Condensed matter seminar, Korea University

Coupling between heat transport and spin transport in metallic ferromagnets

Gyung-Min Choi

Center for Spintronics Korea Institute of Science and Technology

Spin

Atom

Solid

Hund's rule

$$\frac{1}{1s^2} \frac{1}{2s^2} \underbrace{\frac{1}{2p^2}}_{2p^2}$$

Heisenberg's exchange

$$\hat{H}^{\text{Heis}} = -J\,\hat{\vec{S}}^{\text{A}}\cdot\hat{\vec{S}}^{\text{B}}$$

Memory

Write	Read
Connection of neurons	Electro- chemical
Arrangement of ink	Optical
Confinement of electron	Electrical
Direction of spin	Electrical

Spin Memory

Magnetic random access memory

Access time: a few ms

Access time: a few tens of ns

Spin transfer torque

Spin current can rotation local magnetization.

Slonczewski JMMM (1996) Berger PRB (1996)

Quantum yield

Electrical spin generation \rightarrow Spin filter effect

Slonczewski PRB (2010)

Quantum yield for thermal spin

Slonczewski PRB (2010)

Thermal spin generation in metallic ferromagnet

Part 1: Ultrafast demagnetization

Part 2: Spin-dependent Seebeck effect

Ultrafast demagnetization

Beaurepaire et al. PRL (1996)

Three temperature model

10

Effect of Curie temperature

Spin accumulation

Measure spin accumulation on Cu

Spin accumulation

Choi et al. Nature Commun. 5, 4334 (2014)

Demagnetization-spin generation

Choi et al. Nature Commun. 5, 4334 (2014)

Conclusion

Electron-magnon scattering conserve angular momentum.

Thermal spin generation in metallic ferromagnet

Part 1: Ultrafast demagnetization

Part 2: Spin-dependent Seebeck effect

Spin-dependent Seebeck effect

Hu et al. NPG Asia Mater. (2014)

Interfacial effect

Interfacial effect

병목현상

Interfacial effect

$$G_{S} = -\left(\frac{\mu_{\rm B}}{eLT}\right) \frac{1-P^{2}}{2} \left(S_{\uparrow} - S_{\downarrow}\right) J_{\rm Q} \qquad S_{\uparrow,\downarrow} = -eLT \frac{1}{\sigma_{\uparrow,\downarrow}} \frac{\partial \sigma_{\uparrow,\downarrow}}{\partial E} \bigg|_{E_{F}}$$

Slachter *et al.* Nature Phys. (2010) Hatami *et al.* Phys. Rev. Lett. (2007)

Thermal analysis

Pt (20)/ FM1 (3)/ Cu (10 or 100)/ FM2 (2) (in nm)

Choi et al. Nature Phys. 11, 576 (2015)

Thermal analysis

Energy transport among different heat reservoirs of different layers

$$\tau = \left(\frac{1}{C_{\rm Pt}h_{\rm Pt}} + \frac{1}{C_{\rm Cu}h_{\rm Cu}}\right)^{-1} \times \left(\frac{h_{\rm Pt}}{\Lambda_{\rm Pt}} + \frac{h_{\rm FM1}}{\Lambda_{\rm FM1}} + \frac{1}{g_{\rm Cu}h_{\rm Cu}}\right)$$

SDSE-spin accumulation

Pt (20)/ FM1 (3)/ Cu (100) (in nm)

Offset in spin accumulation on Cu is due to SDSE.

Choi et al. Nature Phys. 11, 576 (2015)

SDSE-spin torque

Measure STT on FM2

SDSE-spin torque

Pt (20)/ FM1 (3)/ Cu (10 or 100)/ FM2 (2) (in nm)

SDSE \rightarrow initial slop \rightarrow overall phase delay

Choi et al. Nature Phys. 11, 576 (2015)

SDSE-coefficient

Pt (20)/ [Co/Pt] (3)/ Cu (100)/ CoFeB (2) (in nm)

Output (FM2 dynamics)

SDSE-coefficient

Pt (20)/ [Co/Ni] (3)/ Cu (100)/ CoFeB (2) (in nm)

Conclusion

Conclusion

Pt (20)/ FM1 (3)/ Cu (10 or 100)/ FM2 (2) (in nm)

Fourier analysis of $J_{\rm S}$ to FM2

[Co/Pt] with Cu 10 nm: **Demagnetization** > SDSE [Co/Ni] with Cu 100 nm: **SDSE** > Demagnetization

Choi et al. Nature Phys. 11, 576 (2015)

Future plan: Quantum yield

Future plan: Spin loss

Acknowledgement

Collaborators

KIST: Chul-Hyun Moon, Dr. Byoung-Chul Min

Korea University: Prof. Kyung-Jin Lee

University of Illinois: Prof. David G. Cahill

