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of trainability (gradient scaling) and prediction error. The availabil-
ity of high-quality quantum hardware13,14 will also be crucial.

Finally, we note that QML provides a new way of thinking about 
established fields, such as quantum information theory, quantum 
error correction and quantum foundations. Viewing such appli-
cations from a data science perspective will likely lead to new 
breakthroughs.

Framework
Data. As shown in Fig. 3, QML can be used to learn from either 
classical or quantum data, and thus we begin by contrasting these 
two types of data. Classical data are ultimately encoded in bits, 
each of which can be in a 0 or 1 state. This includes images, texts, 
graphs, medical records, stock prices, properties of molecules, 
outcomes from biological experiments and collision traces from 
high-energy physics experiments. Quantum data are encoded in 
quantum bits, called qubits, or higher-dimensional analogs. A 
qubit can be represented by the states |0〉, |1〉 or any normalized 
complex linear superposition of these two. Here, the states contain 
information obtained from some physical process such as quan-
tum sensing15, quantum metrology16, quantum networks17, quan-
tum control18 or even quantum analog–digital transduction19. 
Moreover, quantum data can also be the solution to problems 
obtained on a quantum computer: for example, the preparation of 
various Hamiltonians’ ground states.

In principle, all classical data can be efficiently encoded in sys-
tems of qubits: a classical bitstring of length n can be easily encoded 
onto n qubits. However, the same cannot be said for the converse, 
since one cannot efficiently encode quantum data in bit systems; 
that is, the state of a general n-qubit system requires (2n − 1) com-
plex numbers to be specified. Hence, systems of qubits (and more 
generally the quantum Hilbert space) constitute the ultimate 
data representation medium, as they can encode not only clas-
sical information but also quantum information obtained from  
physical processes.

In a QML setting, the term quantum data refers to data that are 
naturally already embedded in a Hilbert space H. When the data 
are quantum, they are already in the form of a set of quantum states 
{|ψj〉} or a set of unitaries {Uj} that could prepare these states on a 
quantum device (via the relation |ψj〉 = Uj|0〉). On the other hand, 
when the data x are classical, they first need to be encoded in a 
quantum system through some embedding mapping xj → |ψ(xj)〉, 
with |ψ(xj)〉 in H. In this case, the hope is that the QML model can 
solve the learning task by accessing the exponentially large dimen-
sion of the Hilbert space20–23.

One of the most important and reasonable conjectures to make 
is that the availability of quantum data will substantially increase 
in the near future. The mere fact that people will use the quantum 
computers that are available will logically lead to more quantum 
problems being solved and quantum simulations being performed. 
These computations will produce quantum datasets, and hence it is 
reasonable to expect the rapid rise of quantum data. Note that, in 
the near term, these quantum data will be stored on classical devices 
in the form of efficient descriptions of quantum circuits that prepare 
the datasets.

Finally, as our level of control over quantum technologies pro-
gresses, coherent transduction of quantum information from the 
physical world to digital quantum computing platforms may be 
achieved19. This would quantum mechanically mimic the main 
information acquisition mechanism for classical data from the 
physical world, this being analog–digital conversion. Moreover, we 
can expect that the eventual advent of practical quantum error cor-
rection24 and quantum memories25 will allow us to store quantum 
data on quantum computers themselves.

Models. Analyzing and learning from data requires a parameter-
ized model, and many different models have been proposed for 
QML applications. Classical models such as neural networks and 
tensor networks (as shown in Fig. 1) are often useful for analyzing 

Fig. 1 | QML tasks. QML is usually considered for four main tasks. These 
include tasks where the data are either classical or quantum, and where 
the algorithm is either classical or quantum. Top left: tensor networks 
are quantum-inspired classical methods that can analyze classical data. 
Top right: unitary time-evolution data U from a quantum system can be 
classically compiled into a quantum circuit. Bottom left: handwritten 
digits can be mapped to quantum states for classification on a quantum 
computer. Bottom right: molecular ground-state data can be classified 
directly on a quantum computer. The figure shows the dependence of 
ground-state energy E on the distance d between the atoms.
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Fig. 2 | Key applications for QML. QML has been envisioned to bring 
a computational advantage in many applications. QML can enhance 
quantum simulation for chemistry (for example, molecular ground states110, 
equilibrium states47 and time evolution112) and materials science (for 
example, quantum phase recognition11 and generative design with a target 
property in mind130). QML can enhance quantum computing by learning 
quantum error correction codes11,109 and syndrome decoders, performing 
quantum control, learning to mitigate errors and compiling and optimizing 
quantum circuits. QML can enhance sensing and metrology46,104–107 and 
extract hidden parameters from quantum systems. Finally, QML may speed 
up classical data analysis, including clustering and classification.
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of trainability (gradient scaling) and prediction error. The availabil-
ity of high-quality quantum hardware13,14 will also be crucial.

Finally, we note that QML provides a new way of thinking about 
established fields, such as quantum information theory, quantum 
error correction and quantum foundations. Viewing such appli-
cations from a data science perspective will likely lead to new 
breakthroughs.
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Data. As shown in Fig. 3, QML can be used to learn from either 
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graphs, medical records, stock prices, properties of molecules, 
outcomes from biological experiments and collision traces from 
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qubit can be represented by the states |0〉, |1〉 or any normalized 
complex linear superposition of these two. Here, the states contain 
information obtained from some physical process such as quan-
tum sensing15, quantum metrology16, quantum networks17, quan-
tum control18 or even quantum analog–digital transduction19. 
Moreover, quantum data can also be the solution to problems 
obtained on a quantum computer: for example, the preparation of 
various Hamiltonians’ ground states.

In principle, all classical data can be efficiently encoded in sys-
tems of qubits: a classical bitstring of length n can be easily encoded 
onto n qubits. However, the same cannot be said for the converse, 
since one cannot efficiently encode quantum data in bit systems; 
that is, the state of a general n-qubit system requires (2n − 1) com-
plex numbers to be specified. Hence, systems of qubits (and more 
generally the quantum Hilbert space) constitute the ultimate 
data representation medium, as they can encode not only clas-
sical information but also quantum information obtained from  
physical processes.

In a QML setting, the term quantum data refers to data that are 
naturally already embedded in a Hilbert space H. When the data 
are quantum, they are already in the form of a set of quantum states 
{|ψj〉} or a set of unitaries {Uj} that could prepare these states on a 
quantum device (via the relation |ψj〉 = Uj|0〉). On the other hand, 
when the data x are classical, they first need to be encoded in a 
quantum system through some embedding mapping xj → |ψ(xj)〉, 
with |ψ(xj)〉 in H. In this case, the hope is that the QML model can 
solve the learning task by accessing the exponentially large dimen-
sion of the Hilbert space20–23.

One of the most important and reasonable conjectures to make 
is that the availability of quantum data will substantially increase 
in the near future. The mere fact that people will use the quantum 
computers that are available will logically lead to more quantum 
problems being solved and quantum simulations being performed. 
These computations will produce quantum datasets, and hence it is 
reasonable to expect the rapid rise of quantum data. Note that, in 
the near term, these quantum data will be stored on classical devices 
in the form of efficient descriptions of quantum circuits that prepare 
the datasets.

Finally, as our level of control over quantum technologies pro-
gresses, coherent transduction of quantum information from the 
physical world to digital quantum computing platforms may be 
achieved19. This would quantum mechanically mimic the main 
information acquisition mechanism for classical data from the 
physical world, this being analog–digital conversion. Moreover, we 
can expect that the eventual advent of practical quantum error cor-
rection24 and quantum memories25 will allow us to store quantum 
data on quantum computers themselves.

Models. Analyzing and learning from data requires a parameter-
ized model, and many different models have been proposed for 
QML applications. Classical models such as neural networks and 
tensor networks (as shown in Fig. 1) are often useful for analyzing 
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Fig. 1 | QML tasks. QML is usually considered for four main tasks. These 
include tasks where the data are either classical or quantum, and where 
the algorithm is either classical or quantum. Top left: tensor networks 
are quantum-inspired classical methods that can analyze classical data. 
Top right: unitary time-evolution data U from a quantum system can be 
classically compiled into a quantum circuit. Bottom left: handwritten 
digits can be mapped to quantum states for classification on a quantum 
computer. Bottom right: molecular ground-state data can be classified 
directly on a quantum computer. The figure shows the dependence of 
ground-state energy E on the distance d between the atoms.

Fig. 2 | Key applications for QML. QML has been envisioned to bring 
a computational advantage in many applications. QML can enhance 
quantum simulation for chemistry (for example, molecular ground states110, 
equilibrium states47 and time evolution112) and materials science (for 
example, quantum phase recognition11 and generative design with a target 
property in mind130). QML can enhance quantum computing by learning 
quantum error correction codes11,109 and syndrome decoders, performing 
quantum control, learning to mitigate errors and compiling and optimizing 
quantum circuits. QML can enhance sensing and metrology46,104–107 and 
extract hidden parameters from quantum systems. Finally, QML may speed 
up classical data analysis, including clustering and classification.

NATURE COMPUTATIONAL SCIENCE | www.nature.com/natcomputsci

Nature Computational Science 2, 567-576



Quantum Machine Learning

7

PERSPECTIVENATURE COMPUTATIONAL SCIENCE

data from quantum experiments. However, due to their novelty, we 
will focus our discussion on quantum models using quantum algo-
rithms, where one applies the learning methodology directly at the 
quantum level.

Similarly to classical ML, there exist several different QML para-
digms: supervised learning (task based)26–28, unsupervised learning 
(data based)29,30 and reinforced learning (reward based)31,32. While 
each of these fields is exciting and thriving in itself, supervised 
learning has recently received considerable attention for its poten-
tial to achieve quantum advantage26,33, resilience to noise34 and good 
generalization properties35–37, which makes it a strong candidate 
for near-term applications. In what follows we discuss two popular 
QML models: QNNs and quantum kernels, shown in Fig. 3, with a 
particular emphasis on QNNs as these are the primary ingredient of 
several supervised, unsupervised and reinforced learning schemes.

Quantum neural networks. The most basic and key ingredient in 
QML models is parameterized quantum circuits (PQCs). These 
involve a sequence of unitary gates acting on the quantum data 
states |ψj〉, some of which have free parameters θ that will be trained 
to solve the problem at hand38. PQCs are conceptually analogous to 
neural networks, and indeed this analogy can be made precise: that 
is, classical neural networks can be formally embedded into PQCs39.

This has led researchers to refer to certain kinds of PQC as 
QNNs. In practice, the term QNN is used whenever a PQC is 
employed for a data science application, and hence we will use the 
term QNN in what follows. QNNs are employed in all three QML 
paradigms mentioned above. For instance, in a supervised classi-
fication task, the goal of the QNN is to map the states in different 

classes to distinguishable regions of the Hilbert space26. Moreover, 
in the unsupervised learning scenario of ref. 29, a clustering task is 
mapped onto a MAXCUT problem and solved by training a QNN to 
maximize distance between classes. Finally, in the reinforced learn-
ing task of ref. 32, a QNN can be used as the Q-function approxima-
tor, which can be used to determine the best action for a learning 
agent given its current state.

Figure 4 gives examples of three distinct QNN architectures 
where in each layer the number of qubits in the model is increased, 
preserved or decreased. In Fig. 4a we show a dissipative QNN40 
which generalizes the classical feedforward network. Here, each 
node corresponds to a qubit, while lines connecting qubits are uni-
tary operations. The term dissipative arises from the fact that qubits 
in a layer are discarded after the information forward-propagates 
to the (new) qubits in the next layer. Figure 4b shows a standard 
QNN where quantum data states are sent through a quantum cir-
cuit, at the end of which some or all of the qubits are measured. 
Here, no qubits are discarded or added as we go deeper into the 
QNN. Finally, Fig. 4c depicts a convolutional QNN11, where in 
each layer qubits are measured to reduce the dimension of the data 
while preserving its relevant features. Many other QNNs have been 
proposed41–45, and constructing QNN architectures is currently an 
active area of research.

To further accommodate the limitation of near-term quantum 
computers, we can also employ a hybrid approach with models that 
have both classical and quantum neural networks46. Here, QNNs act 
coherently on quantum states while deep classical neural networks 
alleviate the need for higher-complexity quantum processing. Such 
hybridization distributes the representational capacity and compu-
tational complexity across both quantum and classical computers. 
Moreover, since quantum states generally have a mixture of classi-
cal correlations and quantum correlations, hybrid quantum–classi-
cal models allow for the use of quantum computers as an additive 
resource to increase the ability of classical models to represent 
quantum-correlated distributions. Applications of hybrid models 
include generating47 or learning and distilling information46 from 
multipartite-entangled distributions.

Quantum kernels. As an alternative to QNNs, researchers have pro-
posed quantum versions of kernel methods26,28. A kernel method 
maps each input to a vector in a high-dimensional vector space, 
known as the reproducing kernel Hilbert space. Then, a kernel 
method learns a linear function in the reproducing kernel Hilbert 
space. The dimension of the reproducing kernel Hilbert space could 
be infinite, which enables the kernel method to be very powerful in 
terms of expressiveness. To learn a linear function in a potentially 
infinite-dimensional space, the kernel trick48 is employed, which 
only requires efficient computation of the inner product between 
these high-dimensional vectors. The inner product is also known 
as the kernel48. Quantum kernel methods consider the computa-
tion of kernel functions using quantum computers. There are 
many possible implementations. For example, refs. 26,28 considered 
a reproducing kernel Hilbert space equal to the quantum state 
space, which is finite dimensional. Another approach13 is to study 
an infinite-dimensional reproducing kernel Hilbert space that is 
equivalent to transforming a classical vector using a quantum com-
puter. It then maps the transformed classical vectors to infinite-
dimensional vectors.

Inductive bias. For both QNNs and quantum kernels, an important 
design criterion is their inductive bias. This bias refers to the fact 
that any model represents only a subset of functions and is naturally 
biased towards certain types of function (that is, functions relating 
the input features to the output prediction). One aspect of achieving 
quantum advantage with QML is to aim for QML models with an 
inductive bias that is inefficient to simulate with a classical model. 
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Fig. 3 | Classification with QML. a, The classical data x, that is, images  
of cats and images of dogs, is encoded into a Hilbert space via some  
map x!→!|ψ(x)〉. Ideally, data from different classes (here represented by 
dots and stars) are mapped to different regions of the Hilbert space.  
b, Quantum data |ψ〉 can be directly analyzed on a quantum device. Here 
the dataset is composed of states representing metallic or superconducting 
systems. c, The dataset is used to train a QML model. Two common 
paradigms in QML are QNNs and quantum kernels, both of which allow 
for classification of either classical or quantum data. In kernel methods we 
fit a decision hyperplane that separates the classes. d, Once the model is 
trained, it can be used to make predictions.
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data from quantum experiments. However, due to their novelty, we 
will focus our discussion on quantum models using quantum algo-
rithms, where one applies the learning methodology directly at the 
quantum level.

Similarly to classical ML, there exist several different QML para-
digms: supervised learning (task based)26–28, unsupervised learning 
(data based)29,30 and reinforced learning (reward based)31,32. While 
each of these fields is exciting and thriving in itself, supervised 
learning has recently received considerable attention for its poten-
tial to achieve quantum advantage26,33, resilience to noise34 and good 
generalization properties35–37, which makes it a strong candidate 
for near-term applications. In what follows we discuss two popular 
QML models: QNNs and quantum kernels, shown in Fig. 3, with a 
particular emphasis on QNNs as these are the primary ingredient of 
several supervised, unsupervised and reinforced learning schemes.

Quantum neural networks. The most basic and key ingredient in 
QML models is parameterized quantum circuits (PQCs). These 
involve a sequence of unitary gates acting on the quantum data 
states |ψj〉, some of which have free parameters θ that will be trained 
to solve the problem at hand38. PQCs are conceptually analogous to 
neural networks, and indeed this analogy can be made precise: that 
is, classical neural networks can be formally embedded into PQCs39.

This has led researchers to refer to certain kinds of PQC as 
QNNs. In practice, the term QNN is used whenever a PQC is 
employed for a data science application, and hence we will use the 
term QNN in what follows. QNNs are employed in all three QML 
paradigms mentioned above. For instance, in a supervised classi-
fication task, the goal of the QNN is to map the states in different 

classes to distinguishable regions of the Hilbert space26. Moreover, 
in the unsupervised learning scenario of ref. 29, a clustering task is 
mapped onto a MAXCUT problem and solved by training a QNN to 
maximize distance between classes. Finally, in the reinforced learn-
ing task of ref. 32, a QNN can be used as the Q-function approxima-
tor, which can be used to determine the best action for a learning 
agent given its current state.

Figure 4 gives examples of three distinct QNN architectures 
where in each layer the number of qubits in the model is increased, 
preserved or decreased. In Fig. 4a we show a dissipative QNN40 
which generalizes the classical feedforward network. Here, each 
node corresponds to a qubit, while lines connecting qubits are uni-
tary operations. The term dissipative arises from the fact that qubits 
in a layer are discarded after the information forward-propagates 
to the (new) qubits in the next layer. Figure 4b shows a standard 
QNN where quantum data states are sent through a quantum cir-
cuit, at the end of which some or all of the qubits are measured. 
Here, no qubits are discarded or added as we go deeper into the 
QNN. Finally, Fig. 4c depicts a convolutional QNN11, where in 
each layer qubits are measured to reduce the dimension of the data 
while preserving its relevant features. Many other QNNs have been 
proposed41–45, and constructing QNN architectures is currently an 
active area of research.

To further accommodate the limitation of near-term quantum 
computers, we can also employ a hybrid approach with models that 
have both classical and quantum neural networks46. Here, QNNs act 
coherently on quantum states while deep classical neural networks 
alleviate the need for higher-complexity quantum processing. Such 
hybridization distributes the representational capacity and compu-
tational complexity across both quantum and classical computers. 
Moreover, since quantum states generally have a mixture of classi-
cal correlations and quantum correlations, hybrid quantum–classi-
cal models allow for the use of quantum computers as an additive 
resource to increase the ability of classical models to represent 
quantum-correlated distributions. Applications of hybrid models 
include generating47 or learning and distilling information46 from 
multipartite-entangled distributions.

Quantum kernels. As an alternative to QNNs, researchers have pro-
posed quantum versions of kernel methods26,28. A kernel method 
maps each input to a vector in a high-dimensional vector space, 
known as the reproducing kernel Hilbert space. Then, a kernel 
method learns a linear function in the reproducing kernel Hilbert 
space. The dimension of the reproducing kernel Hilbert space could 
be infinite, which enables the kernel method to be very powerful in 
terms of expressiveness. To learn a linear function in a potentially 
infinite-dimensional space, the kernel trick48 is employed, which 
only requires efficient computation of the inner product between 
these high-dimensional vectors. The inner product is also known 
as the kernel48. Quantum kernel methods consider the computa-
tion of kernel functions using quantum computers. There are 
many possible implementations. For example, refs. 26,28 considered 
a reproducing kernel Hilbert space equal to the quantum state 
space, which is finite dimensional. Another approach13 is to study 
an infinite-dimensional reproducing kernel Hilbert space that is 
equivalent to transforming a classical vector using a quantum com-
puter. It then maps the transformed classical vectors to infinite-
dimensional vectors.

Inductive bias. For both QNNs and quantum kernels, an important 
design criterion is their inductive bias. This bias refers to the fact 
that any model represents only a subset of functions and is naturally 
biased towards certain types of function (that is, functions relating 
the input features to the output prediction). One aspect of achieving 
quantum advantage with QML is to aim for QML models with an 
inductive bias that is inefficient to simulate with a classical model. 

Fig. 3 | Classification with QML. a, The classical data x, that is, images  
of cats and images of dogs, is encoded into a Hilbert space via some  
map x!→!|ψ(x)〉. Ideally, data from different classes (here represented by 
dots and stars) are mapped to different regions of the Hilbert space.  
b, Quantum data |ψ〉 can be directly analyzed on a quantum device. Here 
the dataset is composed of states representing metallic or superconducting 
systems. c, The dataset is used to train a QML model. Two common 
paradigms in QML are QNNs and quantum kernels, both of which allow 
for classification of either classical or quantum data. In kernel methods we 
fit a decision hyperplane that separates the classes. d, Once the model is 
trained, it can be used to make predictions.
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data from quantum experiments. However, due to their novelty, we 
will focus our discussion on quantum models using quantum algo-
rithms, where one applies the learning methodology directly at the 
quantum level.

Similarly to classical ML, there exist several different QML para-
digms: supervised learning (task based)26–28, unsupervised learning 
(data based)29,30 and reinforced learning (reward based)31,32. While 
each of these fields is exciting and thriving in itself, supervised 
learning has recently received considerable attention for its poten-
tial to achieve quantum advantage26,33, resilience to noise34 and good 
generalization properties35–37, which makes it a strong candidate 
for near-term applications. In what follows we discuss two popular 
QML models: QNNs and quantum kernels, shown in Fig. 3, with a 
particular emphasis on QNNs as these are the primary ingredient of 
several supervised, unsupervised and reinforced learning schemes.

Quantum neural networks. The most basic and key ingredient in 
QML models is parameterized quantum circuits (PQCs). These 
involve a sequence of unitary gates acting on the quantum data 
states |ψj〉, some of which have free parameters θ that will be trained 
to solve the problem at hand38. PQCs are conceptually analogous to 
neural networks, and indeed this analogy can be made precise: that 
is, classical neural networks can be formally embedded into PQCs39.

This has led researchers to refer to certain kinds of PQC as 
QNNs. In practice, the term QNN is used whenever a PQC is 
employed for a data science application, and hence we will use the 
term QNN in what follows. QNNs are employed in all three QML 
paradigms mentioned above. For instance, in a supervised classi-
fication task, the goal of the QNN is to map the states in different 

classes to distinguishable regions of the Hilbert space26. Moreover, 
in the unsupervised learning scenario of ref. 29, a clustering task is 
mapped onto a MAXCUT problem and solved by training a QNN to 
maximize distance between classes. Finally, in the reinforced learn-
ing task of ref. 32, a QNN can be used as the Q-function approxima-
tor, which can be used to determine the best action for a learning 
agent given its current state.

Figure 4 gives examples of three distinct QNN architectures 
where in each layer the number of qubits in the model is increased, 
preserved or decreased. In Fig. 4a we show a dissipative QNN40 
which generalizes the classical feedforward network. Here, each 
node corresponds to a qubit, while lines connecting qubits are uni-
tary operations. The term dissipative arises from the fact that qubits 
in a layer are discarded after the information forward-propagates 
to the (new) qubits in the next layer. Figure 4b shows a standard 
QNN where quantum data states are sent through a quantum cir-
cuit, at the end of which some or all of the qubits are measured. 
Here, no qubits are discarded or added as we go deeper into the 
QNN. Finally, Fig. 4c depicts a convolutional QNN11, where in 
each layer qubits are measured to reduce the dimension of the data 
while preserving its relevant features. Many other QNNs have been 
proposed41–45, and constructing QNN architectures is currently an 
active area of research.

To further accommodate the limitation of near-term quantum 
computers, we can also employ a hybrid approach with models that 
have both classical and quantum neural networks46. Here, QNNs act 
coherently on quantum states while deep classical neural networks 
alleviate the need for higher-complexity quantum processing. Such 
hybridization distributes the representational capacity and compu-
tational complexity across both quantum and classical computers. 
Moreover, since quantum states generally have a mixture of classi-
cal correlations and quantum correlations, hybrid quantum–classi-
cal models allow for the use of quantum computers as an additive 
resource to increase the ability of classical models to represent 
quantum-correlated distributions. Applications of hybrid models 
include generating47 or learning and distilling information46 from 
multipartite-entangled distributions.

Quantum kernels. As an alternative to QNNs, researchers have pro-
posed quantum versions of kernel methods26,28. A kernel method 
maps each input to a vector in a high-dimensional vector space, 
known as the reproducing kernel Hilbert space. Then, a kernel 
method learns a linear function in the reproducing kernel Hilbert 
space. The dimension of the reproducing kernel Hilbert space could 
be infinite, which enables the kernel method to be very powerful in 
terms of expressiveness. To learn a linear function in a potentially 
infinite-dimensional space, the kernel trick48 is employed, which 
only requires efficient computation of the inner product between 
these high-dimensional vectors. The inner product is also known 
as the kernel48. Quantum kernel methods consider the computa-
tion of kernel functions using quantum computers. There are 
many possible implementations. For example, refs. 26,28 considered 
a reproducing kernel Hilbert space equal to the quantum state 
space, which is finite dimensional. Another approach13 is to study 
an infinite-dimensional reproducing kernel Hilbert space that is 
equivalent to transforming a classical vector using a quantum com-
puter. It then maps the transformed classical vectors to infinite-
dimensional vectors.

Inductive bias. For both QNNs and quantum kernels, an important 
design criterion is their inductive bias. This bias refers to the fact 
that any model represents only a subset of functions and is naturally 
biased towards certain types of function (that is, functions relating 
the input features to the output prediction). One aspect of achieving 
quantum advantage with QML is to aim for QML models with an 
inductive bias that is inefficient to simulate with a classical model. 
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Fig. 3 | Classification with QML. a, The classical data x, that is, images  
of cats and images of dogs, is encoded into a Hilbert space via some  
map x!→!|ψ(x)〉. Ideally, data from different classes (here represented by 
dots and stars) are mapped to different regions of the Hilbert space.  
b, Quantum data |ψ〉 can be directly analyzed on a quantum device. Here 
the dataset is composed of states representing metallic or superconducting 
systems. c, The dataset is used to train a QML model. Two common 
paradigms in QML are QNNs and quantum kernels, both of which allow 
for classification of either classical or quantum data. In kernel methods we 
fit a decision hyperplane that separates the classes. d, Once the model is 
trained, it can be used to make predictions.
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data from quantum experiments. However, due to their novelty, we 
will focus our discussion on quantum models using quantum algo-
rithms, where one applies the learning methodology directly at the 
quantum level.

Similarly to classical ML, there exist several different QML para-
digms: supervised learning (task based)26–28, unsupervised learning 
(data based)29,30 and reinforced learning (reward based)31,32. While 
each of these fields is exciting and thriving in itself, supervised 
learning has recently received considerable attention for its poten-
tial to achieve quantum advantage26,33, resilience to noise34 and good 
generalization properties35–37, which makes it a strong candidate 
for near-term applications. In what follows we discuss two popular 
QML models: QNNs and quantum kernels, shown in Fig. 3, with a 
particular emphasis on QNNs as these are the primary ingredient of 
several supervised, unsupervised and reinforced learning schemes.

Quantum neural networks. The most basic and key ingredient in 
QML models is parameterized quantum circuits (PQCs). These 
involve a sequence of unitary gates acting on the quantum data 
states |ψj〉, some of which have free parameters θ that will be trained 
to solve the problem at hand38. PQCs are conceptually analogous to 
neural networks, and indeed this analogy can be made precise: that 
is, classical neural networks can be formally embedded into PQCs39.

This has led researchers to refer to certain kinds of PQC as 
QNNs. In practice, the term QNN is used whenever a PQC is 
employed for a data science application, and hence we will use the 
term QNN in what follows. QNNs are employed in all three QML 
paradigms mentioned above. For instance, in a supervised classi-
fication task, the goal of the QNN is to map the states in different 

classes to distinguishable regions of the Hilbert space26. Moreover, 
in the unsupervised learning scenario of ref. 29, a clustering task is 
mapped onto a MAXCUT problem and solved by training a QNN to 
maximize distance between classes. Finally, in the reinforced learn-
ing task of ref. 32, a QNN can be used as the Q-function approxima-
tor, which can be used to determine the best action for a learning 
agent given its current state.

Figure 4 gives examples of three distinct QNN architectures 
where in each layer the number of qubits in the model is increased, 
preserved or decreased. In Fig. 4a we show a dissipative QNN40 
which generalizes the classical feedforward network. Here, each 
node corresponds to a qubit, while lines connecting qubits are uni-
tary operations. The term dissipative arises from the fact that qubits 
in a layer are discarded after the information forward-propagates 
to the (new) qubits in the next layer. Figure 4b shows a standard 
QNN where quantum data states are sent through a quantum cir-
cuit, at the end of which some or all of the qubits are measured. 
Here, no qubits are discarded or added as we go deeper into the 
QNN. Finally, Fig. 4c depicts a convolutional QNN11, where in 
each layer qubits are measured to reduce the dimension of the data 
while preserving its relevant features. Many other QNNs have been 
proposed41–45, and constructing QNN architectures is currently an 
active area of research.

To further accommodate the limitation of near-term quantum 
computers, we can also employ a hybrid approach with models that 
have both classical and quantum neural networks46. Here, QNNs act 
coherently on quantum states while deep classical neural networks 
alleviate the need for higher-complexity quantum processing. Such 
hybridization distributes the representational capacity and compu-
tational complexity across both quantum and classical computers. 
Moreover, since quantum states generally have a mixture of classi-
cal correlations and quantum correlations, hybrid quantum–classi-
cal models allow for the use of quantum computers as an additive 
resource to increase the ability of classical models to represent 
quantum-correlated distributions. Applications of hybrid models 
include generating47 or learning and distilling information46 from 
multipartite-entangled distributions.

Quantum kernels. As an alternative to QNNs, researchers have pro-
posed quantum versions of kernel methods26,28. A kernel method 
maps each input to a vector in a high-dimensional vector space, 
known as the reproducing kernel Hilbert space. Then, a kernel 
method learns a linear function in the reproducing kernel Hilbert 
space. The dimension of the reproducing kernel Hilbert space could 
be infinite, which enables the kernel method to be very powerful in 
terms of expressiveness. To learn a linear function in a potentially 
infinite-dimensional space, the kernel trick48 is employed, which 
only requires efficient computation of the inner product between 
these high-dimensional vectors. The inner product is also known 
as the kernel48. Quantum kernel methods consider the computa-
tion of kernel functions using quantum computers. There are 
many possible implementations. For example, refs. 26,28 considered 
a reproducing kernel Hilbert space equal to the quantum state 
space, which is finite dimensional. Another approach13 is to study 
an infinite-dimensional reproducing kernel Hilbert space that is 
equivalent to transforming a classical vector using a quantum com-
puter. It then maps the transformed classical vectors to infinite-
dimensional vectors.

Inductive bias. For both QNNs and quantum kernels, an important 
design criterion is their inductive bias. This bias refers to the fact 
that any model represents only a subset of functions and is naturally 
biased towards certain types of function (that is, functions relating 
the input features to the output prediction). One aspect of achieving 
quantum advantage with QML is to aim for QML models with an 
inductive bias that is inefficient to simulate with a classical model. 

Fig. 3 | Classification with QML. a, The classical data x, that is, images  
of cats and images of dogs, is encoded into a Hilbert space via some  
map x!→!|ψ(x)〉. Ideally, data from different classes (here represented by 
dots and stars) are mapped to different regions of the Hilbert space.  
b, Quantum data |ψ〉 can be directly analyzed on a quantum device. Here 
the dataset is composed of states representing metallic or superconducting 
systems. c, The dataset is used to train a QML model. Two common 
paradigms in QML are QNNs and quantum kernels, both of which allow 
for classification of either classical or quantum data. In kernel methods we 
fit a decision hyperplane that separates the classes. d, Once the model is 
trained, it can be used to make predictions.
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3 Steps of QML
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Quantum Data Encoding (or Embedding)

• Quantum Data Encoding (Embedding)
• Process to load classical data onto a quantum system

𝑥 ↦ | ⟩𝜓 𝑥

• Two categories:
• Digital : data à qubit strings, !"∑#$!

" | ⟩𝑥 𝑚
• Analogue : data à amplitude of a quantum state, ∑%$!& 𝑥%| ⟩𝑖  with 
∑ 𝑥% ' = 1

10



Quantum Data Encoding (or Embedding)

• Preference
• #Qubits should be minimal
• #Parallel Op. should be minimal to minimize the width of the circuit
• Data must be represented appropriately for further calculations

• Digital for arithmetic computation
• Analogue as mapping data into large Hilbert space for QML

11



Quantum Data Encoding (or Embedding)

12



Feature Map

• Feature Mapping
• Technique used in data analysis and machine learning to transform input data 

from a lower-dimensional space to a higher-dimensional space, where it can 
be more easily analyzed or classified 
(https://www.geeksforgeeks.org/feature-mapping/)

13

https://www.geeksforgeeks.org/feature-mapping/


Feature Map

𝒳 be a set of input data. A feature map 𝜙:𝒳 ↦ ℱ where ℱ is the feature space. The output of the map 𝜙(𝑥) for all 𝑥 ∈ 𝒳 
are called feature vectors.

14



Quantum Feature Map

A quantum feature map 𝜙:𝒳 ↦ ℱ is a feature map where the vector space ℱ is a Hilbert space and the feature vectors are 
quantum states. The map transforms 𝑥 ↦ |𝜙 ⟩𝑥  by way of a unitary transformation 𝑈! 𝑥 , which is typically a variational 
circuit whose parameters depend on the input data.

𝒙, 𝒛

Variational circuit depends on parameters and encoding

feature vector

15



Basis Encoding

• Basis encoding is primarily used when real numbers have to be arithmetically manipulated in a 
quantum algorithm. Such an encoding represents real numbers as binary numbers and then 
transforms them into a quantum state on a computational basis.

16



Real number as bit string (Binary fraction 
representation) 

17

3.1. REPRESENTING DATA IN QUANTUM COMPUTERS 33

kets to represent generically quantum states |𝜓⟩, |𝜙⟩, |𝜑⟩, etc…, and use Latin
letters to represent quantum registers holding classical data interpreted as bit-
strings. The precision that we can use for specifying the amplitude of a quantum
state might be limited - in practice - by the precision of our quantum computer
in manipulating quantum states (i.e. development in techniques in quantum
metrology and sensing). Techniques that use a certain precision in the ampli-
tude of a state might suffer of initial technical limitations of the hardware. The
precision in the manipulation could be measured, for instance, by the fidelity,
but discussing this subject is out of scope for this work.

3.1.1 Numbers and quantum arithmetics
Number can be stored as binary encoding: each bit of a number is encoded in
the state of a single qubit. Let’s start with the most simple scalar: an integer.
Let 𝑥 ∈ ℕ. To represent it on a quantum computer, we consider the binary
expansion of 𝑥 as a list of 𝑚 bits, and we set the state of the 𝑖-th qubit as the
value of the 𝑖-th bit of 𝑥:

|𝑥⟩ = 𝑚⨂𝑖=0 |𝑥𝑖⟩ (3.1)

Eventually, we can use one more qubit for the sign. In most of the cases, we want
to work also with non-integer numbers. Real numbers can be approximated with
decimal numbers with a certain bits of precision. For this, we need a bit to store
the sign, some bits to store the integer part, and some other bits to store the
decimal part. This is more precisely stated in the following definition.

Definition 3.1 (Fixed-point encoding of real numbers (Rebentrost et al.,
2021)). Let 𝑐1, 𝑐2 be positive integers, and 𝑎 ∈ {0, 1}𝑐1 , 𝑏 ∈ {0, 1}𝑐2 , and𝑠 ∈ {0, 1} be bit strings. Define the rational number as:𝒬(𝑎, 𝑏, 𝑠) ∶= (−1)𝑠 (2𝑐1−1𝑎𝑐1 + ⋯ + 2𝑎2 + 𝑎1 + 12𝑏1 + ⋯ + 12𝑐2 𝑏𝑐2) ∈ [−𝑅, 𝑅],

(3.2)
where 𝑅 ∶= 2𝑐1 − 2−𝑐2 . If 𝑐1, 𝑐2 are clear from the context, we can use the
shorthand notation for a number 𝑧 ∶= (𝑎, 𝑏, 𝑠) and write 𝒬(𝑧) instead of 𝒬(𝑎, 𝑏, 𝑠).
Given an 𝑛-dimensional vector 𝑣 ∈ ({0, 1}𝑐1 × {0, 1}𝑐2 × {0, 1})𝑛 the notation𝒬(𝑣) means an 𝑛-dimensional vector whose 𝑗-th component is 𝒬(𝑣𝑗), for 𝑗 ∈ [𝑛].
It might seem complicated, but it is really the (almost) only thing that a rea-
sonable person might come up with when expressing numbers as (qu)bits with
fixed-point precision. In most of the algorithms we implicitly assume this (or
equivalent) models. Stating clearly how to express numbers on a quantum com-
puter as fixed point precision is important: we want to work a model where
we can represent numbers with enough precision so that numerical errors in the
computation are negligible and will not impact the final output of our algorithm.



Amplitude Encoding

• Data is encoded into the amplitudes of a quantum state. This encoding requires log2(n) qubits to 
represent an n-dimensional data points.

norm factor: 6" + (−12.5)"+11.15" + 7" 18



Angle Encoding (a.k.a tensor product 
encoding)
• Angle encoding is essentially the most basic form of encoding classical data into a quantum state. 

The n classical features are encoded into the rotation angle of the n qubits. This encoding requires 
n qubits to represent n-dimensional data but is chaper to prepare in complexity (constant circuit 
depth): it requires one rotation on each qubit, 𝑅!(𝑣) or 𝑅"(𝑣) for the value v to encode.

19



QuAM (Q- Associative Memory)

• This encoding is based on superposition to encode a set of data points in a qubit register of the 
same length. This requires a binary representation of all equally long values, or we need to pad 
with zeros. We need to use a quantum associative memory (QuAM) to prepare a superposition of 
basis encoded values in the same qubit register format. Note that the quantum register is an 
equally weighted superposition of the basis encoded values.

20



QRAM (Q-Random Access Memory)

• QRAM is used to access a superposition of data values at once. A classical RAM that receives an 
address with a memory index loads the data stored at the address into an output register. QRAM 
provides the same funcitonality, but the address and the output register are quantum register. 
Both the address and the output register can be the superposition of multiple values. For this 
encoding, 𝑙 qubits are needed to encode the data values using Basis encoding. The address 
register requires log(n) additional qubits for a maximum of n addresses.

uses superposition to encode a set of data points in a qubit
register of the same length (assuming that the binary repre-
sentation of all values is equally long or padded with zeros).
QUANTUM RANDOM ACCESS MEMORY ENCODING needs ⌈ log n⌉
additional qubits to represent the same data. Even more
compact is the representation of data in AMPLITUDE ENCODING

for which only ⌈ log n⌉ qubits are needed. However, for an
arbitrary data set, the last three encodings of Table 1 cannot
be realised efficiently; that is in a constant or logarithmic
number of parallel operations. While BASIS ENCODING and
ANGLE ENCODING are not efficient in terms of required
qubits, they can be realised in constant time (one single parallel
operation). Further details and consequences of the encod-
ings listed in Table 1 can be found in the corresponding
patterns.

Alias:QubitEncoding [34], (Tensor)ProductEncoding [35].
Context: An algorithm requires an efficient encoding

schema to be able to perform as many operations as possible
within the decoherence time after the data has been loaded.
Solution: First, normalise all data‐points that should be

encoded to the interval
h
0; π2
i

[34]. Each value xi is then
represented by a single qubit as follows (Figure 5): a rota-
tion around the y‐axis of the Bloch Sphere (refer to Figure 2) is
applied. Hereby, the angle for the rotation depends on the data
value (see Section 2.3 for a more detailed description of the
operation).
Result: The resulting quantum state for this encoding is

separable, that is, the qubits are not entangled:

jψ〉à
✓
cosx0
sinx0

◆
⊗
✓
cosx1
sinx1

◆
⊗ … ⊗

✓
cosxn
sinxn

◆
Ö4Ü

The main advantage of this encoding is that it is very
efficient in terms of operations: Only a constant number of
parallel operations is needed regardless of how many data
values need to be encoded [34]. However, the number of data
values affects how many qubits are needed: One qubit is
required to encode one component of the input vector. Thus,
as only single‐qubit rotations are required the state preparation
is efficient while the number of qubits for this encoding is not
optimal [36].
Related Patterns: This pattern further refines STATE

PREPARATION.

Variants: The authors in [34] present dense angle encoding
as an alternative encoding that exploits an additional property
of qubits (relative phase) to use only n2 qubits to encode n data
points.
Known Uses: The authors in [34, 36] present a classifier

based on this encoding. The encoding is also used in quantum
image processing: In the so‐called flexible representation of a
quantum image, one qubit represents the colour information
of a pixel, whereas another register represents the position
[37]. In the context of quantum neural networks, a qubit using
this encoding has been referred to as a quantum neuron
(quron) [38]. PennyLane provides a state preparation method
for angle encoding [39] for which the axis of the rotation can
be specified (x, y, or z). If no loading routine is provided, this
encoding can be prepared with standard qubit rotations in a
straightforward manner [35].

Context: An algorithm requires random access to the data
values of the input.
Solution: A classical RAM that receives an address with a

memory index, loads the data stored at this address into an
output register. Quantum random access memory provides the
same functionality, but the address and output register
are quantum registers [8]. As a result, both the address and the
output register can be in a superposition of multiple values.
Figure 6 illustrates the basic functionality of a QRAM [26] that
receives a superposition of the first two addresses✓

1ÅÅ
2
p j00〉á 1ÅÅ

2
p j01〉

◆
as input and loads the corresponding

data values into an empty output register. This leads to the
following state of the overall quantum system:

jψ〉à 1ÅÅÅ
2
p j00〉j000〉á 1ÅÅÅ

2
p j01〉j110〉 Ö5Ü

In general, loading m of n data values with a QRAM can,
therefore, be described as the following operation [9]:

F I GURE 5 Quantum circuit for loading data in ANGLE ENCODING

based on Leymann and Barzen [35]

F I GURE 6 Basic functionality of a quantum random access memory
(QRAM) is based on [8]. Given an address register that is in a superposition
of addresses Öj00〉 and j01〉Ü, QRAM creates a superposition of addresses
and their data values: 1ÅÅ

2
p j00〉j000〉 á 1ÅÅ

2
p j01〉j110〉
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Qsample encoding

• Qsample encoding is a hybrid case of basis and amplitude encoding. Qsample associates a real 
amplitude vector with classical discrete probability distributions. We use amplitude, but at the 
same time, all features are encoded in the qubit.

• Assume there is a pmf random variable X as Pr(X=i). Any discrete random variable could be 
represented like it just by indexing the events. For them, we can define qubit state & ⟩𝜓 =
∑#$%& 𝑝#| ⟩𝑖 . 

• For states of two random variables | ⟩𝑥 = ∑#$%'! 𝑃𝑟 𝑥 = 𝑖 | ⟩𝑖  and | ⟩𝑦 = ∑($%'! 𝑃𝑟 𝑦 = 𝑗 | ⟩𝑗 . 
Then, the joint state of both is | ⟩𝑥, 𝑦 = ∑#,($%'! 𝑃𝑟 𝑥 = 𝑖 𝑃𝑟 𝑦 = 𝑗 4 ⟩𝑖 | ⟩𝑗

22



Hamiltonian encoding

• Hamiltonian encoding method encodes the data into the operator. To make some matrix A to 
Hamiltonian, we have to make it Hermitian first. Because the definition of Hermitian is 𝐻 = 𝐻∗, 
we can make it by 𝐻 = 𝐴∗𝐴. Then to make it as a unitary matrix, we can use a matrix exponential 
as 𝑒+#,-. Then, we can develop a unitary evolution as follows,

𝑒#,- = 𝑒# ./01/23/45 - = 𝑒#.-𝑒#0-1𝑒#2-3𝑒#4-5 = 𝑅! 𝛽𝑡 𝑅" 𝛿𝑡 𝑅6 𝛾𝑡 .
• Note that for any unitary matrix A, there is a real vector 𝛼, 𝛽, 𝛿, 𝛾  such that 𝐴 = (

)
𝛼 + 𝛽𝑋 +

𝛿𝑌 + 𝛾𝑍 .
• However, in reality, the above relation is not estabilished because the commutative condition for 

matrices does not hold 𝐴𝐵 ≠ 𝐵𝐴 𝑒,/7 ≠ 𝑒,𝑒7 .
• We can overcome this by using the Trotter Suzuki formula

 For large enough r, the following equation holds 𝑒+# 8"/8# ≈ 𝑒+#8$ ⁄% &𝑒+#8' ⁄% &
:

• That is, we can implement some hamiltonian unitary matrices by finding the rotating magnitudes 
and rotation the state with them gradually.
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Summary

Manuela Weigold et al., Encoding patterns for quantum algorithms, IET Quantum 
communication, Vol. 2, Issue 4 (2021)

measurement pattern. An excerpt of all patterns can also be
found online at Quantum Computing Patterns3.

3.1 | Method

Patterns are abstracted from existing solutions [14]. The pat-
terns presented here and in previous publications [13, 31] were
identified using the pattern authoring process of Fehling et al.
[19], which we also describe in [13]. First, we analysed scientific
publications, books, and technical documentation to collect re‐
occurring solutions. If we found at least three occurrences
(Coplien's rule [32]) of a pattern candidate, we authored a
pattern. For loading data, a proven solution is a specific data
encoding used in various quantum algorithms. Note that given
the current state of the art of quantum computing, we do not
require a concrete implementation. Instead, we focus on
authoring patterns for writing and understanding quantum
algorithms. However, in future work, the patterns should be
validated further in real applications.

3.2 | Pattern format

Depending on the domain, pattern authors use different for-
mats for their patterns. Here, we use the pattern format of our
previous work [13] that was based on the existing format of
Fehling et al. [33]. Each pattern is introduced by a Name and
an Icon that serves as a graphical representation of the pattern.
Next to the icon, we denote the Intent that briefly summarises
the purpose of the pattern. If the pattern is also known under
different names, these are listed as an Alias. Then, the problem
and the circumstances of the pattern are described in the
Context section before the Forces are presented. The forces are
trade‐offs or considerations that must be taken into account
for solving the problem. The Solution itself is described in an
abstract manner and often visualised by a Solution Sketch.
Consequences of the solution are described as the Result of
the solutions. This is followed by an optional section for
Variants of the pattern. As patterns are often applied in
combination or solve similar problems, we describe the con-
nections between them in the Related Patterns section. Finally,
we list Known Uses of the pattern. For encoding patterns,
algorithms that use the encoding and state preparation
methods are listed here. Additionally, concrete implementa-
tions of these algorithms can also be referred to in this section.

3.3 | Data encoding and state preparation
patterns

Data encodings for quantum computing define how data is
represented by the state of a quantum system. Data encoding

patterns (of which an overview is given in Table 1) describe a
particular encoding as a trade‐off between three major forces:

(i) The number of qubits needed for the encoding should be
minimal because current devices are of intermediate size
and thus only contain a limited number of qubits.

(ii) The number of parallel operations needed to realise the
encoding should be minimal to minimise the width of the
quantum circuit—ideally, the loading routine is of con-
stant or logarithmic complexity

(iii) The data must be represented in a suitable manner for
further calculations, for example, arithmetic operations.

Each of these patterns further refines STATE PREPARATION,
a pattern of previous work [31] that describes the first phase at
the beginning of an algorithm (see Figure 4). Each encoding
pattern introduces or references a suitable state preparation
method. As an alternative, a state preparation method for
preparing an arbitrary quantum state can be used. The SCHMIDT

DECOMPOSITION pattern describes one general approach for
creating an arbitrary quantum state.

Table 1 gives an overview of the data encoding patterns
presented in this work (marked in bold) as well as previous [13]
encoding patterns. While the encodings of the first two pat-
terns define how a single numerical data‐point xi is encoded,
the three other patterns describe how a set X of n data‐points
can be represented. The representation of data in BASIS

ENCODING is also part of two other encodings (QUAM and
QRAM ENCODING). Therefore, we explain this pattern in more
detail before we present the patterns ANGLE ENCODING,
QRAM ENCODING, and SCHMIDT DECOMPOSITION in detail.
Since we listed forces for data encoding patterns above, we
omit them in the descriptions of ANGLE and QRAM ENCOD-

ING. For a BASIS ENCODING of a numerical data‐point, its value
is first approximated by its binary representation. The resulting
bitstring bm…b−k is then encoded by the |bm…b−k〉 state.
Therefore, every bit of its bitstring is represented by a single
qubit. Thus, BASIS ENCODING is not efficient in terms of the
required number of qubits. In comparison, QUAM ENCODING

TABLE 1 Comparison of data encoding patterns. For the QUANTUM

RANDOM ACCESS MEMORY (QRAM) ENCODING, we assume that all n data
points are loaded

3
https://quantumcomputingpatterns.org/
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Appendix : Circuit for encoding 
(Pennylane API)
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Basis encoding

26

Apply pauli-X for “1”



Basis encoding
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Amplitude encoding

28
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