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We propose a novel scheme to trap a particle based on a delicate interplay between coherence and
decoherence. If the decoherence occurs as a particle is located in the scattering region and subsequently
the appropriate destructive interference takes place, the particle can be trapped in the scattering area.
We consider two possible experimental realizations of such trapping: a ring attached to a single lead and
a ring attached to two leads. Our scheme has nothing to do with a quasi-bound state of the system, but
has a close analogy with the weak localization phenomena in disordered conductors.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Quantum theory of scattering has been a powerful tool to in-
vestigate various physical properties of nature [1]. One nice fea-
ture of the scattering theory is that all the important information
is contained in the unitary scattering matrix or simply S-matrix.
The unitarity of the S-matrix guarantees that the incoming particle
should completely go out of a scattering region so that any part of
the incoming particle should not remain. Such a unitarity or the
unitary time evolution of a quantum system is based upon the co-
herent propagation of a wavefunction. The coherence thus plays an
important role in ensuring that any particle does not remain in a
scattering region. However, one can ask what happens if any deco-
herence process takes place during the scattering event.

If one measures the location of a particle in the scattering re-
gion and acquires complete information on it, the situation is then
no longer a normal scattering problem. The particle is not incom-
ing far from the scattering region as a usual scattering setup, but
is rather launched inside the scattering region right after the mea-
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surement. In this circumstance it is possible for the particle to be
trapped in the scattering region if the coherence is maintained
after the measurement. The possibility of such an amazing phe-
nomenon was briefly discussed in a somewhat different context in
our previous work [2], where we proposed a new mechanism for
generating the non-trivial dc current induced by decoherence. In
this Letter, we reveal physics of a novel effect of particle trapping
originating from the interplay between coherence and decoher-
ence.

Two main ingredients of our scheme are the position measure-
ment (decoherence) and the destructive interference of the outgo-
ing waves (coherence). In our scheme, we exploit the spontaneous
emission from a two level atom in the excited state as a source
of decoherence. The decoherence process occurs only once in the
scattering region, and after the decoherence process the coherence
is maintained. Then the destructive interference of the outgoing
waves, which is achieved by utilizing a ring geometry, gives rise
to trapping of the particle. We consider two examples: a ring at-
tached to a single lead, and a ring interferometer attached to two
leads. It should be emphasized that application of our general con-
cept is not limited to these two simple examples.

In Section 2 the key idea of our scheme is presented by using a
ring attached to a single lead. In Section 3 the scheme is extended
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Fig. 1. The schematic picture of the setup for a ring attached to a single lead. R and
C represent a reservoir and a microcavity, respectively. The partial waves in the
ring entering the junction are represented as φ

�
n (clockwise) and φ

�
n (counter-

clockwise), and the waves outgoing along the leads is labeled as φl
n . In semiclassical

description the successively escaping wavepackets are separated with each other
by L.

into a ring attached to two leads, which allows us to observe the
trapping phenomenon by current measurement of a steady state.
Finally we summarize our Letter in Section 4.

2. A ring attached to a single lead

We first consider the case that a ring is attached to a single lead
connected to a reservoir [3] as shown in Fig. 1. To explain a basic
idea of our work, we begin with intuitive semiclassical approach,
and more rigorous treatment will be followed.

2.1. Semiclassical approach

Atoms with two internal energy levels, which are initially in the
ground state, come out of the reservoir and enter the microcavity,
which excites them from the ground state to the excited state. We
assume that all the atoms are excited after passing through the
microcavity due to the Rabi oscillation [4]. The interaction among
atoms is ignored. The excited atom is then incident to the atomic
Y-shaped junction as shown in Fig. 1, and split into three out-
put ports corresponding to the states rotating clockwise (�) and
counter-clockwise (�) in the ring and going back to the lead (l).
The amplitudes of the incoming (φ j

in) and the outgoing (φi
out) par-

tial waves at the junction are related with each other by the rela-
tion φi

out = ∑
j J i jφ

j
in, where i, j = l,�,�. The scattering matrix J

is given by

J =
(−(a + b)

√
ε

√
ε√

ε a b√
ε b a

)
(1)

where a = (
√

1 − 2ε − 1)/2, b = (
√

1 − 2ε + 1)/2, and ε represents
a coupling parameter ranging 0 � ε � 1/2 [5,6].

The excited atom after crossing the microcavity will release a
photon inside or outside the ring relaxing to the ground state.
We assume that the wavelength λ of the photon is short enough
compared with a circumference of the ring L, and the momentum
recoil of the atom due to the emission of the photon is too small
to disturb the momentum of the center of mass of the atom. Let
τ be the lifetime of the excited energy level and v be the veloc-
ity of the atom. If vτ � L and the distance between the cavity and
the junction is ignorable, the atom in the ring quickly decays to its
ground state emitting a photon so that we can locate the atom in
the ring by detecting the released photon.

Let us consider the case where the photon emission takes place
when the atom rotates clockwise in the ring. Note that the situa-
tion is exactly the same if the photon is emitted when the atom
rotates counter-clockwise. Since the position of the atom is known
by detecting a photon emitted, one considers that the atom now
begins to move from somewhere in the ring. It is emphasized

that the size of an atomic wavepacket δx determined from the
measuring process should satisfy δx � L to make sure that the
meaningful information on the position is acquired. Now we need
to calculate the escaping probability of such a wavepacket. Note
that without decoherence the escaping probability is trivially one
due to the conservation of a particle number. Since the two out-
put ports of the Y -junction are connected with each other to form
a ring (see Fig. 1), the amplitudes φ

�
n and φ

�
n of the clockwise (�)

and counter-clockwise (�) partial waves entering the junction at
the nth collision are inevitably related to the amplitudes φ

�
n+1 and

φ
�
n+1 at the (n + 1)th collision. This recursion relation is given by

[see Eq. (1)](
φ

�
n+1

φ
�
n+1

)
= eiθ

(
b a
a b

)(
φ

�
n

φ
�
n

)
, (2)

where θ = kL represents the phase accumulated during one round
trip along the ring. Assume that the initial condition is given as
φ

�
1 = 0 and φ

�
1 = 1 with probability ε , implying the atom is

launched in the ring and rotates clockwise. The escaping ampli-
tude φl

n at the nth collision with the junction is then obtained from
Eqs. (1) and (2): φl

n+1 = √
ε(φ

�
n + φ

�
n ) = eiθ (1 − 2ε)1/2φl

n leading
to the escaping probability

Pesc = ε

∣∣∣∣∣
∞∑

n=1

φl
n

∣∣∣∣∣
2

≈ ε

∞∑
n=1

∣∣φl
n

∣∣2 = ε

2
. (3)

Here note that to a good approximation the escaping probability
is given by an incoherent sum of the individual probabilities |φl

n|2.
It is because due to the fact that δx � L the successively escap-
ing wavepackets do not overlap with each other as illustrated in
Fig. 1. The total reflection probability of the ring is then given as
R = (1 − 2ε) + 2Pesc, where the first term represents the proba-
bility for back scattering when the atom initially scatters with the
junction. We eventually end up with the simple form of the trap-
ping probability

P tr = 1 − R = ε. (4)

To get a more intuitive understanding let us consider the sim-
plest case with ε = 1/2. For the moment the phase accumulation
while traversing along the circumference is ignored since it plays
no essential role in our scheme. If the atom emits a photon, it be-
gins to travel namely clockwise from somewhere in the ring and
collides with the junction.

√
1/2 (amplitude) of the wavepacket is

escaped to the lead, while 1/2 is transmitted so that continues
to rotate clockwise and −1/2 is reflected back to rotate counter-
clockwise. Two wavepackets remaining in the ring, i.e. rotating
clockwise and counter-clockwise, coherently propagate along the
ring and collide again with the junction simultaneously and are
split. 1/2

√
1/2 and −1/2

√
1/2 of each wave incident to the junc-

tion are respectively escaped to the lead and vanishes due to the
destructive interference. The remaining parts, either reflected or
transmitted into the ring again, continue to propagate along the
ring. This process thus runs on for ever. Consequently, a half of the
incoming wave cannot escape from the ring so that it is trapped.

It is noted that the trapping mechanism has nothing to do with
the persistent current in a mesoscopic ring [7] since in our case
there is no net current in it: the probability of the clockwise rotat-
ing current is exactly equivalent to that of the counter-clockwise
one. It looks rather similar to the weak localization in disordered
conductors [8] in that the atom is localized in the ring according
to the interference of two time-reversal paths. It is well known
that the weak localization is vulnerable to the perturbation break-
ing time reversal symmetry, e.g. the external magnetic field. We
thus expect that the trapping achieved in our scheme is also sen-
sitive to the magnetic field. Consider an ion with charge q instead
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of a neutral atom and apply the magnetic flux localized inside
the ring. The ion rotating clockwise then experiences the phase
accumulation different from that for counter-clockwise, which is
Aharonov–Bohm (AB) effect [10]. The matrix in Eq. (2) is modified
as(

b a
a b

)
→

(
beiφ aeiφ

ae−iφ be−iφ

)
, (5)

where φ = (q/h)
∮

A · ds. Here, A and h are a vector potential and
the Planck constant, respectively. We find that for a non-zero φ

the trapping probability vanishes. Note that how fast the trap-
ping probability in the ring decays depends on φ, so that for small
enough φ the trapping phenomenon persists for a long time.

It is also worth mentioning that our trapping mechanism is not
associated with a quasi-bound state of the ring, which is evident
from the following two reasons. First, the trapping probability still
remains finite, in principle, even when time goes to the infinity.
The usual quasi-bound state always decays with the characteristic
time scale, namely the life time. Second, the trapping probability
does not depend on the (kinetic) energy of the incident particle,
while the transmission shows strong dependance on the energy
of the incoming particle when a quasi-bound state exists, which
is called as a resonance. Note that when the atom escapes from
the ring, it crosses the microcavity once more and is excited again.
However, the subsequent spontaneous decay taking place at the
lead makes no influence on the above discussion since it occurs
outside the interferometer.

In the context of the usual scattering theory it is guaranteed
by the micro-reversibility that any part of an incoming particle
cannot be trapped in the scattering region [11]. In fact, any legit-
imate unitary scattering matrix cannot be constructed in our case
because the decoherence takes place in the ring during the scat-
tering process. In some sense the particle is not injected from the
outside, but it is rather launched from inside the ring upon the
emission of a photon. It implies that this is no longer a usual scat-
tering problem. Although the unitarity of the scattering matrix is
no longer available, the conservation of a particle number is still
intact because the sum of the reflection and the trapping probabil-
ity is equal to one. It is noted that breaking the micro-reversibility
is achieved by increase of the entropy of environment induced by
the spontaneous emission, i.e. decoherence.

2.2. Rigorous treatment

So far our argument has been mainly based upon semiclassical
treatment; the incoming wave is namely collapsed to the local-
ized wavepacket due to the measurement process induced by the
spontaneous emission, and then repeats coherent propagation and
scattering at the junction. Here we develop a fully quantum me-
chanical treatment.

At a given time t , the total wavefunction consists of three parts:
(i) the wavepacket describing the center of mass (COM) of the
atom

∫
dk φ(k)ei(kx−ωt) , where φ(k) is a normalized wavefunction

in momentum space and h̄ω is the COM kinetic energy, (ii) the
atomic internal state, either |g〉 for the ground state or |e〉 for the
excited state, and (iii) the photonic state, either |0〉 for the vacuum
or |ν〉 for a photon released from the atom as it undergoes a tran-
sition |e〉 → |g〉. Once the atom passes through the microcavity it
is assumed to be perfectly excited without loss of generality; the
initial wavefunction is thus given by

∣∣Ψin(xl, t)
〉 = ∫

dk√
2π

φ(k)ei(kxl−ωt)|e〉 ⊗ |0〉. (6)

At the junction between the lead and the ring, a portion of the in-
cident wave is reflected and the other goes into the ring, where the

process is described by the unitary scattering matrix J in Eq. (1)
[5,6]. The partial wave that enters the ring will scatter multiple
times at the junction. If the whole process is fully phase coher-
ent, its multiple scattering inside the ring and, eventually, escape
out of the ring can be described by a sum of all possible Feynman
paths associated with different scattering processes, which leads to
an overall unitary scattering matrix [9].

In our case, the atom may decay from the excited to ground
state emitting a photon, which causes a decoherence, and hence
the usual scattering approach mentioned above breaks down (see
the discussion in Section 2.1). At a given time the atom can still
remain in the excited state with the probability amplitude β . The
probability amplitude that the atom decays to be in the ground
state γ is then given as

√
1 − |β|2. When summing up all possi-

ble Feynman paths, we also have to distinguish photons emitted
during different stages of the multiple scattering. We denote by
|ν�

n 〉 (|ν�
n 〉) a photon released from the atom rotating clockwise

(anti-clockwise) in between the nth and (n + 1)th collision with
the junction.

As time goes to the infinity the wavefunction |Ψ (xl, t)〉 (xl is
the COM coordinate along the lead) on the lead is given by∣∣Ψ (xl, t)

〉
=

∫
dk

φ(k)√
2π

ei(kxl−ωt)

[ ∞∑
n=1

{−(1 − 2ε)
1
2 δn1

+ 2βn−1ε(1 − 2ε)
n−2

2 ei(n−1)kL(1 − δn1)
}|g〉 ⊗ |0〉

+
∞∑

n=1

∞∑
m=1

γ βn−1ε(1 − 2ε)
n+m−2

2

× ei(n+m−1)kL|e〉 ⊗ (∣∣ν�
n

〉 + ∣∣ν�
n

〉)]
. (7)

The first term consists of two parts; the former describes the di-
rect reflection from the junction without entering the ring, and
the latter represents the situation where the particle enters and
then rotates along the ring, and finally escapes from it without
any spontaneous emission of a photon after scattering n times at
the junction. Note that the particle finally resides at the ground
state since it crosses the microcavity overall twice (incoming and
outgoing). The second term gives the probability amplitude that
a photon is emitted in the ring after n collisions with the junc-
tion and then escapes from it after additional m collisions with the
junction. Since the absolute square of Eq. (7) provides the proba-
bility for the particle to escape, the trapping probability is given
by

P tr = 1 −
∫

dxl
〈
Ψ (xl, t)

∣∣Ψ (xl, t)
〉

(8)

=
∞∑

n=1

γ 2ε
(
1 − Re

〈
ν�

n

∣∣ν�
n

〉){
(1 − 2ε)β2}n−1

. (9)

Here we have assumed that〈
ν�

n

∣∣ν�
n′

〉 = 〈
ν�

n

∣∣ν�
n′

〉 = 〈
ν�

n

∣∣ν�
n′

〉 = δnn′ , (10)

which physically implies that a measurement device distinguishes
a photon emitted at nτL from that at n′τL when n �= n′ , where
τL represents the round trip time of the atom, namely τL = L/v .
This assumption is reasonable since the width of the wavepacket
is always much smaller than L, which is discussed below, so that
two wavepackets with different n has a vanishing overlap.

It is noted that the wavepacket considered here is different
from that in the previous semiclassical argument. The wavepacket
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in the semiclassical treatment is produced by the measure-
ment whereas the wavepacket here represents the initial atomic
wavepacket coming from the reservoir. The shape of the initial
wavepacket can be predicted from a Maxwell–Boltzmann distribu-
tion of atoms in the reservoir with a given temperature. Taking
typical values of parameters in experiments (e.g. see [12]) one
finds that the width of the wavepacket is extremely small (an or-
der of pico-meter). When the spontaneous emission takes place,
the packet size δx may change but remains δx ∼ λ � L.

In order to show that the result obtained above is compatible
with the previous semiclassical treatment, we now additionally as-
sume that γ = 1 and β = 0, which means a spontaneous decay
takes place immediately after the particle enters the ring. One then
obtains

P tr = ε
(
1 − Re

〈
ν�

1

∣∣ν�
1

〉)
, (11)

which is to be compared with the semiclassical result P tr = ε in
Eq. (4). The semiclassical result is recovered when the directions �
and � of the atom is discriminated completely, i.e., 〈ν�

1 |ν�
1 〉 = 0.

Eq. (11) thus reveals clearly that the trapping of the atom inside
the ring happens only when the emitted photons (described by
either |ν�

n 〉 or |ν�
n 〉) should have enough information about the

rotation directions of the atom in the ring. In the semiclassical ap-
proach (Section 2.1), this condition was implied when setting up
the semiclassical wavepackets.

Just locating the atom inside the ring by detecting an emitted
photon is not enough to acquire the information about the rotation
direction of the atom. In fact, such a process of merely detecting
emitted photons without extraction of directional information of
� and � corresponds to a quantum eraser [14], and prevents the
particle from being trapped in the ring. Extracting the directional
information � and � of the atomic motion from emitted photons
may be challenging in practice. However, the decoherence occurs
as long as it is possible in principle.

3. A ring attached to two leads

The key idea of the particle trapping has been discussed based
upon the ring attached to a single lead. However, the real exper-
imental observation of the phenomenon in this system is quite
difficult because the trapping will be eventually destroyed due to
other sources of decoherence inevitably existing in real world so
that the atom is trapped only for a finite time. It implies that
one needs to measure the decay of the probability of the trapped
atom as a function of time, which is a hard task. We thus propose
another setup, a ring with two leads [2] or simply a ring inter-
ferometer. It will be shown that our trapping mechanism is now
revealed by the usual current measurement in a steady state. In
principle all the calculation can be done in a rigorous manner as
shown above, but for simplicity here we exploit only the semi-
classical argument. As in the single-lead case, one can obtain the
following recursion relation(

φ
�
j,n+1

φ
�
j,n+1

)
= eiθ

(
a2 + b2 2ab

2ab a2 + b2

)(
φ

�
j,n

φ
�
j,n

)
(12)

where j represents from which arm the particle enters the junc-
tion, namely u (the upper arm) or d (the lower arm) in Fig. 2.
Here we assume that two parts of the ring have the equal length,
i.e. Lu = Ld , which will be shown to be crucial. We are interested
in the atom coming from the reservoir R1 since it passes through
the microcavity and is excited to finally decay in the ring. The
atom is assumed to be perfectly excited after crossing the mi-
crocavity as before. From the relation t j

n = √
ε(φ

�
j,n + φ

�
j,n) and

r j
n = eiθ (1 − 2ε)1/2t j

n , where θ = kLu = kLd , and t and r respec-
tively represents the transmission and the reflection amplitude,

Fig. 2. The schematic picture for the setup of a ring attached to two leads. Two
reservoirs are denoted as R1 and R2. Like in Fig. 1, the partial waves are labeled
as φ

�
j,n and φ

�
j,n , where j represents from which arm the atom enters the junction,

namely u (the upper arm) or d (the lower arm).

the transmission probability T and the reflection probability R are
given by

T = ε

∞∑
n=1

∑
j=u,d

∣∣t j
n

∣∣2 = ε

2 − 2ε
(13)

and

R = 1 − 2ε + ε

∞∑
n=1

∑
j=u,d

∣∣r j
n

∣∣2 = 2 − 5ε + 2ε2

2 − 2ε
, (14)

respectively. The probability for the atom to be trapped is then
obtained as

P tr = 1 − (T + R) = ε. (15)

It is interesting to note that the trapping probability is exactly the
same as that of the ring attached to a single lead [see Eq. (4)].

Due to other sources of decoherence the trapped atom should
eventually escape from the ring either to the left lead or to the
right lead with equal probability. In the steady state the transmis-
sion probability is thus given as

Tst = T + 1

2
P tr = ε(ε − 2)

2(ε − 1)
, (16)

which is completely different from the usual transmission proba-
bility of the fully coherent AB ring interferometer [13]. Again Tst
does not depend on the energy or the momentum of the incoming
atom.

Although the ring with two leads has an advantage compared
with that with a single lead in that the measurement can be per-
formed in a steady state, a care should be taken. The trapping
mechanism is mainly based upon the destructive interference be-
tween two escaping wavepackets rotating clockwise and counter-
clockwise so that these two wavepackets should collide with the
junctions almost simultaneously to make sure that they have con-
siderable overlap at the lead. If �L = |Ld − Lu | > δx, two packets no
longer overlap and the trapping mechanism breaks down. There-
fore, in experiments the length of the ring should be controlled up
to the precision of the packet size δx. Recall that �L = 0 is always
guaranteed in a single lead case.

4. Summary

In summary, we have investigated a new mechanism of particle
trapping induced by the interplay between coherence and decoher-
ence. If the decoherence occurs when a particle is located in the
scattering region and subsequently the appropriate destructive in-
terference takes place, the particle can be trapped in the scattering
area. We demonstrate the possibility of such a mechanism using a
ring attached to a single lead and a ring interferometer.



Author's personal copy

S. Yi et al. / Physics Letters A 373 (2009) 3239–3243 3243

Acknowledgements

This work was supported for two years by Pusan National Uni-
versity Research Grant.

References

[1] J.R. Taylor, Scattering Theory: The Quantum Theory on Nonrelativistic Colli-
sions, John Wiley and Sons, New York, 1972.

[2] S.W. Kim, M.-S. Choi, Phys. Rev. Lett. 95 (2005) 226802.
[3] M. Büttiker, Phys. Rev. B 32 (1985) 1846.

[4] M.O. Scully, M.S. Zubairy, Quantum Optics, Cambridge University Press, Cam-
bridge, 1997.

[5] B. Shapiro, Phys. Rev. Lett. 50 (1983) 747.
[6] M. Büttiker, Y. Imry, M.Y. Azbel, Phys. Rev. A 30 (1984) 1982.
[7] M. Büttiker, Y. Imry, R. Landauer, Phys. Lett. A 96 (1983) 365.
[8] G. Bergmann, Phys. Rep. 107 (1984) 1.
[9] E. Akkermans, A. Auerbach, J.E. Avron, B. Shapiro, Phys. Rev. Lett. 66 (1991) 76.

[10] Y. Aharonov, D. Bohm, Phys. Rev. 115 (1959) 485.
[11] V. Gasparian, T. Christen, M. Buttiker, Phys. Rev. A 54 (1996) 4022.
[12] O. Nairz, M. Arndt, A. Zeilinger, Am. J. Phys. 71 (2003) 319.
[13] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University

Press, Cambridge, 1995.
[14] M.O. Scully, B.-G. Englert, H. Walther, Nature 351 (1991) 111.


