between the superconducting leads and adjacent dots (t=�� 0:2,
�� TK), there appears an island of �0 phase at larger phase
difference.
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larger superconducting phase difference �. In order to
understand this behavior, we closely examine the subgap
Andreev bound states, which are Bogoliubov quasiparticle
excitations from the ground state [3] and whose derivatives
with respect to � give the Josephson current [18]. In Fig. 3
we plot the energy levels of the Andreev states as a
function of �. Let us focus on, say, � ¼ 0:9�. For t=�<
0:1, the singlet Kondo clouds are formed between the
superconductors and the adjacent dots; thus, the ground
state is likewise a spin singlet, while the excitations corre-
spond to doublet states, see Fig. 3(b). As the Josephson
current is given approximately by the phase-difference
derivative of the Andreev levels, this corresponds to the
0-junction behavior, Fig. 3(a). For 0:4< t=�< 5, the local
interdot singlet state is induced on the DQD due to the
antiferromagnetic superexchange interaction; thus, the
ground state is again a spin singlet, Fig. 3(h), and this
results in the 0-junction behavior, Fig. 3(g). In the previous
two cases, both Kondo effect and superexchange barely
win over the superconductivity, for all values of �.
However, for intermediate values 0:1< t=�< 0:4, the
Kondo effect is suppressed by the large phase difference
[5]. This is indicated by the fact that the ground state is now
a doublet, while the excited state is a singlet, as shown in
Figs. 3(d) and 3(f). Accordingly, the transport properties
are different and, in particular, the �-junction behavior is
observed; see Figs. 3(c) and 3(e). This regime is denoted as
�0 in the phase diagram in Fig. 2. While the � phase for
large t corresponds to the single occupancy of the dots, the
�0 phase occurs for the double occupancy. For large values
of � (� ¼ 0:02D), the �0 island becomes bigger and it
merges with the � regime, as visible in Fig. 3(f).

In double quantum dots coupled to two superconducting
leads we find a significant role of the superexchange cou-
pling J, and a rich phase diagram featuring different 0� �
transitions in the Josephson current. For �� J � TK there
appears an island of �0 phase at larger values of the super-
conducting phase difference. This finding motivates further
studies of this regime, which may shed new light on the
physics of heavy-fermion superconductors.
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