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We study the zero-bias magnetoresistance �MR� of an interacting quantum dot connected to two ferromag-
netic leads and capacitively coupled to a gate voltage source Vg. We investigate the effects of the spin-activity
of the contacts between the dot and the leads by introducing an effective exchange field in an Anderson model.
This spin-activity makes easier negative MR effects, and can even lead to a giant MR effect with a sign tunable
with Vg. Assuming a twofold orbital degeneracy, our approach allows one to interpret in an interacting picture
the MR�Vg� measured by S. Sahoo et al. �Nature Phys. 1, 99 �2005�� in single wall carbon nanotubes with
ferromagnetic contacts. If this experiment is repeated on a larger Vg range, we expect that the MR�Vg�
oscillations are not regular like in the presently available data, due to Coulomb interactions.
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I. INTRODUCTION

The quantum mechanical spin degree of freedom is now
widely exploited to control current transport in electronic
devices. For instance, the readout of magnetic hard disks is
based on the spin-valve effect, i.e., the tunability of a con-
ductance through the relative orientation of some ferromag-
netic polarizations.1 However, realizing spin injection in me-
soscopic conductors would allow one to implement further
functionalities, like, e.g., a gate control of the spin-valve
effect.2,3 Importantly, electronic interaction effects can occur
in mesoscopic structures, due to the electronic confinement.
This raises the fundamental question of the interplay be-
tween spin-dependent transport and electronic interactions.

Upon scattering on the interface between a ferromagnet
�F� and a nonmagnetic material, electrons with spin parallel
or antiparallel to the magnetization of the F can pick up
different phase shifts because they are affected by different
scattering potentials. This spin-dependence of interfacial
phase shifts �SDIPS� can modify significantly the behavior
of mesoscopic circuits. First, when a mesoscopic conductor
is connected to several ferromagnetic leads with noncollinear
polarizations, the SDIPS produces an interfacial precession
of spins which can modify current transport in the device.4–8

Second, in collinear configurations, precession effects are not
relevant, but the SDIPS can modify mesoscopic coherence
effects. For instance, in superconducting/ferromagnetic hy-
brid circuits, the SDIPS introduces a phase shift between
electron and holes correlated by Andreev reflection.9 Refer-
ences 10 and 11 have identified signatures of this effect in
the experiments of Refs. 12 and 13, respectively. In prin-
ciple, normal systems in collinear configurations can also be
affected by the SDIPS. Indeed, from Ref. 14, the SDIPS
should produce a spin-splitting of the resonant states in a
ballistic interactionless wire contacted with collinearly polar-
ized ferromagnetic leads. However, this has not been con-
firmed experimentally yet.15

Recently, Ref. 17 has reported current measurements in a
single wall carbon nanotube �SWNT� connected to two fer-
romagnetic leads with collinear polarizations. The asymme-

tries observed in the magnetoresistance �MR� of the SWNT
versus gate voltage are strikingly similar to those predicted
by Ref. 14 for an interactionless wire subject to the SDIPS.18

However, the SWNT of Ref. 17 showed a quantum dot be-
havior with strong Coulomb Blockade effects, as demon-
strated in a great number of experiments with nonmagnetic
leads �see, e.g., Refs. 19 and 20�. Therefore one important
question is how interaction effects modify the scheme pro-
posed by Ref. 14. The problem of the effects of interactions
on the transport properties of a central region connected to
ferromagnetic contacts has already been considered in vari-
ous regimes, like, e.g., the Coulomb blockade regime,6,21–23

the Kondo regime,24,25 the Luttinger liquid regime,5,26 and
the marginal Fermi liquid regime.27 This paper develops an
approach suitable for the limit of Ref. 17 and studies the
effect of the SDIPS on a quantum dot. We consider a quan-
tum dot coupled to metallic leads through spin-active inter-
faces. We use an Anderson model to study the MR of the
circuit above the Kondo temperature, but beyond the sequen-
tial tunneling limit. The SDIPS is taken into account through
an effective spin-splitting of the dot energy levels. This split-
ting makes easier negative MR effects. When it is strong
enough, it can even lead to a giant MR with a sign oscillating
with the dot gate voltage Vg, similarly to what has been
found in the noninteracting case. In the noninteracting case,
assuming that the properties of the contact are constant with
energy and that the SDIPS is too weak to split the conduc-
tance peaks, one finds that the MR�Vg� pattern is similar for
all conductance peaks. In contrast, the effect of the SDIPS
depends on the occupation of the dot in the interacting case.
This is in apparent contradiction with the data of Ref. 17
because, in the Vg range presented there, the MR�Vg� oscil-
lations are regular. Using a two-orbitals model, which takes
into account the K−K� orbital degeneracy commonly ob-
served for SWNTs �see, e.g., Refs. 20 and 28–32�, one can
solve this discrepancy. In this framework, we expect non-
regular MR�Vg� oscillations if the experiment is repeated on
a larger Vg range.

This paper is organized as follows: we start with summa-
rizing the results found for the noninteracting case in Sec.
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II A. Then we introduce a model for the interacting case in
Sec. II B. Section III addresses the case of a one-orbital
quantum dot circuit, and Sec. IV the case of a two-
degenerate-orbitals quantum dot circuit. Finally Sec. V con-
cludes.

II. MODEL

We consider a mesoscopic element M connected to ferro-
magnetic leads L and R �Fig. 1�. The chemical potential of M
can be shifted by e�Vg using the gate voltage Vg, with � the
ratio between the gate capacitance and the total capacitance
of M. The magnetic polarizations p�L and p�R of leads L and R
can be parallel �configuration c= P� or antiparallel �configu-
ration c=AP�.

A. Noninteracting case

Before introducing the interacting model investigated in
this paper, it is useful to reconsider the results obtained by
Ref. 14 for the case in which M is a noninteracting single-
channel ballistic wire of length L. In a scattering approach,33

the conductance of the circuit depends on the transmission
probability Tl

c,� for electrons with spin �� �↑ , ↓ � through
contact l� �L ,R�, and on the reflection phase �l

c,� for elec-
trons with spin � coming from the wire towards contact l.
The index c= P�AP� denotes the parallel �antiparallel� leads
configuration. A spin dependence of �l

c,� can occur due to the
magnetic properties of the contact materials used to engineer
lead l. Due to size quantization, the conductance Gc�Vg� of
the circuit in configuration c presents Fabry-Perot-like reso-
nances for Ed,�

c �0, with Ed,�
c = �2�d−�L

c,�−�R
c,���2�NF

M�−1

−e�Vg−EF
M a resonant energy, d�Z, EF

M the wire Fermi en-
ergy, NF

M the density of orbitals states at the Fermi level in
the wire, and �̄ the spin direction opposite to � �we have
used e�Vg�EF

M�. From this equation, in configuration c, the
SDIPS produces a spin-splitting

g�BhSDIPS
c = Ed,↓

c − Ed,↑
c = �

l��L,R�

�l
c,↑ − �l

c,↓

�NF
M �1�

of the resonant energies. When the effective field hSDIPS
c is

strong enough to produce a spin-splitting of the conductance
peaks, the circuit can display a giant MR effect with a sign
oscillating with Vg, due to the strong shift of the conductance

peaks from the P to the AP configurations. In the opposite
case, MR remains smaller, but the SDIPS can still be de-
tected through characteristic asymmetries in the oscillations
of MR vs Vg �see Fig. 2-right of Ref. 14�. Importantly, as-
suming that Tl

c,� and �l
c,� are constant with Vg, one has

Gc�Vg�=Gc�Vg+ �2/e�NF
M��. This implies that when hSDIPS

c is
not strong enough to produce a spin-splitting of the conduc-
tance peaks, the MR�Vg� pattern is similar for all the peaks
displayed by GP�Vg�.

B. Interacting case

We now assume the presence of strong Coulomb interac-
tions inside M, such that we have a quantum dot connected
to ferromagnetic leads. Such a system can be realized, for
instance, by using granular films,34 nanoparticles,35 carbon
nanotubes,17,36 or C60 molecules.37 In the noninteracting case
of Sec. II A, we have considered that the spin-dependent
confinement potential felt by electrons causes the SDIPS,
which leads to the spin-splitting of the resonant states. In the
interacting case, the scattering approach is not suitable any-
more. However, the energy of the quasibound single particle
states in quantum dot M can depend on spin due to the spin-

FIG. 1. Mesoscopic element M connected to ferromagnetic
leads L and R. The magnetic polarizations p�L and p�R of leads L and
R can be parallel �configuration P� or antiparallel �configuration
AP�. The element M is capacitively coupled to a gate voltage source
Vg.

FIG. 2. �Color online� Panels �a�, �c�, and �e�: Conductance GP

in the parallel configuration �red full lines� and conductance GAP in
the antiparallel configuration �black dotted lines� as a function of
the gate voltage Vg, for the circuit shown in Fig. 1, with M a
one-orbital quantum dot. We have used 	L=0.005U, 	R=0.07U,
PL�R�=0.2, U /kBT=30, and hSDIPS

AP =0. Panels �b�, �d�, and �f�: Mag-
netoresistance MR= �GP−GAP� / �GP+GAP� �pink curves� corre-
sponding to the left conductance plots. The results are shown for
g�BhSDIPS

P =0 �panels �a� and �b��, g�BhSDIPS
P =0.06U �panels �c�

and �d�� and g�BhSDIPS
P =0.4U �panels �e� and �f��.
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dependent confinement potential. On this ground, we adopt
the effective Anderson Hamiltonian

H = Hdot + Hleads + Hc �2�

with

Hdot = �
d,�


d�cd�
† cd� + �

d,d�,�,��

�d,����d�,���

U

2
nd�nd���,

Hleads = �
k,�


k�ck�
† ck�,

Hc = �
d,k,�

�td�
k cd�

† ck� + �td�
k �*ck�

† cd�� .

Here, 
d� refers to the energy of the dot orbital state d for
spin �, 
k� to the energy of lead state k for spin � and td�

k is
a hoping matrix element �we assume that the spin � is pre-
served upon tunneling like in Sec. II A�. The index k runs
over the electronic states of lead L and R. Coulomb interac-
tions are taken into account through the term in U=e2 /C�,
with nd�=cd�

† cd� and C� the total capacitance of the quantum
dot M. By construction of the model �see above�, for U=0,
each orbital level 
d� corresponds to a resonant level Ed�

c of
Sec. II A, with 
d↓−
d↑=g�BhSDIPS

c . We can therefore regard
the effective Zeeman splitting hSDIPS

c in model �2� as a gen-
eralization of the SDIPS concept to the interacting case.38

The specificity of this effective field, with respect to an or-
dinary external field, is that it depends on the configuration c
of the ferromagnetic electrodes. For instance, in the case of
symmetric ferromagnetic contacts, symmetry considerations
lead to hSDIPS

P �0 and hSDIPS
AP =0.

In the following, we calculate the zero-bias conductance
of the circuit using39

h

e2

Gc

2
= �

d,�
	

−�

+�

d

�f��
�

��


	d�
L ��
�	d�

R ��
�
	d�

L ��
� + 	d�
R ��
�

Im�Gd��
�� .

�3�

The above equation involves the retarded Green’s function

Gd��
�=
−�
+�G̃d��t�ei
tdt with G̃d��t�=−i��t�

���cd��t� ,cd�
† �0���. We also use the Fermi distribution f�
�

= �1+exp�
��−1 and the tunnel transition rates 	d�
l �
�

=�
k

2�
td�
k 
2��
=
k�� with l� �L ,R�. Note that Gd�, 
d� and

	d�
l depend on the configuration c� �P ,AP� considered but

for simplicity we omit the index c in those quantities. We
want to study current transport in the limit studied in Ref. 17,
i.e., the width of conductance peaks displayed by the circuit
is determined not only by temperature but also by the tunnel
rates �	d�

L +	d�
R �2kBT�. This requires one to go beyond the

sequential tunneling description, i.e., to take into account
high-order quantum tunneling processes. For this purpose,
we will calculate Gd� using the equation of motion �EOM�
technique,40 which is valid for temperatures larger than the
Kondo temperature TK of the system.41

III. SINGLE LEVEL QUANTUM DOT

For simplicity, we first take into account a single orbital
level d of the dot. We follow the lines of Ref. 40. The EOM
technique leads to

Gd��
�
�

=
1 − �nd�̄�

�
 − 
d� − ��
S +

�nd�̄�

�
 − 
d� − ��
D �4�

with

�nd�� = − 	
−�

+� d


�
f��
�Im�G�

d�
�� �5�

the average occupation of orbital d by electrons with spin �.
We define

��
S = �d�

0 − U�d�,d�̄
1,1 ��
 − 
d� − U − �d�

0 − �d�,d�̄
3,1 �−1, �6�

��
D = U + �d�

0 + U�d�,d�̄
2,1 ��
 − 
d� − ��

0 − �d�,d�̄
3,1 �−1, �7�

�d�
0 = �

k


td�
k 
2��
 − 
k� + i0+�−1 �8�

and, for i� �1,2 ,3�,

�d�,d���
i,n = �

k

�i�
k���
tk��
d� 
2

�
 − 
d� + 
d��� − 
k�� + i0+

+ �
k

�i�
k���
tk��
d� 
2

�
 − 
d� − 
d��� − nU + 
k�� + i0+ . �9�

Here, one has �1�
�= f�
�, �2�
�=1− f�
�, and �3=1. �We
anticipate on the next paragraphs by defining �d�,d���

i,n for n
�N and an arbitrary dot state d����d�, but only n=1 and
d���=d�̄ are needed for the present one-orbital case�. We
assume that the coupling to the leads is energy independent
�broadband approximation�, which gives, e.g., �d�

0 =−i�	d�
L

+	d�
R � /2. The term �d�

0 , which is due to the tunneling of
electrons with spin �, already occurred in the noninteracting
case.42 In the interacting case, Gd��
� also involves �d�,d���

i,n

terms related to the tunneling of electrons with spin �̄. The
average occupation �nd�� can be calculated from Eqs. �4� and
�5� as

�nd�� =
�nS���1 − �nS�̄�� + �nS�̄��nD��

1 − ��nD�� − �nS�����nD�̄� − �nS�̄��
�10�

with, for j� �S ,D�,

�nj�� = −
1

�
Im 	

−�

+�

�d

f��
�

�
 − 
d� − ��
j �
�

. �11�

Figure 2 shows the conductance Gc in configuration c
� �P ,AP� �panels �a�, �c�, and �e�� and the magnetoresistance
MR= �GP−GAP� / �GP+GAP� �panels �b�, �d�, and �f�� calcu-
lated for different values of hSDIPS

c , using 	d↑�↓�
l =	l�1± Pl� for

l� �L ,R�. We have used parameters consistent with Ref. 17,
i.e., U /kBT=30, and tunnel rates 	L�R� leading to the proper
width and height for the conductance peaks. We have also
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used relatively low values for PL�R� because usual ferromag-
netic contact materials are not fully polarized.43 The conduc-
tance peak corresponding to level d is split due to Coulomb
interactions �see Eq. �4�, Figs. 2�a�, 2�c�, and 2�e��. At low
temperatures T�TK, Kondo effect is expected in the valley
between the two resulting peaks. We have checked that the
hypothesis T�TK and hence the EOM technique are valid
for the parameters of Fig. 2 �see Refs. 44 and 45�. For
hSDIPS

c =0, we already note a strong qualitative difference
with the noninteracting case: although the two conductance
peaks displayed by GP�Vg� are very similar, the MR varia-
tions corresponding to these two peaks have different
shapes.23 More precisely, for the low values of polarization
considered here, MR�Vg� is approximately mirror symmetric
from one conductance peak to the other. Note that in Fig. 2,
we have used specific parameters such that MR remains
positive for any value of Vg when there is no SDIPS. Nev-
ertheless, it is possible to have MR�0 for hSDIPS

P =hSDIPS
AP

=0, for instance, by increasing PL�R� �not shown�.
We now address the effect of a finite effective field hSDIPS

c .
This field produces a shift of the conductance peaks from the
P to the AP configurations. For instance, in Figs. 2�c� and
2�e�, plotted for hSDIPS

P �0 and hSDIPS
AP =0, the left �right� con-

ductance peak is shifted to the right �left� from P to AP
because it mainly comes from the transport of up �down�
spins in the P case �this can be seen from the average occu-
pations of the levels versus Vg in Fig. 3�. As a consequence,
in Fig. 2, MR becomes negative for certain values of gate
voltage. The effective field hSDIPS

c thus enhances negative
MR effects. If hSDIPS

c is strong enough, it can even produce a
giant MR effect with its sign tunable with Vg �Fig. 2�f��.

Moreover, because of the opposite shifts of the two consecu-
tive conductance peaks for c= P with respect to those for c
=AP, the positive-and-then-negative profile of MR corre-
sponding to one conductance peak is generally followed by
the negative-and-then-positive profile near the next conduc-
tance peak �approximately mirror symmetric�. Note that a
sign change hSDIPS

P →−hSDIPS
P will not modify this behavior

for the low values of polarizations considered here because
the spin with lower �higher� orbital energy will dominate in
the left �right� peak of GP�Vg�.

We now compare the results of this section with the ex-
perimental data of Ref. 17. Like many Coulomb blockade
devices, the circuit studied in this experiment suffered from
low frequency Vg noise, which can be attributed to charge
fluctuators located in the vicinity of the device. A strong gate
voltage offset jump occurred at Vg=4.331 V, and the data
before and after this jump do not necessarily correspond to
the filling of consecutive levels. Therefore we will focus on
the data taken for Vg�4.331 V, shown46 with black squares
in Fig. 6. These data display almost two regular MR�Vg�
oscillations, which cannot be understood with the one-orbital
model. Indeed, as explained above, in this model, the two
conductance peaks of Gc�Vg� are shifted in opposite direc-
tions by hSDIPS

c . As a consequence, the MR�Vg� variations
corresponding to these two peaks cannot be similar for pa-
rameters consistent with the experiment. We have shown
here curves for hSDIPS

AP =0, but a finite hSDIPS
AP would not

modify this result. Using values of PL�R� larger than in Fig. 2
would not help either.

For simplicity, we have considered in this section the one-
orbital case. In reality, there is more than one orbital level on
a quantum dot. As long as these levels are sufficiently well-
separated from each other �roughly, by an orbital energy dif-
ference larger than the Hund-rule exchange energy�, the two
conductance peaks associated to a given level will occur con-
secutively in Gc�Vg� and will thus be described qualitatively
like above.40 In particular, the two peaks will be shifted in
opposite directions by hSDIPS

c �0; the first peak to lower val-
ues of Vg and the second peak to higher values. Therefore
this limit should not allow one to obtain two consecutive
conductance peaks with analog MR�Vg� patterns. On the
contrary, if two �or more� levels are nearly degenerate, it is
possible that the orbital levels of the quantum dot are not
filled one by one while increasing Vg. Therefore consecutive
conductance peaks may exhibit a qualitatively different be-
havior compared with the one-orbital case. To examine this
effect, we will consider in the next section the extreme case
of a quantum dot with a twofold orbital degeneracy. We will
see that the discrepancy between the theory and the data can
be resolved by using this model.

Before concluding this section, we make a remark on an-
other possible contribution to the spin splitting of the con-
ductance peaks. Even though so far we have mainly consid-
ered the contribution from the SDIPS, in principle, virtual
particle exchange processes with the spin-polarized leads can
also renormalize the energy levels through the �d�,d���

i,n terms
of Eq. �9�.47,48 Indeed, the �d�,d���

i,n terms are not negligible in
general. For example, in Fig. 2�a�, they globally shift the
position of the conductance peaks in GP�Vg� by about 3.2%

FIG. 3. �Color online� Average occupations �nd↑� �blue lines�
and �nd↓� �black lines� of level d by spins ↑ and ↓ as a function of
Vg, for the one-orbital quantum dot circuit of Fig. 1. The results are
shown for the same parameters as in Fig. 2 and lead polarizations in
the parallel configuration �c= P�, with hSDIPS

P =0 �panel �a��,
g�BhSDIPS

P =0.06U �panel �b��, and g�BSDIPS
P =0.4U �panel �c��. For

hSDIPS
P =0, �nd↑� and �nd↓� remain very close, simply showing two

steps corresponding to the two conductances peaks visible in Fig.
2�a�. In the case of a finite hSDIPS

P , �nd↑� rises more strongly than
�nd↓� at the first conductance peak, revealing that current transport
is due in majority to ↑ spins for this first peak. Then, �nd↑� and �nd↓�
become closer when both 
d↑ and 
d↓ are below the Fermi level. At
the second conductance peak �nd↓� rises more strongly than �nd↑�
because current transport is now dominated by down spins. The
asymmetry between the behaviors of spins ↑ and ↓ increases with
hSDIPS

P �from left to right panels�.
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of U /e�. Nevertheless, for the low values of polarizations
PL�R� and the temperatures used here, the level spin-splitting
produced by the �d�,d���

i,n terms is much weaker than this
global shift and cannot compete with the finite values of
hSDIPS

c considered in this paper.

IV. QUANTUM DOT WITH A DOUBLY DEGENERATE
LEVEL

In order to improve the understanding of Ref. 17, we now
take into account the K-K� orbital degeneracy commonly
observed20,28–32 in SWNTs, by considering a two-orbitals
model, i.e., Hamiltonian �2� with d� �K ,K�� and 
K��=
K�.
Interestingly, SU�4� Kondo effect involving the orbital and
spin degrees of freedom was observed in SWNTs with the
K-K� degeneracy.49,50 This suggests that, in this system, the
orbital quantum number is conserved during higher order
tunnel events, probably because the electrons of the nanotube
quantum dot are coupled to the nanotube section underneath
the contacts, where they dwell for some time before moving
into the metal. For simplicity, we will also assume such a
situation here and disregard high-order quantum processes
which couple the K and K� orbitals.51 In order to calculate
the conductance of the system from Eq. �3�, one needs to
calculate the retarded Green’s function Gs�
� for s
�{�K↑ � , �K↓ � , �K�↑ � , �K�↓ �}. For this purpose, we again
use the EOM technique. Since it is not possible to obtain a
simple analytical expression for Gs�
� in the two-orbitals
case, we show below the system of equations of motion cal-
culated by neglecting electronic correlations between the dot
and the leads �T�TK�. Using s, s1, s2, and s3 to denote four
different dot states in the ensemble
{�K↑ � , �K↓ � , �K�↑ � , �K�↓ �}, we obtain

Gs = ��
 − 
s − �s
0�−1�� + U�Ds

s1 + Ds
s2 + Ds

s3�� , �12�

Ds
s1 = ��
 − 
s − U − �s

0 − �s,s1

3,1 �−1���ns1
� − �s,s1

1,1 Gs

+ �U − �s,s1

3,1 ��Ds
s1,s2 + Ds

s1,s3� + �s,s1

1,1 �Ds
s2 + Ds

s3�

+ ��s,s1

1,3 − �s,s1

1,1 �Ds
s2,s3 + ��s,s1

3,1 − �s,s1

3,3 �Ds
s1,s2,s3� , �13�

Ds
s1,s2 = ��
 − 
s − 2U − �s

0 − �s,s1

3,3 − �s,s2

3,3 �−1

����ns1
ns2

� − �s,s1

1,3 Ds
s2 − �s,s2

1,3 Ds
s1 + �s,s1

1,3 Dd�
s2,s3

+ �s,s2

1,3 Ds
s1,s3 + �U − �s,s1

3,3 − �s,s2

3,3 �Ds
s1,s2,s3� , �14�

Ds
s1,s2,s3 = ��
 − 
s − 3U − �s

0 − �s,s1

3,5 − �s,s2

3,5 − �s,s3

3,5 �−1

� ���ns1
ns2

ns3
� − �s,s1

1,5 Ds
s2,s3 − �s,s2

1,5 Ds
s3,s1

− �s,s3

1,5 Ds
s1,s2� . �15�

Due to interaction U, the Green’s function Gs=Gs�
� is
coupled to other Green’s functions Ds

s1,. . .,s3�
�
=
−�

+�D̃s
s1,. . .,s3�t�ei
tdt with D̃s

s1,. . .,s3�t�=−i��t�
���ns1

�t�¯ns3
�t�cs�t� ,cs

†�� and nsi
�t�=csi

† �t�csi
�t� for i

� �1,3�. This means that the dynamics of electrons in state s
is modified by the presence of other electrons on the dot. �In
the one orbital case, Gd� was coupled to Dd�

d�̄ only, which led
to simple expression �4�.� The term �s

0=−i�	s
L+	s

R� /2 is the
tunneling self-energy for a noninteracting quantum dot, al-
ready introduced in the previous section. The equations of
motion also involve terms �d�,d���

i,n , which are defined by Eq.
�9�, and terms defined by

�d�,d���
i,n = �

k

� �i�
k���
tk��
d� 
2

�
 − 
d� − 
d��� + 
k�� − nU + i0+

−
�i�
k���
tk��

d� 
2

�
 − 
d� − 
d��� + 
k�� − �n + 2�U + i0+� .

�16�

These terms take into account the tunneling of electrons be-
tween the leads and a dot state d��� different from d�. The
average level occupations occuring in Eqs. �12�–�15� are
given by �ns1

, . . . ,nsn
�=−
−�

+� d

� f��
�Im�Dnsn

s1,. . .,sn−1�
��. The

Green’s functions and the level occupations can be calcu-
lated numerically from the above equations. Up to now, the
EOM technique for multilevel systems had been imple-
mented only by neglecting �d�,d���

i,n and �d�,d���
i,n terms.52 Like

in the one-orbital case, these terms are not negligible in the
context of our study.

Figure 4 shows the conductance �panels �a�, �c�, and �e��
and MR curves �panels �b�, �d�, and �f�� calculated from Eqs.
�3� and �12�–�15�, for different values of hSDIPS

c . For simplic-
ity, we have assumed that the coupling to the leads is iden-
tical for the two orbitals, i.e., 	K↑�↓�

l =	K�↑�↓�
l =	l�1± Pl� for

l� �L ,R�. We have again used parameters consistent with
Ref. 17, i.e., U /kBT=30, relatively low polarizations 
PL�R�

=0.4, and values of 	L�R� leading to the proper width and
height for the conductance peaks. We have checked that
these parameters are compatible with the hypothesis T�TK,
with TK the Kondo temperature associated to the SU�4�
Kondo effect expected in this system.50 In most cases, the
curves Gc�Vg� show four resonances, the first two associated
with a single occupation of K and K�, and the other two to
double occupation �see, e.g., Fig. 4�a��. For hSDIPS

P =hSDIPS
AP

=0 and the parameters used here, MR remains positive for
any value of Vg �Fig. 4�b��. Like in the one-orbital case, a
finite hSDIPS

c makes easier negative MR effects and can even
lead to a giant MR effect with a sign tunable with Vg �Figs.
4�d� and 4�f��. Importantly, the effect of hSDIPS

c depends on
the occupation of the dot. For instance, in Fig. 4�e� plotted
for g�BhSDIPS

P larger than the linewidth of the conductance
peaks, the first two conductance peaks of GP �peaks 1 and 2�
are strongly shifted to the left by hSDIPS

P because they are due
in majority to up spins, as can be seen from the average
occupation of the levels in Fig. 5�c�. This allows one to get a
MR pattern approximately similar for these two peaks, i.e., a
transition from positive to negative values of MR �Fig. 4�f��.
On the contrary, peak 4 corresponds to a transition from
negative to positive values of MR because the associated
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conductance peak is due in majority to down spins. In Fig.
4�e�, the shape of the MR�Vg� pattern associated to peak 3 is
more particular �positive/negative/positive� because, for the
values of parameters considered here, Coulomb blockade
does not entirely suppress the up spins contribution in peak
3, which is therefore spin-split.53 Remarkably, this allows
one to obtain, at the left of Fig. 4�f�, three positive MR
maxima which differ in amplitude but have rather similar
shapes. In the case of g�BhSDIPS

P finite but smaller than the
linewidth of the conductance peaks �Fig. 4�c��, the amplitude
of the MR signal is much smaller than in the previous case
but its shape remains comparable.

We now reconsider the experimental data of Ref. 17. Even
the two-orbital model cannot provide a reasonable fit to the
data if we assume hSDIPS

P =0 and hSDIPS
AP =0. In contrast, the

two-orbital model exhibits a good agreement with the experi-
mental data for hSDIPS

P =0.05U, hSDIPS
AP =0, 	L /U=0.0043,

	R /U=0.0725, 
PL�R�
=0.4, and parameters U=5 meV,

U /kBT=30, and �=0.0986 given by the experiment �see Fig.
6, red and pink full curves�.

We now discuss the value of hSDIPS
P =0.05U found for the

above fit. This corresponds to a magnetic field of about 2 T,
which is too strong to be attributed to stray fields from the
ferromagnetic electrodes �see, e.g., Ref. 54�. This is in favor
of generalizing the SDIPS concept to SWNT quantum dot
circuits, i.e., considering that the energy levels of the dot are
spin-split because the confinement potential created by the
ferromagnetic electrodes is spin-dependent. For comparison,
we have estimated hSDIPS

P in the noninteracting theory14 using
realistic parameters, i.e., leads with a Fermi energy 10 eV
and a density of states polarized by 40%, and a nanotube
with Fermi wave vector 8.5�109 m−1, Fermi velocity55 vF

M

=8�105 m s−1, length L=500 nm like in Ref. 17, and den-
sity of states NF

M =2L /��vF
M. We have modeled the interfaces

between the nanotube and the leads with Dirac potential
barriers,56 with a height which is spin-polarized by 40% and
an average value which corresponds to42 	L�R�=TL�R� /�N F

M

�60 �eV�For comparison the fitting parameters used in Fig.
6 correspond to 	L=21 �eV and 	R=362 �eV.� We obtain
hSDIPS

P �1.3 T, which is consistent with the above analysis.
In the above discussion, we have assumed hSDIPS

AP =0 for
simplicity. The height of the conductance peaks in the data
imposes one to use a strong assymetry 	R /	L�17 between
the left and right tunnel rates. Thus the two tunnel barriers
are not symmetric, and there is no fundamental reason to
assume hSDIPS

AP =0. Figure 6 shows examples of MR curves
plotted for a finite hSDIPS

AP . Using hSDIPS
AP =0.01U �green dashed

FIG. 4. �Color online� Panels �a�, �c�, and �e�: Conductance GP

in the parallel configuration �red full lines� and conductance GAP in
the antiparallel configuration �black dotted lines�, for the circuit of
Fig. 1, with M a two-orbitals quantum dot. We have used identical
tunnel rates to the two orbitals, i.e., 	L=0.0043U, 	R=0.0725U,
and PL�R�=0.4. We have also used U /kBT=30 and hSDIPS

AP =0. Panels
�b�, �d�, and �f�: Magnetoresistance MR �pink full lines� corre-
sponding to the left conductance plots. The results are shown for
g�BhSDIPS

P =0 �panels �a� and �b��, g�BhSDIPS
P =0.05U �panels �c�

and �d��, and g�BhSDIPS
P =0.3U �panels �e� and �f��.

FIG. 5. �Color online� Average occupations �n↑�= �nK↑�= �nK�↑�
�blue lines� and �n↓�= �nK↓�= �nK�↓� �black lines� of levels K and K�
by spins ↑ and ↓ as a function of Vg, for a two-orbitals quantum dot
circuit with the same parameters as in Fig. 4. The results are shown
for lead polarizations in the parallel configuration �c= P�, with
hSDIPS

P =0 �panel �a��, g�BhSDIPS
P =0.05U �panel �b��, and

g�BhSDIPS
P =0.3U �panel �c��. For hSDIPS

P =0, �n↑� and �n↓� remain
very close, showing four steps corresponding to the four conduc-
tances peaks visible in Fig. 4�a�. In the case of a finite hSDIPS

P , �n↑�
rises more strongly than �n↓� for the two first conductance peaks,
which shows that current transport is due in majority to up spins for
these two peaks. The opposite situation occurs for the two last con-
ductance peaks. The asymmetry between the behaviors of spins ↑
and ↓ increases with hSDIPS

P �from left to right panels�.
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curve� enhances the fit of the MR at peak 2 whereas hSDIPS
AP

=−0.01U �blue dot-dashed curve� enhances the fit of the MR
at peak 3. Interestingly, with the noninteracting model, as-
suming the most simple situation in which �l

P,↑−�l
P,↓ has the

same sign for the two leads, one finds 
hSDIPS
AP 
� 
hSDIPS

P 
,
which is in agreement with the values used here. The fact
that the best fit for the MR patterns at peaks 2 and 3 corre-
spond to different values of hSDIPS

AP might be due to a gate
dependence of the SDIPS. This is indeed possible since the
potential profile of the interfaces between the wire and the
leads can vary with Vg.

We now comment briefly on the data taken for Vg
�4.331 V. It is not sure that the data shown before and after
Vg=4.331 V correspond to the filling of consecutive levels
because of the gate voltage jump which occured at this value
of Vg. Nevertheless, the shape of the MR curve correspond-
ing to Vg�4.331 V is rather consistent with the theory
shown in Fig. 4. This suggests that these data really corre-
spond to peak 1. At this stage, it is important to point out that
other orbital levels not taken into account in our calculation

should slightly modify the conductance peaks 1 and 4. The
discrepancy between the theory and the data for Vg
�4.331 V could be explained by the effect of the other or-
bitals. For the data at Vg�4.331 V, our fit is more quantita-
tive since we have used peaks 2 and 3 of the theory.

In principle, the modelization of the orbital levels in
SWNTs can be refined by taking into account an exchange
energy J which favors spin alignment, an excess Coulomb
energy �U related to the double occupation of the same or-
bital, and a subband mismatch �=
K��−
K��0 �see Ref.
57�. In practice, �U is rather small but J and � can be of the
same order as U. Two different regimes of parameters can
occur in practice. If ��J+�U+ 
g�BhSDIPS

c 
, two electrons
with opposite spins will fill consecutively the same energy
level while Vg increases �see Refs. 20 and 30�, and the be-
havior of the device should thus be analog to the nondegen-
erate multiorbital case evoked at the end of Sec. III. Never-
theless, if ��J+�U+ 
g�BhSDIPS

c 
, peaks 1 and 2 �3 and 4�
will correspond in majority to the same spin direction, as
observed experimentally by Refs. 28 and 29. In this case, the
effect of hSDIPS

c should be qualitatively the same as described
in the present section. We expect that the weights of K and
K� in peaks 1 and 2 differ due to ��0, but this should not
change the way in which hSDIPS

c shifts the conductance peaks
from P to AP.

In future experiments, it would be interesting to obtain
continuous data on a larger Vg range, in order to check that
the shape of the MR�Vg� pattern depends on the occupation
of the dot. This would also allow one to study the gate volt-
age dependence of hSDIPS

c . It would also be interesting to
engineer contacts with ferromagnetic insulators or highly po-
larized ferromagnets in order to observe the SDIPS-induced
giant MR effect. Note that although we have considered here
the limit kBT�	d�

L +	d�
R , a strong enough SDIPS should also

affect the behavior of the quantum dot in the sequential tun-
neling limit kBT�	d�

L +	d�
R , through an analogous mecha-

nism.

V. CONCLUSION

Using an Anderson model, we have studied the behavior
of a quantum dot connected to ferromagnetic leads through
spin-active interfaces. The spin activity of the interfaces
makes easier negative magnetoresistance �MR� effects and
can even lead to a giant MR with a sign oscillating with the
gate voltage of the dot. Due to Coulomb blockade, the MR
versus gate voltage pattern cannot be identical for all con-
ductance peaks. It is nevertheless possible to account for the
MR data measured by Ref. 17 in single-wall carbon nano-
tubes by taking into account the K−K� orbital degeneracy
commonly observed in those systems.
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FIG. 6. �Color online� Comparison between the data of Ref. 17
�squares� and the two-orbitals theory. We show the conductance GP

in the parallel configuration �top panel� and the corresponding mag-
netoresistance MR�= �GP−GAP� /GAP �bottom panel�. The theory is
shown for parameters consistent with the experiment, i.e., U
=5 meV, U /kBT=30, and �=0.0986. We also use relatively low
values of polarization PL�R�=0.4 because usual ferromagnetic con-
tact materials are not fully polarized. �Ref. 43� Assuming identical
tunnel couplings for the two orbitals, the values of tunnel rates 	L

=0.0043U and 	R=0.0725U are imposed by the width and height of
the conductance peaks. Then, hSDIPS

P�AP� are the only free fitting param-
eters which remain for interpreting the MR curve. We have assumed
g�BhSDIPS

P =0.05U for all the theoretical curves shown in this figure.
We have plot the MR curves of the bottom panel for hSDIPS

AP =0 �pink
curve, corresponding to Fig. 4�d��, hSDIPS

AP =−0.01U �green dashed
curve� and hSDIPS

AP =0.01U �blue dot-dashed curve�. Note that in this
figure, we show MR� instead of MR= �GP−GAP� / �GP+GAP� in or-
der to be consistent with Ref. 17. A strong gate voltage offset jump
occurred at Vg=4.331V, therefore we show the data at the left/right
of this jump with gray/black symbols.
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