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‘RelationWeeer and Information’

e By having information about a system I mean the state
we assign it is not uniformly random (entropy S not maximal).

Entropy S is associated with
both an object and an
observer

e ‘Work’ is essentially energy transferred into a battery.

e The ‘relation’ here is that
‘more information means more extractable work’.



Information ﬁw%xtraetion-why care?

1. The question is inherently interesting, e.g. how can we have equations with
something subjective, S, and something objective, W, together?

2. Fundamental limits of work and heat immensely important for mankind.

“The power densities of typical integrated circuits
are approaching those of a light bulb filament (~ 100
Removal of the heat generated by an
integrated circuit has become perhaps
the crucial constraint on the performance

of modern electronics’™.
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3. Energy is crucial to life, and as we shall discuss, the interplay between entropy
and energy is too.

*MIT Open course on nano-electronics.
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Work (energy transferred)

Information

. Inequality linking work and information:

Free energy can only decrease.

. Applications.

. Our current research



It modelled

Energy E is modelled as a real number, assigned to a state.

Classical mechanics: The state is z, p (or more such variables), and the
assignment is done by a function £ = H(x,p) called the Hamiltonian. (Can
also have probability distributions over x,p as our state).

Quantum mechanics: The state is a pure state ket |¢) or a density matrix p.
Average energy of state is assigned as

(H) = (¢|H|1p),

where H is the Hamiltonian operator.
In both cases the Hamiltonian determines the time evolution.

de  OH d_p__@_H_
dt  Op  dt Oz’

d|) r
— = —iH
[Quantum and classical description can be unified: Defining Hamiltonians be-

yond quantum theory, Branford, Garner and Dahlsten/




IS energy conserved

e In both classical and quantum mechanics, energy conserved under time-
independent Hamiltonian.

e Time-dependent Hamiltonians can change energy. Then have implicit
outside system too (such that total Hamiltonian time-independent).

e Example: Particle in a box, with
2
H = — + V{(x,t
(wﬁp) 2 _|_ (:U') )')

where V (x,t) is infinite at walls and 0 inside.

Implicit outside system



HOW to model energy transfer between systems?

Total energy of a closed system conserved under time evolution:

but energy can move between subsystems A and B. We write
(H) = (Ha) + (Hp) + (Hin),

where (H 4,p) must only depend on state of subsystem A /B, and H;,; depends
on both. Then

A((HA) + (Hp) + (Hing)) = 0

If (H;nt) =~ 0 at the points of evaluation, e.g. before and after an interaction
takes place, energy of A and B individually well-defined.
Can now say energy was transferred between A and B:

A((Ha) + (Hp)) = 0.

A((Ha)) = —A((Hp))



1. Work out: energy change of designated battery system.
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2. Work has probability distrib., can focus on average work.

e

3. Worst-case work in any single shot also important.

*)Photonic Maxwells Demon,
Vidrighin, Dahlsten, Barbieri, Vedral, Walmsley, PRL 2016.



What Is information



Our knowledge of a system is represented by mathematical objects called states:
1. Probability distribution p’ (Classical probability theory)
2. Density matrix p (Quantum theory)

The entropy is a real number assigned to each state representing essentially our
uncertainty about the underlying microstate.



pbabllities are subjective
=L

e Different people assign different probability distributions to the same events.

e Thus for a given function of probabilities —think entropy— they will as-
sign different values.

observer
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If the number of messages in the set is finite then this number or any monotonic
function of this number can be regarded as a measure of the information produced
when one message is chosen from the set, all choices being equally likely. As was
pointed out by Hartley the most natural choice is the logarithmic function.

Shannon 1948

The great advance provided by information theory lies in the discovery that
there is a unique, unambiguous criterion for the the "amount of uncertainty"

represented by a discrete probability distribution [...]
Jaynes 1956

Information Entropy: how to quantify
iInformation



Examples of Entropy measures

Shannon entropy S(X)z = > . pilog(1/p;).

Renyi entropies: S, (X)z = ﬁ log > . ps.

Some special cases:

So(X)z = Zlogp?.

(Use L’Hopital’s rule to see that)

Sa—1(X)z = S(X)5.

52(X)p = —log ZP?

SOO (X)ﬁ — log(pmax)-



Question, aow I_eige a memory?

0.3

Pmax | o2 -

0.1

0.0

[supp(p)|

In above example: 8 states — 2 bits
General Answer: Y. p? states — log>_. p) = Sy bits.




annon entropy and large n iid limit

e [t is common since Shannon to assume that the random process is inde-
pendently and identically distributed (i.i.d): piot = PR PR ...p = p®".

e Such states allow for a neat type of information compression:
as n gets large a large sequence of outcomes, such as 001100111..0 will
very likely have about np(0) 0’s and np(1) 1’s. Thus effectively we have a
probability distribution over such typical sequences alone.

e How many Ny, of them? Each has prob p(0)"?(®)p(1)7r(1),
s Niyp (p(0)Op(1)> V) < 1
= Ny, < 20s@O)Vp()7Y) _ onH (D)

e Here effectively there is a uniform distribution over 2" possible states,
such that any Renyi entropy is effectively log(2"# (7)) = nH (p).



tum entropy
S

Quantum theory state: density matrix p. Call eigenvalue spectrum X. In eigen-
basis of p,
o= 3" Adi)il.
i

Von Neumann entropy

S(p) = Z)\z‘ log(1/A;).

Renyi entropy

Salr) = oy loE SN

Simplest interpretation: a measure of our ignorance of the underlying quantum
state, O if state is pure.



Othergatropic quantities

Note that the Shannon entropy is average surprise (log(1/p;)):
S(p) := (log(1/pi))p

Relative entropy of two probability distributions:
S(p1|q) = (log(pi) — log(4:)) 5

Average difference in surprise
of a given event bw two distributions p and q.



What is relation between
work and information?

18



Inequality with energy and entropy

e Recall the thermal distribution over states labelled by i, with energies F;:
v =Y exp(—BE;)|i)il/Z,
i

where 7 is a a normalisation factor.

e As things thermalise with a bath at temp T they get closer to this state:

p—
-

e It turns out this implies that (H) — T'S can only decrease (then flattens
out to the thermal state value Whlch is —kTIn 7).

A system thermalising with a heatbath at temp T will by as-
sumption undergo a series of state changes all respecting

A((HY —TS) <0

e Now we have an inequality with energy and entropy together. 19



3| meaning of F=U-TS

/T
<) 'i—h

Suppose battery (system 2) must have low entropy s.t. Fy = Uy — T'Sy = Us,
then

F12 %Fl-l-Fg %F1‘|'U2
As they interact with heat-bath alone, demand 0Fj5 < 0 Thus

5F2 ~ 5U2 S —5F1 = 5(U1 — TS(p))
Let work (W) := 6Us. Conclude
(W) <46(Uh = TS(p))

So F bounds the available (=free) work, and is therefore called the Free enttgy



Examples of relation between
work and information

21
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e Daemon inserts divider in middle of the box, measures particle position,
hooks up weight accordingly, then extracts work W isothermally.

(W) < 6F Free energy has
- entropy in it

SF = 6U —T6S =0 —T6S = —TkIn 2,

where 6U = 0 since by equipartition principle U = (1/2)kT and T con-
stant, and

05 = k(In2d — Ind) = k1In2 where d is number of accessible phase space

points. Work value of one bit

e We used up one bit (L vs R) to gain (W) = kT In2 's kTin2 22



or the reverse process.

e Suppose reduce a systems entropy by 6.5
e Must cost work at least (U —T'S) = o(U) — T6(.5).
o If set §(U) = 0, this means W > T§(.5).

e If we are resetting one bit, (0,1) — 1 then §S = kT In2. This is Lan-
dauers principle: resetting one bit costs at least £71'In2 of work.

Trend of minimum transistor switching energy
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[Michael Frank, MIT] Year of First Product Shipment
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Kelvin's version of second law.

No process is possible in which the sole result is the absorption of
heat from a reservoir and its complete conversion into work.

e After the Szilard engine work extraction the working medium is restored to its
original state, seemingly violating Kelvin's law, unless there is a hidden work
cost not accounted for.

e Bennett points out that the daemon may correlate its memory with the par-
ticle by a reversible interaction (CNOT gate) in principle at no energy cost.
Measurement does not need to cost work.

e But, Bennett argues, the entropy of the memory is increased by 1 bit and by
Landauer’s principle it costs at least k7'In2 work to reset it. Bennett thus
located the hidden work cost which saves Kelvin's law.



Lije and Landauer’s principle
- - oo
1. Bacteria multiplying in solution use work, dissipating heat.

2. The creation of a new cell is a kind of reset:
atoms must go into a restricted configuration.

BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 17, 1955

SOME ORDER-DISORDER CONSIDERATIONS IN
LIVING SYSTEMS

Harorp J. MorowITz*

Lasorarory oF Tecanicat DeveropsenT, NaTionar Heart INsTITUTE, NATIONAL TN-
srrToTES OF HEALTH, PUBLIc HEALTH SERVICE, U.S. DEPARTMENT OF HEALTH,
EpucaTioN AND WELFARE, BETHESDA, MD.

Order and disorder in biological systems are considered guantitatively in terms of infor-
mation and entropy. After discussing the factors contributing to the information content of a
living cell, a calculation is made of this parameter. The value for a typical bacterial cell is
4,6 > 10 bits, This value is compared with an experimental value of the heat of growth and
entropy production of E. Coli. A discussion of methods of improving the calculation is also




odynamic Meaning of Negative entropy

e For von Neumann entropy S, conditional entropy given by:

S(A|Q) == S(AQ) — S(Q)
e A simple example: [¢) o = [00) + [11), then S(A4|Q) = —1.
e We want to interpret such negative entropy a’ la Landauer/Szilard.

e We include the observer‘s
memory Q explicitly in
the description of the
erasure of system A.

Del Rio et al,
Nature 2011




erasing Aguith cost S(A|Q)kTIn2:example

A simple example illustrates the general protocol:
V) 4 = 100) +|11), S(A|Q) = —1.

(i) Extract Wy, = 2kT In 2 work from both A and Q.
(ii) Reset A to |0) by using Win = kT In 2 work.
Net result: A was reset to |0), reduced state on Q unchanged:

W =Win—Wout = —kT'In2 = S(A|Q)kT In 2.



Applicatioggdor cooling computers

e Extract work from correlations between the output qubits and the rest. Re-
duced state on output invariant.

e Consider circuit model computation, e.g. Shor's algorithm.
]- Output qubits

e Not all qubits are measured in the end to get the output.

Unitary

e The energy extracted comes from the computer and its surroundings, so the
computer is cooled.



. Many mathematical expressions show
“more information means more work”
(though often hidden fundamental costs cancel the work output)

. E.g. there are modifications of Jarzynski’s equality to cases of feedback
control™, optimal worst case work expressions (**) (single-shot statistical
mechanics) and much more.

. Several experiments consistent with the theory.

. But arguably we are short of technological uses for “more information
means more work”. We aim to find some.

Reviews: Second Law-Like Inequalities with Quantum Relative Entropy: An
Introduction T. Sagawa, arXiv:1202.0983v3;

The role of quantum information in thermodynamics—a topical review, Goold,
Huber, Riera, del Rio, Skrzypczyk JPHYS A 2016

*Koski, Maisi, Sagawa, Pekola 1405.1272 PRL

**Dahlsten, Renner, Rieper, Vedral 0908.0424 NJP, del Rio, Aaberg, Renner,
Dahlsten, Vedral 1009.1630 Nature Aaberg 1110.6121 NCOMMS, Horodecki,
Oppenheim 1111.3834 NCOMMS and more recent work by eg Egloff, Gour,
Faist, Yunger Halpern, Garner, .. 29



Summary & Outlook

e Work, information and their relation can be quantified.

e A key equation is
(W)Y < o(H) —Té68S.

e “The extractable work is bounded by the free energy change”.

e Different people can have different extractable work,(different .S).

Now: making this useful for technology.

WE ARE HIRING
AT ALL LEVELS




