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Abstract. In this paper, we review a double quantum dot each dot of which is tunnel-
coupled to superconducting leads. In the Coulomb blockade regime, a spin-dependent
Josephson coupling between two superconductors is induced, as well as an antiferro-
magnetic Heisenberg exchange coupling between the spins on the double dot which can
be tuned by the superconducting phase difference. We show that the correlated spin
states—singlet or triplets—on the double dot can be probed via the Josephson current
in a dc-SQUID setup. We also briefly review the Andreev entangler, a non-equilibrium
setup that provides a source of pairwise entangled electrons.

1 Introduction

In recent years, electronic transport through strongly interacting mesoscopic
systems has been the focus of many investigations [1]. In particular, a single
quantum dot coupled via tunnel junctions to two non-interacting leads has pro-
vided a prototype model to study Coulomb blockade effects and resonant tun-
neling in such systems. These studies that started in the 1960’s [2] have been
extended to an Anderson impurity [3] or a quantum dot coupled to supercon-
ductors [4,5,6]. In a number of experimental [4] and theoretical [5] papers, the
spectroscopic properties of a quantum dot coupled to two superconductors have
been studied. Further, an effective dc Josephson effect through strongly inter-
acting regions between superconducting leads has been analyzed [7,8,9,10]. More
recently, on the other hand, research on the possibility to control and detect the
spin of electrons through their charges has started. In particular in semiconduct-
ing nanostructures, it was found that the direct coupling of two quantum dots
by a tunnel junction can be used to create entanglement between spins [11], and
that such spin correlations can be observed in charge transport experiments [12].

Motivated by these studies we have proposed a new scenario for inducing and
detecting spin correlations, viz., coupling a double quantum dot (DD) to super-
conducting leads by tunnel junctions [13]. It turns out that this connection via a
superconductor induces a Heisenberg exchange coupling between the two spins
on the DD. Moreover, if the DD is arranged between two superconductors, we
obtain a Josephson junction (S-DD-S). The resulting Josephson current depends
on the spin state of the DD and can be used to probe the spin correlations on the
DD [13]. We have also pointed out that such a Josephson junction can be used
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in principle to distinguish singlet and triplet superconductors. Finally, a double
quantum dot connected to a superconductor and to two leads has been proposed
as an Andreev entangler, i.e., a device that allows the injection of spin-entangled
electrons into two leads [14].

2 One Quantum Dot

As a warm-up, we would like to discuss a single quantum dot coupled to two
superconducting leads (for a more detailed treatment see [3]). The geometry of
the system is shown in Fig. 1.
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Fig. 1. Left panel: sketch of the superconductor-quantum dot-superconductor (S-D-
S) nanostructure. Right panel: schematic representation of the quasiparticle energy
spectrum in the superconductors and the energy levels of the quantum dot

The leads are assumed to be conventional singlet superconductors that are
described by the BCS Hamiltonian

HS =
∑

j=L,R

∫
Ωj

dr
Ωj

{ ∑
σ=↑,↓

ψ†
σ(r)h(r)ψσ(r) +∆j(r)ψ

†
↑(r)ψ

†
↓(r) + h.c.

}
, (1)

where Ωj is the volume of lead j, h(r) = (−i�∇ + e
cA)2/2m − µ, and ∆j(r) =

∆je
−iφj(r) is the pair potential. For simplicity, we assume identical leads with

same chemical potential µ, and ∆L = ∆R = ∆. The quantum dot is modeled
as a localized level ε with strong on-site Coulomb repulsion U , described by the
Hamiltonian

HD = −ε
∑
σ

d†
nσdnσ + Ud†

n↑dn↑d
†
n↓dn↓ , (2)

where ε > 0. U is typically given by the charging energy of the dot, and we have
assumed that the level spacing of the dot is ∼ U (which is the case for small
GaAs dots [1]), so that we need to retain only one energy level in HD. Finally,
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the dot is coupled (see Fig. 1) to the superconducting leads, described by the
tunneling Hamiltonian

HT =
∑
j,σ

[
t exp(−i π

Φ0

∫ rj

r
dl ·A)ψ†

σ(rj)dσ + h.c.

]
, (3)

where rj is the point on the lead j closest to the dot. Here, Φ0 = hc/2e is the
superconducting flux quantum.

Since the low-energy states of the whole system are well separated by the
superconducting gap∆ as well as the strong Coulomb repulsion U (∆, ε� U−ε),
it is sufficient to consider an effective Hamiltonian on the reduced Hilbert space
consisting of singly occupied levels of the dot and the BCS ground states on the
leads. To lowest order in HT , the effective Hamiltonian is given by [15]

Heff = P HT

[
(E0 −H0)−1(1− P )HT

]3
P , (4)

where P is the projection operator onto the subspace and E0 is the ground-state
energy of the unperturbed HamiltonianH0. (The second-order contribution leads
to an irrelevant constant). The lowest-order expansion (4) is valid in the limit
Γ � ∆, ε where Γ = πt2N(0) and N(0) is the normal-state density of states per
spin of the leads at the Fermi energy. Thus, we assume that Γ � ∆, ε� U − ε,
and temperatures which are less than ε (but larger than the Kondo temperature).

The explicit calculation of Heff is a special case of the double-dot situation
considered in the next section and is outlined in Appendix B. The result is

Heff =
J0
2
cos(φ) , (5)

where φ is the phase difference between the two superconductors and J0 is a
positive constant given in Eq. (8). In other words, a quantum dot tunnel-coupled
to two superconductors is a π-junction, the sign of the the Josephson coupling
energy is opposite to that of a simple tunnel junction [2,3].

3 Two Quantum Dots

Now we would like to consider the double-dot (DD) system sketched in Fig. 2:
Two quantum dots (a,b), each of which contains one (excess) electron and is
connected to two superconducting leads (L,R) by tunnel junctions (indicated by
dashed lines). Another realization would be atomic impurities embedded between
the grains of a granular superconductor. There is no direct coupling between
the two dots. The Hamiltonian describing this system consists of three parts,
HS + HDD + HT ≡ H0 + HT . The two quantum dots are modeled as two
localized levels εa and εb with strong on-site Coulomb repulsion U , described by
the Hamiltonian

HD =
∑

n=a,b

[
−ε
∑
σ

d†
nσdnσ + Ud†

n↑dn↑d
†
n↓dn↓

]
, (6)
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Fig. 2. Left panel: sketch of the superconductor-double quantum dot-superconductor
(S-DD-S) nanostructure. Right panel: schematic representation of the quasiparticle en-
ergy spectrum in the superconductors and the single-electron levels of the two quantum
dots

where we put εa = εb = −ε (ε > 0) for simplicity. As before, we retain only one
energy level per dot in HDD. Finally, the DD is coupled in parallel (see Fig. 2)
to the superconducting leads, described by the tunneling Hamiltonian

HT =
∑
j,n,σ

[
t exp(−i π

Φ0

∫ rj,n

rn

dl ·A)ψ†
σ(rj,n)dnσ + h.c.

]
, (7)

where rj,n is the point on the lead j closest to the dot n. Unless mentioned
otherwise, it will be assumed that rL,a = rL,b = rL and rR,a = rR,b = rR.

Proceeding as before, we calculate the effective Hamiltonian of the system to
fourth order in HT .

There are a number of virtual hopping processes that contribute to the effec-
tive Hamiltonian (4), see Fig. 3 for a partial listing and Fig. 5 for a full listing of
them. Collecting these various processes, one can get the effective Hamiltonian
in terms of the gauge-invariant phase differences φ and ϕ between the supercon-
ducting leads and the spin operators Sa and Sb of the dots (up to a constant
and with � = 1)

Heff = J0 cos(πfAB) cos(φ− πfAB)
+ [(2J0 + J)(1 + cosϕ) + 2J1(1 + cosπfAB)] [Sa · Sb − 1/4] . (8)

Here fAB = ΦAB/Φ0 and ΦAB is the Aharonov-Bohm (AB) flux threading
through the closed loop indicated by the dashed lines in Fig. 2. One should
be careful to define gauge-invariant phase differences φ and ϕ in (8). The phase
difference φ is defined as usual [16] by

φ = φL(rL)− φR(rR)− 2π
Φ0

∫ rL

rR

dJa ·A , (9)
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Fig. 3. Partial listing of virtual tunneling processes contributing to Heff , Eq. (4). The
numbered arrows indicate the direction and the order of occurrence of the charge
transfers. Processes of type (a) and (b) give a contribution proportional to J0, whereas
those of type (c) and (d) give contributions proportional to J . For the complete list,
see Fig. 5 in Appendix A

where the integration from rR to rL runs via dot a (see Fig. 2). The second
phase difference, ϕ, is defined by

ϕ = φL(rL)− φR(rR)− π

Φ0

∫ rL

rR

(dJa + dJb) ·A . (10)

The distinction between φ and ϕ, however, is not significant unless one is inter-
ested in the effects of an AB flux through the closed loop in Fig. 2 (see Ref. [12]
for an example of such effects). The coupling constants appearing in (8) are
defined by

J =
2Γ 2

ε

[
1
π

∫
dx

f(x)g(x)

]2
J0 =

Γ 2

∆

∫
dxdy

π2
1

f(x)f(y)[f(x) + f(y)]g(x)g(y)
(11)

J1 =
Γ 2

∆

∫
dxdy

π2
g(x)[f(x) + f(y)]− 2ζg(y)

g(x)2g(y)[g(x) + g(y)][f(x) + f(y)]
,

where ζ = ε/∆, f(x) =
√
1 + x2, and g(x) =

√
1 + x2 + ζ.
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A remarkable feature of Eq. (8) is that a Heisenberg exchange coupling be-
tween the spin on dot a and on dot b is induced by the superconductor. This cou-
pling is antiferromagnetic (all J ’s are positive) and thus favors a singlet ground
state of spin a and b. This in turn is a direct consequence of the assumed singlet
nature of the Cooper pairs in the superconductor (this is discussed further in
the next section). As discussed below, an immediate observable consequence of
Heff is a spin-dependent Josephson current from the left to right superconducting
lead (see Fig. 2) which probes the correlated spin state on the DD.

The various terms in (8) have different magnitudes. In particular, the pro-
cesses leading to the J1 term involve quasiparticles only as can be seen from its
AB-flux dependence which has period 2Φ0. In the limits we will consider below,
this J1 term is small and can be neglected.

In the limit ζ � 1, the main contributions come from processes of the type
depicted in Fig. 3 (a) and (b), making J0 ≈ 0.1(Γ 2/ζε) ln ζ dominant over J and
J1. Thus, Eq. (8) can be reduced to

Heff ≈ J0 cos(πfAB) cos(φ− πfAB) + 2J0(1 + cosϕ)
[
Sa · Sb − 1

4

]
, (12)

up to order (ln ζ)/ζ. As can be seen in Fig. 3 (a), the first term in Eq. (12) has the
same origin as that in the single-dot case [3]: Each dot separately constitutes
an effective Josephson junction with coupling energy −J0/2 (i.e. π-junction)
between the two superconductors. The two resulting junctions form a dc SQUID,
leading to the total Josephson coupling in the first term of (12). The Josephson
coupling in the second term in (12), corresponding to processes of type Fig. 3
(b), depends on the correlated spin states on the double dot: For the singlet
state, it gives an ordinary Josephson junction with coupling 2J0 and competes
with the first term, whereas it vanishes for the triplet states. Although the limit
∆ � ε � U − ε is not easy to achieve with present-day technology, such a
regime is relevant, say, for two atomic impurities embedded between the grains
of a granular superconductor.

More interesting and experimentally feasible is the case ζ � 1. In this regime,
the effective Hamiltonian (8) is dominated by a single term (up to terms of order
ζ),

Heff ≈ J(1 + cosϕ)
[
Sa · Sb − 1

4

]
, (13)

with J ≈ 2Γ 2/ε. The processes of type Fig. 3 (b) and (c) give rise to (13). Below
we will propose an experimental setup based on (13).

Before proceeding, we digress briefly on the dependence of J on the contact
points. Unlike the processes of type Fig. 3 (a), those of types Fig. 3 (b), (c), and
(d) depend on δrL = |rL,a − rL,b| and δrR = |rR,a − rR,b|, see the remark below
Eq. (7). For the tunneling Hamiltonian (7), one gets (putting δr = δrL = δrR)

J(δr) =
8t4

ε

∣∣∣∣∫ ∞

0

dω

2π
FR(δr, ω)− FA(δr, ω)

ω + ε

∣∣∣∣2 , (14)
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where FR/A(r, ω) is the Fourier transform of the Green’s function in the super-
conductors, FR/A(r, t) = ∓iΘ(±t)〈{ψ↑(r, t), ψ↓(0, 0)}〉. We note that the phase
difference ϕ in (8) should now be defined with respect to the phase φj(rj,a, rj,b)
of the function FR

j (rj,a, rj,b)−FA
j (rj,a, rj,b) on the lead j, see the definition below

(8). In the limit ε� ∆� µ, we find J(δr) ≈ J(0)e−2δr/ξ sin2(kF δr)/(kF δr)2 up
to order 1/kF ξ, with kF the Fermi wave vector in the leads. Hence, the exchange
coupling constant is exponentially suppressed if δr exceeds the superconducting
coherence length ξ, and there is an additional suppression factor 1/(kF δr)2.

4 Probing the Pairing Symmetry
of the Superconducting Leads

In the previous section, the superconducting leads were assumed to be conven-
tional BCS superconductors. The discovery of unconventional superconductivity
in the heavy-fermion superconductor UPt3 as well as the high-temperature su-
perconductor YBa2Cu3O7 has given a new impetus to the theoretical study of
unconventional superconductors. These systems are characterized by an order
parameter that is different from the symmetry of the underlying lattice. The
order parameter has a nontrivial structure in k-space, usually accompanied by
points or lines of zeroes in the gap. Also, the pairing symmetry in spin space that
is of singlet type in conventional BCS superconductors can be of triplet type.
This behavior is well-known from the p-wave triplet superfluid 3He [17]. Recently,
there has been strong evidence that Sr2RuO4 is a p-wave triplet superconductor
[18].

If, in the previous section, we had assumed leads consisting of unconventional
superconductors with triplet pairing, we would find a ferromagnetic exchange
coupling favoring a triplet ground state of spin a and b on the DD. Thus, by
probing the spin ground state of the dots (e.g. via its magnetic moment) we
would have a means to distinguish singlet from triplet pairing. The magnetization
could be made sufficiently large by extending the scheme from two to N dots or
impurities coupled to the superconductor.

5 Probing Spins with a dc-SQUID

We now propose a possible experimental setup to probe the correlations (entan-
glement) of the spins on the dots, based on the effective model (13). According
to (13) the S-DD-S structure can be regarded as a spin-dependent Josephson
junction. Moreover, this structure can be connected with an ordinary Josephson
junction to form a dc-SQUID-like geometry, see Fig. 4. The Hamiltonian of the
entire system is then given by

H = J [1 + cos(θ − 2πf)]
(
Sa · Sb − 1

4

)
+ αJ(1− cos θ) , (15)

where f = Φ/Φ0, Φ is the flux threading the SQUID loop, θ is the gauge-invariant
phase difference across the auxiliary junction (J ′), and α = J ′/J with J ′ being
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the Josephson coupling energy of the auxiliary junction. Without restriction we
can assume α > 1, since J ′ could be adjusted accordingly by replacing the J ′-
junction by another dc SQUID and flux through it. One immediate consequence
of Eq. (15) is that at zero temperature, we can effectively turn on and off the
spin exchange interaction: For half-integer flux (f = 1/2), singlet and triplet
states are degenerate at θ = 0. Even at finite temperatures, where θ is subject
to thermal fluctuations, singlet and triplet states are almost degenerate around
θ = 0. On the other hand, for integer flux (f = 0), the energy of the singlet state
is lower by J than that of the triplet states.

0

�sw

3V1=4

t

�spin

f = 1=2 f = 0

(V0 + 3V1)=4

V

I
�

J 0

J

I

V

f

(b)(a)

Fig. 4. (a) dc-SQUID-like geometry consisting of the S-DD-S structure (filled dots at
the top) connected in parallel with another ordinary Josephson junction (cross at the
bottom). (b) Schematic representation of dc voltage V vs. time when probing the spin
correlations of the DD. The flux through the SQUID loop is switched from f = 1/2 to
f = 0 at t = 0. Solid line: τsw < τspin . Dashed line: τsw > τspin

This observation allows us to probe directly the spin state on the double
dot via a Josephson current across the dc-SQUID-like structure in Fig. 4. The
supercurrent through the SQUID-ring is defined as IS = (2πc/Φ0)∂〈H〉/∂θ,
where the brackets refer to a spin expectation value on the DD. Thus, depending
on the spin state on the DD we find

IS/IJ =
{
sin(θ − 2πf) + α sin θ (singlet)
α sin θ (triplets) , (16)

where IJ = 2eJ/�. When the system is biased by a dc current I larger than the
spin- and flux-dependent critical current, given by maxθ{|IS |}, a finite voltage
V appears. Then one possible experimental procedure might be as follows (see
Fig. 4b). Apply a dc bias current such that αIJ < I < (α + 1)IJ . Here, αIJ
is the critical current of the triplet states, and (α + 1)IJ the critical current of
the singlet state at f = 0, see (16). Initially prepare the system in an equal
mixture of singlet and triplet states by tuning the flux around f = 1/2. (With
electron g-factors g ∼ 0.5–20 the Zeeman splitting on the dots is usually small
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compared with kBT and can thus be ignored.) The dc voltage measured in this
mixture will be given by (V0 + 3V1)/4, where V0(V1) ∼ 2∆/e is the (current-
dependent) voltage drop associated with the singlet (triplet) states. At a later
time t = 0, the flux is switched off (i.e. f = 0), with I being kept fixed. The
ensuing time evolution of the system is characterized by three time scales: the
time τcoh ∼ max{1/∆, 1/Γ} ∼ 1/Γ it takes to establish coherence in the S-DD-
S junction, the spin relaxation time τspin on the dot, and the switching time
τsw to reach f = 0. We will assume τcoh � τspin , τsw , which is not unrealistic
in view of measured spin decoherence times in GaAs exceeding 100ns [19]. If
τsw < τspin , the voltage is given by 3V1/4 for times less than τspin , i.e. the
singlet no longer contributes to the voltage. For t > τspin the spins have relaxed
to their ground (singlet) state, and the voltage vanishes. One therefore expects
steps in the voltage versus time (solid curve in Fig. 4b). If τspin < τsw , a broad
transition region of the voltage from the initial value to 0 will occur (dashed line
in Fig. 4b).

Another experimental setup would be to use an rf-SQUID geometry, i.e.,
to embed the S-DD-S structure into a superconducting ring [16]. However, to
operate such a device, ac fields are necessary, and the sensitivity is not as good
as for the dc-SQUID geometry.

To our knowledge, there are no experimental reports on quantum dots cou-
pled to superconductors. However, hybrid systems consisting of superconductors
(e.g., Al or Nb) and 2DES (InAs and GaAs) have been investigated by a num-
ber of groups [20]. Taking the parameters of those materials, a rough estimate
leads to a coupling energy J in Eqs. (13) or (15) of about J ∼ 0.05–0.5K. This
corresponds to a critical current scale of IJ ∼ 5–50nA.

6 Andreev Entangler

Up to now, we have considered equilibrium phenomena. Recently, a system con-
sisting of a double quantum dot coupled to a superconductor on one side and
to separate leads on the other side has been proposed as a source of entangled
electrons [14]. This entangler is a non-equilibrium device that can create pairwise
spin-entangled electrons and provide coherent injection by an Andreev process
into different dots which are tunnel-coupled to leads, leading to a current

I1 =
4eγ2S
γ

[
sin(kF δr)
kF δr

]2
exp {−2δr

πξ
} . (17)

Here, γS is the tunneling rate between the superconductor and the dots, γ
the tunneling rate between the dots and the leads, and δr was defined around
Eq. (14).

The unwanted process of both electrons tunneling into the same leads can
be suppressed by increasing the Coulomb repulsion on the quantum dot, and its
current is given by

I2 =
2eγ2Sγ
E2 ,

1
E =

1
π∆

+
1
U
. (18)
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These relations are valid if ∆,U > ∆µ > γ, kBT, and γ > γS , where ∆µ
is the bias voltage between the superconductor and the leads. Also, the single-
particle level spacing of both dots is assumed to be larger than ∆µ.

The ratio of currents of these two competing processes is given by

I1
I2

=
2E2
γ2

[
sin(kF δr)
kF δr

]2
exp{−2δr

πξ
} . (19)

From this ratio we see that the desired regime with I1 dominating I2 is obtained
when E/γ > kF δr, and δr < ξ. We would like to emphasize that the relative
suppression of I2 (as well as the absolute value of the current I1) is maximized
by working around the resonances εl ! µS = 0. It was shown that there exists a
regime of experimental interest where the entangled current shows a resonance
and assumes a finite value with both partners of the singlet being in different
leads but having the same orbital energy. This entangler then satisfies the nec-
essary requirements needed to detect the spin entanglement via transport and
noise measurements [12].

Another effect discussed in [14] are flux-dependent oscillations of the current
in an Aharonov-Bohm loop. For this let us consider now a setup where the
two leads 1 and 2 are connected such that they form an Aharonov-Bohm loop,
where the electrons are injected from the left via the superconductor, traversing
the upper (lead 1) and lower (lead 2) arm of the loop before they rejoin to
interfere and then exit into the same lead, where the current is then measured
as a function of varying flux Φ. It is straightforward to analyze this setup. The
total flux-dependent Aharonov-Bohm current IAB is found to be [14]

IAB =
√
8I1I2F (εl) cos (Φ/2Φ0) + I2 cos (Φ/Φ0) , (20)

F (εl) =
εl√

ε2l + (γL/2)2
, (21)

where, for simplicity, we have assumed that ε1 = ε2 = εl, and γ1 = γ2 = γL.
Here, the first term (different leads) is periodic in 2Φ0 = h/e like for single-
electron Aharonov-Bohm interference effects, while the second one (same leads)
is periodic in the superconducting flux quantum Φ0, describing thus the interfer-
ence of two coherent electrons (similar single- and two-particle Aharonov-Bohm
effects occur in the Josephson current through an Aharonov-Bohm loop, see
the previous sections and [13]). It is clear from Eq. (20) that the h/e oscilla-
tion comes from the interference between a contribution where the two electrons
travel through different arms with contributions where the two electrons travel
through the same arm. Both Aharonov-Bohm oscillations with period h/e, and
h/2e, vanish with decreasing I2, i.e. with increasing on-site repulsion U and/or
gap ∆. However, their relative weight is given by

√
I1/I2, implying that the

h/2e oscillations vanish faster than the h/e ones. This behavior is quite remark-
able since it opens up the possibility to tune down the unwanted leakage process
∼ I2 cos (Φ/Φ0) where two electrons proceed via the same dot/lead by increasing
U with a gate voltage applied to the dots. The dominant current contribution
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with period h/e comes then from the desired entangled electrons proceeding via
different leads. On the other hand, if

√
I1/I2 < 1, which could become the case

e.g. for kF δr > E/γ, we are left with h/2e oscillations only. Note that dephasing
processes which affect the orbital part suppress IAB . Still, the flux-independent
current I1 + I2 can remain finite and contain electrons which are entangled in
spin-space, provided that there is only negligible spin-orbit coupling so that the
spin is still a good quantum number.

In conclusion, we have reviewed double quantum dots each dot of which is
coupled to superconductors. We have found that in the Coulomb blockade regime
the Josephson current from one superconducting lead to the other is different for
singlet or triplet states on the double dot. This leads to the possibility to probe
the spin states of the dot electrons by measuring a Josephson current. We have
discussed the possibility to use a Josephson junction of this type to distinguish
between singlet and triplet superconductors. And finally, we have briefly reviewed
a non-equilibrium device: the recently proposed Andreev entangler, a source of
entangled electrons.

We would like to thank the Swiss National Science Foundation for support.

Appendix A

In this appendix, we would like to enumerate the processes contributing to the
effective Hamiltonian, Eq. (4). They are depicted in Fig. 5 and have labels A1,
B1, B2, ... E2.

Each process can be calculated in a straightforward way; as examples, we
give the explicit calculations for A1 and C1 in the following two appendices.
Adding up all of these terms, we get

Heff = J0 cos(πf) cosφ Class A1

− Y1 Class B1

− (X1 + Y2) Class B2

+ J cosφ [Sa · Sb − 1/4] Class C1

+ 2J0 cosφ [Sa · Sb − 1/4] Class C2

− 2Y1 cos(πf) [Sa · Sb + 1/4] Class D1

+ 2(X1 + Y2) cos(πf) [Sa · Sb + 1/4] Class D2

+ (J + 2X1 + 2Y2) [Sa · Sb − 1/4] Class E1

+ 2J0[Sa · Sb − 1/4]− 2Y1[Sa · Sb + 1/4] Class E2
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Fig. 5. Processes contributing to the effective Hamiltonian, Eq. (4)

which, after simplification, can be written in the following form:

Heff = J0 cos(πf) cos(ϕ− πf)
+ 2J0(1 + cosφ) [Sa · Sb − 1/4]
+ 2J1[1 + cos(πf)] [Sa · Sb − 1/4]
+ J(1 + cosφ) [Sa · Sb − 1/4]
+ J1[cos(πf)− 1]− 3Y1 .

(22)
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The coupling constants in these expressions are given by

J0 =
Γ 2

∆

∫∫
dxdy

π2
1

f(x)f(y)[f(x) + f(y)]g(x)g(y)
(23)

J1 = X1 −X2 (24)

J =
2Γ 2

ε

[
1
π

∫
dx

f(x)g(x)

]2
(25)

X1 =
Γ 2

∆

∫∫
dxdy

π2
1

g(x)g(y)[g(x) + g(y)]
(26)

X2 =
Γ 2

∆

∫∫
dxdy

π2
2ε/∆

g2(x)[f(x) + f(y)][g(x) + g(y)]
≡ Y1 − Y2 (27)

Y1 =
Γ 2

∆

∫∫
dxdy

π2
1

[f(x) + f(y)]g2(x)
(28)

Y2 =
Γ 2

∆

∫∫
dxdy

π2
1

g2(x)[g(x) + g(y)]
(29)

f(x) ≡
√
1 + x2 , g(x) ≡

√
1 + x2 + ε/∆ . (30)

They can be derived as follows:

J0 = 4t4
∑
k∈L

∑
q∈R

|ukv∗
ku

∗
qvq|

(Ek + ε)(Eq + ε)(Ek + Eq)

= t4
∑
kq

|∆L∆R|
EkEq(Ek + Eq)(Ek + ε)(Eq + ε)

(31)

J1 = X1 −X2 (32)

J = 8
t4

ε

∣∣∣∣∣
∑
k

ukv
∗
k

Ek + ε

∣∣∣∣∣
2

=
2t4

ε

∣∣∣∣∣
∑
k

∆∗

Ek(Ek + ε)

∣∣∣∣∣
2

(33)

X1 = 4t4
∑
kq

|uk|2|uq|2
(Ek + ε)(Eq + ε)(Ek + Eq + 2ε)

= t4
∑
kq

(Ek + ξk)(Eq + ξq)
EkEq(Ek + ε)(Eq + ε)(Ek + Eq + 2ε)

(34)

X2 = Y1 − Y2 = 4t2
∑
kq

2ε|uk|2|vk|2
(Ek + ε)2(Ek + Eq)(Ek + Eq + 2ε)

(35)

Y1 = 4t4
∑
kp

|uk|2|vp|2
(Ek + ε)2(Ek + Eq)

= t4
∑
kp

(Ek + ξk)(Ep − ξp)
EkEp(Ek + Eq)(Ek + ε)2

(36)
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Y2 = 4t4
∑
kq

|uk|2|uq|2
(Ek + ε)2(Ek + Eq + 2ε)

= t4
∑
kq

(Ek + ξk)(Eq + ξq)
EkEq(Ek + ε)2(Ek + Eq + 2ε)

. (37)

More explicitly, with ζ = ε/∆, we obtain

X1

|∆| =
t4

|∆|4 [N(0)|∆|]2

×
∫

dxdy (
√
1 + x2 + x)(

√
1 + y2 + y)√

1 + x2(
√
1 + x2 + |ζ|)√1 + y2(

√
1 + y2 + |ζ|)(√1 + x2 +

√
1 + y2 + |ζ|)

=
t4

|∆|4 [N(0)|∆|]2
∫

dxdy

(
√
1 + x2 + |ζ|)(√1 + y2 + |ζ|)(√1 + x2 +

√
1 + y2 + 2|ζ|)

(38)

Y2

|∆| =
t4

|∆|4 [N(0)|∆|]2

×
∫

dxdy (
√
1 + x2 + x)(

√
1 + y2 + y)√

1 + x2(
√
1 + x2 + |ζ|)2√1 + y2(

√
1 + x2 +

√
1 + y2 + |ζ|)

=
t4

|∆|4 [N(0)|∆|]2
∫

dxdy

(
√
1 + x2 + |ζ|)2(√1 + x2 +

√
1 + y2 + 2|ζ|) .

(39)

Appendix B

Here, we would like to evaluate explicitly the contribution of process A1 (see
Fig. 5) to the effective Hamiltonian.

Below, L and U denotes the lower and upper dot. The states that we consider
have the form |G;σa, σb;G〉, where σa, σb denotes the spin states of the dots and G is
the BCS ground state of the superconductors. In these calculations, we have retained
the k-dependence of the tunneling matrix elements; they are denoted e.g. tka for the
tunneling to dot a. In the end, we set tka = t.

|G; ↑, ↓;G〉 = d†
a↑d

†
b↓ |G; 0, 0;G〉

= d†
a↑d

†
b↓

∏
k

(
uk + vkc

†
k↑c

†
−k↓

) ∏
q

(
uq + vqc

†
q↑c

†
−q↓

)
|0; 0, 0; 0〉

HT−−→
∑
k

tkauk γ
†
k0da↑ d

†
a↑d

†
b↓ |G; 0, 0;G〉 =

∑
k

tkauk γ
†
k0 |G; 0, ↓;G〉

1−P
H0−−−→ +

∑
k∈L

tka
uk

Ek − ε
γ†
k0 |G; 0, ↓;G〉
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HT−−→ +
∑
q∈R

t∗qavq d
†
a↑γ

†
q1

∑
k∈L

tka
uk

Ek − ε
γ†
k0 |G; 0, ↓;G〉

−
∑
q∈R

t∗qavq d
†
a↓γ

†
q0

∑
k∈L

tka
uk

Ek − ε
γ†
k0 |G; 0, ↓;G〉

=+
∑
k∈L

∑
q∈R

tkat
∗
qa

ukvq
Ek − ε

γ†
q1γ

†
k0 d

†
a↑ |G; 0, ↓;G〉

−
∑
k∈L

∑
q∈R

tkat
∗
qa

ukvq
Ek − ε

γ†
q0γ

†
k0 d

†
a↓ |G; 0, ↓;G〉

1−P
H0−−−→ +

∑
k∈L

∑
q∈R

tkat
∗
qa

ukvq
(Ek − ε)(Ek + Eq)

γ†
q1γ

†
k0 d

†
a↑ |G; 0, ↓;G〉

−
∑
k∈L

∑
q∈R

tkat
∗
qa

ukvq
(Ek − ε)(Ek + Eq)

γ†
q0γ

†
k0 d

†
a↓ |G; 0, ↓;G〉

HT−−→ +
∑
l∈L

tlaulγ
†
l0da↑

∑
k∈L

∑
q∈R

tkat
∗
qa

ukvq
(Ek − ε)(Ek + Eq)

γ†
q1γ

†
k0 d

†
a↑ |G; 0, ↓;G〉

+
∑
l∈L

tlaulγ
†
l1da↓ (−1)

∑
k∈L

∑
q∈R

tkat
∗
qa

ukvq
(Ek − ε)(Ek + Eq)

γ†
q0γ

†
k0 d

†
a↓ |G; 0, ↓;G〉

−
∑
l∈L

tlav
∗
l γl0da↓ (−1)

∑
k∈L

∑
q∈R

tkat
∗
qa

ukvq
(Ek − ε)(Ek + Eq)

γ†
q0γ

†
k0 d

†
a↓ |G; 0, ↓;G〉

=+
∑
kl∈L

∑
q∈R

tkatlat
∗
qa

ukulvq
(Ek − ε)(Ek + Eq)

γ†
l0γ

†
q1γ

†
k0 |G; 0, ↓;G〉

−
∑
kl∈L

∑
q∈R

tkatlat
∗
qa

ukulvq
(Ek − ε)(Ek + Eq)

γ†
l1γ

†
q0γ

†
k0 |G; 0, ↓;G〉

−
∑
k∈L

∑
q∈R

t2kat
∗
qa

ukv
∗
kvq

(Ek − ε)(Ek + Eq)
γ†
q0 |G; 0, ↓;G〉 .

Here the contributions of the first and second terms will vanish because one cannot get
the final BCS ground state for the SC from these states.

1−P
H0−−−→ −

∑
k∈L

∑
q∈R

t2kat
∗
qa

ukv
∗
kvq

(Ek − ε)(Ek + Eq)(Eq − ε)
γ†
q0 |G; 0, ↓;G〉

HT−−→ + t∗qau
∗
qd

†
a↑γq0 (−1)

∑
k∈L

∑
q∈R

t2kat
∗
qa

ukv
∗
kvq

(Ek − ε)(Ek + Eq)(Eq − ε)
γ†
q0 |G; 0, ↓;G〉

= −
∑
k∈L

∑
q∈R

tkatkat
∗
qat

∗
qa

ukv
∗
ku

∗
qvq

(Ek − ε)(Ek + Eq)(Eq − ε)
|G; ↑, ↓;G〉

= − t4e−i4πf/4 ∑
k∈L

∑
q∈R

∆∗
L∆R

4Ek(Ek − ε)Eq(Eq − ε)(Ek + Eq)
|G; ↑, ↓;G〉

= − 1
4
J0e

i(φ−4πf/4) |G; ↑, ↓;G〉 .
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The path which transfers Cooper pairs from the left to the right superconductor con-
tributes the complex conjugate of the above one. On the other hand, the paths through
the upper dots have contributions with factor e+i4πf/4.

Here, it should be noticed that φ is not gauge invariant. Therefore it is useful to
rewrite

tkatkat
∗
qat

∗
qa∆

∗
L∆R = t4 exp

(
−i 2 × 2π

2Φ0

∫ L

R

d�a ·A
)
exp[i(φL − φR)] (40)

= t4 exp
[
i

(
φL − φR − 2π

Φ0

∫ L

R

d�a ·A
)]

(41)

≡ t4e+iϕa . (42)

As the result of this calculation, we obtain

H
(4)
A1

=
J0

2
[cosϕa + cosϕb] = J0 cos(πf) cos(ϕb − πf) , (43)

where

θn ≡ φL − φR − 2π
Φ0

∫ L

R

d�n ·A . (44)

It is interesting to think about the effect discussed above in the following way: Class
A1 processes describe the fact that each quantum dot forms a π-junction between the
two superconductors. We thus have two π-junctions linked in a loop as in a dc-SQUID,
through which AB flux threads. The total energy for this configuration is given by

H
(1)
A1

=
1
2
J0 cosϕ+

1
2
J0 cos(ϕ− 2πf) = J0 cos(πf) cos(ϕ− πf) . (45)

Appendix C

Here, we would like to evaluate explicitly the contribution of process C1 to the ef-
fective Hamiltonian. The hopping events labeled 1 to 4 in Fig. 5 can be combined
in a different order that have to be considered separately. We distinguish these
different “paths” by labels Pi, i = 1, 2, ... and consider the relevant possibilities.

〈G; ↑, ↓;G|H(4) |G; ↑, ↓;G〉


4 ← 3 ← 2 ← 1 : P1
3 ← 4 ← 2 ← 1 : P2
4 ← 3 ← 1 ← 2 : P3
3 ← 4 ← 1 ← 2 : P4

〈G; ↓, ↑;G|H(4) |G; ↑, ↓;G〉


4 ← 3 ← 2 ← 1 : P5
3 ← 4 ← 2 ← 1 : P6
4 ← 3 ← 1 ← 2 : P7
3 ← 4 ← 1 ← 2 : P8



62 Mahn-Soo Choi et al.

Neither the configuration |G; ↑, ↑;G〉 nor |G; ↓, ↓;G〉 can gain energy via co-
tunneling of this type.

Path P1:

|G; ↑, ↓;G〉 = d†
a↑d

†
b↓ |G; 0, 0;G〉

= d†
a↑d

†
b↓

∏
k

(
uk + vkc

†
k↑c

†
−k↓

) ∏
q

(
uq + vqc

†
q↑c

†
−q↓

)
|0; 0, 0; 0〉

HT−−→
∑
k∈L

tkauk γ
†
k0da↑ d

†
a↑d

†
b↓ |G; 0, 0;G〉 =

∑
k∈L

tkauk γ
†
k0d

†
b↓ |G; 0, 0;G〉

1−P
H0−−−→

∑
k∈L

tka
uk

Ek − ε
γ†
k0d

†
b↓ |G; 0, 0;G〉

HT−−→ +
∑
l∈L

tlbulγ
†
l1db↓

∑
k∈L

tka
uk

Ek − ε
γ†
k0d

†
b↓ |G; 0, 0;G〉

+
∑
l∈L

tlbv
∗
l γl0db↓

∑
k∈L

tka
uk

Ek − ε
γ†
k0d

†
b↓ |G; 0, 0;G〉

=+
∑
kl∈L

tkatlb
ukul
Ek − ε

γ†
k0γ

†
l1 |G; 0, 0;G〉

+
∑
k∈L

tkltlb
ukv

∗
k

Ek − ε
|G; 0, 0;G〉

1−P
H0−−−→ +

∑
kl∈L

tkatlb
ukul

(Ek − ε)(Ek + El − 2ε)
γ†
k0γ

†
l1 |G; 0, 0;G〉

+
∑
k∈L

tkatlb
ukv

∗
k

(Ek − ε)(−2ε)
|G; 0, 0;G〉 .

The first term will be projected out at the end.

HT−−→ +
∑
p∈R

t∗pbu
∗
pd

†
b↓γp1

∑
k∈L

tkatlb
ukv

∗
k

(Ek − ε)(−2ε)
|G; 0, 0;G〉

−
∑
p∈R

t∗pbvpd
†
b↓γ

†
p0

∑
k∈L

tkatlb
ukv

∗
k

(Ek − ε)(−2ε)
|G; 0, 0;G〉

=+
∑
k∈L

∑
p∈R

tkatlbt
∗
pb

ukv
∗
kvp

(Ek − ε)(−2ε)
γ†
p0 d

†
b↓ |G; 0, 0;G〉

1−P
H0−−−→ +

∑
k∈L

∑
p∈R

tkatlbt
∗
pb

ukv
∗
kvp

(Ek − ε)(−2ε)(Ep − ε)
γ†
p0 d

†
b↓ |G; 0, 0;G〉
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HT−−→ +
∑
q∈R

t∗qau
∗
qd

†
a↑γq0

∑
k∈L

∑
p∈R

tkatlbt
∗
pb

ukv
∗
kvp

(Ek − ε)(−2ε)(Ep − ε)
γ†
p0 d

†
b↓ |G; 0, 0;G〉

=+
∑
k∈L

∑
p∈R

tkatlbt
∗
pbt

∗
pa

ukv
∗
ku

∗
pvp

(Ek − ε)(−2ε)(Ep − ε)
d†
a↑d

†
b↓ |G; 0, 0;G〉

=+ t4
∑
k∈L

∑
p∈R

ukv
∗
ku

∗
pvp

(Ek − ε)(−2ε)(Ep − ε)
|G; ↑, ↓;G〉

=+
1
16
Je+iφ |G; ↑, ↓;G〉 .

The path which transfers Cooper pairs from the left to the right superconductor con-
tributes the complex conjugate of the above one.

Path P2:

|G; ↑, ↓;G〉 = d†
a↑d

†
b↓ |G; 0, 0;G〉

= d†
a↑d

†
b↓

∏
k

(
uk + vkc

†
k↑c

†
−k↓

) ∏
q

(
uq + vqc

†
q↑c

†
−q↓

)
|0; 0, 0; 0〉

HT−−→ − t
∑
k∈L

uk γ
†
k0da↑ d

†
a↑d

†
b↓ |G; 0, 0;G〉 = −t

∑
k∈L

uk γ
†
k0d

†
b↓ |G; 0, 0;G〉

1−P
H0−−−→ − t

∑
k∈L

uk
Ek − ε

γ†
k0d

†
b↓ |G; 0, 0;G〉

HT−−→ − t
∑
l∈L

ulγ
†
l1db↓ (−t)

∑
k∈L

uk
Ek − ε

γ†
k0d

†
b↓ |G; 0, 0;G〉

+ t
∑
l∈L

v∗
l γl0db↓ (−t)

∑
k∈L

uk
Ek − ε

γ†
k0d

†
b↓ |G; 0, 0;G〉

=+ t2
∑
kl∈L

ukul
Ek − ε

γ†
k0γ

†
l1 |G; 0, 0;G〉

+ t2
∑
k∈L

ukv
∗
k

Ek − ε
|G; 0, 0;G〉

1−P
H0−−−→ + t2

∑
kl∈L

ukul
(Ek − ε)(Ek + El − 2ε)

γ†
k0γ

†
l1 |G; 0, 0;G〉

+ t2
∑
k∈L

ukv
∗
k

(Ek − ε)(−2ε)
|G; 0, 0;G〉 .
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The first term will be projected out at the end.

HT−−→ − t
∑
p∈R

vpd
†
a↑γ

†
p1 (+t

2)
∑
k∈L

ukv
∗
k

(Ek − ε)(−2ε)
|G; 0, 0;G〉

=+ t3
∑
k∈L

∑
p∈R

ukv
∗
kvp

(Ek − ε)(−2ε)
γ†
p1 d

†
a↑ |G; 0, 0;G〉

1−P
H0−−−→ + t3

∑
k∈L

∑
p∈R

ukv
∗
kvp

(Ek − ε)(−2ε)(Ep − ε)
γ†
p1 d

†
a↑ |G; 0, 0;G〉

HT−−→ − t
∑
q∈R

u∗
qd

†
b↓γq1 (+t

3)
∑
k∈L

∑
p∈R

ukv
∗
kvp

(Ek − ε)(−2ε)(Ep − ε)
γ†
p1 d

†
a↑ |G; 0, 0;G〉

=+ t4
∑
k∈L

∑
p∈R

ukv
∗
ku

∗
pvp

(Ek − ε)(−2ε)(Ep − ε)
d†
a↑d

†
b↓ |G; 0, 0;G〉

=+ t4
∑
k∈L

∑
p∈R

ukv
∗
ku

∗
pvp

(Ek − ε)(−2ε)(Ep − ε)
|G; ↑, ↓;G〉

=+
1
16
Je+iφ |G; ↑, ↓;G〉 .

The path which transfers Cooper pairs from the left to the right superconductor con-
tributes the complex conjugate of the above one.

Path P5:

|G; ↑, ↓;G〉 = d†
a↑d

†
b↓ |G; 0, 0;G〉

= d†
a↑d

†
b↓

∏
k

(
uk + vkc

†
k↑c

†
−k↓

) ∏
q

(
uq + vqc

†
q↑c

†
−q↓

)
|0; 0, 0; 0〉

HT−−→ − t
∑
k∈L

uk γ
†
k0da↑ d

†
a↑d

†
b↓ |G; 0, 0;G〉 = −t

∑
k∈L

uk γ
†
k0d

†
b↓ |G; 0, 0;G〉

1−P
H0−−−→ − t

∑
k∈L

uk
Ek − ε

γ†
k0d

†
b↓ |G; 0, 0;G〉

HT−−→ − t
∑
l∈L

ulγ
†
l1db↓ (−t)

∑
k∈L

uk
Ek − ε

γ†
k0d

†
b↓ |G; 0, 0;G〉

+ t
∑
l∈L

v∗
l γl0db↓ (−t)

∑
k∈L

uk
Ek − ε

γ†
k0d

†
b↓ |G; 0, 0;G〉

=+ t2
∑
kl∈L

ukul
Ek − ε

γ†
k0γ

†
l1 |G; 0, 0;G〉

+ t2
∑
k∈L

ukv
∗
k

Ek − ε
|G; 0, 0;G〉
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1−P
H0−−−→ + t2

∑
kl∈L

ukul
(Ek − ε)(Ek + El − 2ε)

γ†
k0γ

†
l1 |G; 0, 0;G〉

+ t2
∑
k∈L

ukv
∗
k

(Ek − ε)(−2ε)
|G; 0, 0;G〉 .

The first term will be projected out at the end.

HT−−→ − t
∑
p∈R

u∗
pd

†
b↑γp0 (+t

2)
∑
k∈L

ukv
∗
k

(Ek − ε)(−2ε)
|G; 0, 0;G〉

− t
∑
p∈R

vpd
†
b↑γ

†
p1 (+t

2)
∑
k∈L

ukv
∗
k

(Ek − ε)(−2ε)
|G; 0, 0;G〉

=+ t3
∑
k∈L

∑
p∈R

ukv
∗
kvp

(Ek − ε)(−2ε)
γ†
p1 d

†
b↑ |G; 0, 0;G〉

1−P
H0−−−→ + t3

∑
k∈L

∑
p∈R

ukv
∗
kvp

(Ek − ε)(−2ε)(Ep − ε)
γ†
p1 d

†
b↑ |G; 0, 0;G〉

HT−−→ − t
∑
q∈R

u∗
qd

†
a↓γq1 (+t

3)
∑
k∈L

∑
p∈R

ukv
∗
kvp

(Ek − ε)(−2ε)(Ep − ε)
γ†
p1 d

†
b↑ |G; 0, 0;G〉

= − t4
∑
k∈L

∑
p∈R

ukv
∗
ku

∗
qvp

(Ek − ε)(−2ε)(Ep − ε)
d†
a↓d

†
b↑ |G; 0, 0;G〉

= − t4
∑
k∈L

∑
p∈R

ukv
∗
ku

∗
qvp

(Ek − ε)(−2ε)(Ep − ε)
|G; ↓, ↑;G〉

= − 1
16
Je+iφ |G; ↓, ↑;G〉 .

The path which transfers Cooper pairs from the left to the right superconductor con-
tributes the complex conjugate of the above one.

Adding the contributions of the different paths, we obtain

H
(4)
C1

= 4 × J

16
× 2 cosφ×



0

−1 +1
+1 −1

0


 = J cosφ

[
Sa · Sb − 1

4

]
. (46)
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