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Introduction to Topological Insulators

Phases

• solid, liquid, gas, glass

• conductor, semiconductor, insulator, superconductor
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Introduction to Topological Insulators

Phases (cont.)

• paramagnetism, diamagnetism, ferromagnetism, antiferromagnetism

• charge-density wave, Bose-Einstein condensates
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Introduction to Topological Insulators

Phases (cont.)

• underlying principle for characterizing the state:

symmetry breaking and order parameter
• example: ferromagnetism

m =
1
N

N∑
i=1

〈Sz〉

breaking of the rotational symmetry of spins→ finite magnetization m 6= 0
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Introduction to Topological Insulators

Phases (cont.)

• Landau-Ginzburg theory (→ phenomenological explanation of the phase transition):
expansion of the free energy with respect to the order parameter

f (m) =
∞∑

n=0

fnmn

← order parameter can be very small near the phase transition
» high-temperature symmetric phase
⇒ low-temperature, less-symmetric, symmetry-broken state

» first/second/· · · -order transitions: depending on the vanishing of the second, third,
· · · coefficient of the expansion of the free energy.

• major limitation of Landau-Ginzburg theory⇐ local order parameter
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Introduction to Topological Insulators

Topological States

• topology
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Introduction to Topological Insulators

Topological States (cont.)

• phases of matter with topological order which cannot be described by a local order
parameter
» highly nonlocal order parameter
» no Landau-like theory can be established
• example: quantum Hall states, quantum spin Hall states

σH = n
e2

h

Here n is the number of “holes” or magnetic monopoles of the fictitious magnetic
field, so called the Berry field.

• topological phase = a phase of matter whose low-energy field theory is a topological
field theory, or the states with nonlocal order parameter
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Introduction to Topological Insulators

Practical Application of Topological Phase

• topological quantum computer: example of Majorana fermion

» quantum qubits, |0〉 and |1〉 = c† |0〉 defined by a single fermion
» single fermion operator (c)↔ two Majorana fermion operators (γ1, γ2)

γ1 = c† + c

γ2 = i(c† − c)

↔
c =

γ1 + iγ2

2
c† =

γ1 − iγ2

2

» how can the fermion c be nontrivial?

1. γ1 and γ2 localize arbitrarily far apart from each other
→ c becomes a highly non-local operator
→ the occupation of c operator cannot be measured locally

c†c =
1 + iγ1γ2

2

→ the fermionic state (|0〉 or |1〉) cannot be disturbed by a local perturbation
→ less susceptible to local decoherence processes

2. one can empty or fill the non-local state with no energy cost, resulting in a
ground-state degeneracy→ non-Abelian statistics or braiding
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Introduction to Topological Insulators

Topological Band Theory

• Mostly, non-interacting fermionic systems
• existence of bulk invariant (usually an integer or a rational number or set of numbers)

that differentiates between phases of matter having the same symmetry
• usually, but not always, topological states are associated with the existence of

gapless edge modes

note that topological phases can exist without the presence of gapless edge modes.
• topological band theory takes into account concepts such as Chern numbers and

Berry phases.
• in topological band theory, an important consideration is not only which symmetries

the states breaks, but which symmetries must be preserved to ensure the stability of
the topological state: symmetry-protected topological state

12



Introduction to Topological Insulators

Topological Band Theory (cont.)

• periodic table classifying the (non-interacting) topological insulators/superconductors

24th Workshop on Nanoscale and Mesoscopic Systems, Pohang, Korea 
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IQHE

polyacetylene

QSHE
3D TI

p+ip wave SC

d+id wave SC

majorana wire

considered symmetries: (1) time-reversal symmetry, (2) particle-hole symmetry
(charge conjugation), and (3) chiral symmetry

• for every discrete symmetry, there must exist topological insulating phases with
distinct physical properties and a topological number.
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Introduction to Topological Insulators

Topological Band Theory (cont.)

• identification of topological phase
» trivial insulator = insulator that, upon slowly turning off the hopping elements

between orbitals on different sites, flows adiabatically into the atomic limit
» in many cases, the nontrivial topology→ presence of gapless edge states in the

energy spectrum of a system with boundaries
» topological phase can theoretically exist without exhibiting gapless edge modes
→ the energy spectrum alone (with or without boundaries) is insufficient to
determine the full topological character
→ topological structure is encoded in the eigenstates

» “entanglement” (depends only on the eigenstates)→ topological nature
for example, topological entanglement entropy
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Berry Phase

Berry Phase

• quantum adiabatic transport in slowly varying (electric, magnetic, strain) fields
→ modification of the wave function by terms other than just the dynamical phase
⇒ Berry phase

• adiabatic transport in Bloch-periodic systems — parameters (Bloch momenta k) are
varied in closed loops (bands or Fermi surfaces) by applying the electric field

• Here we derive the Berry phase for a particle obeying Hamiltonian evolution under a
set of slowly varying parameters
→ the basis for defining a series of topological invariants (Chern numbers, Z2

invariants, etc)
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential

• general Hamiltonian H(R) = H(R(t)) for time-varying parameters
R = (R1,R2,R3, · · · ) where Ri = Ri (t)

• adiabatic evolution — R(t) are varied very slowly (compared to other energy scales,
for example, gaps) along a (open or closed) path C in the parameter space

• instantaneous orthonormal basis, |n(R)〉 at each R

H(R) |n(R)〉 = En(R) |n(R)〉 , 〈n(R)|m(R)〉 = δnm (1)

• gauge in |n(R)〉
» |n(R)〉 is defined up to a phase (in the case of degenerate states, a matrix)
→ gauge freedom

» choice of a gauge→ the phase of each basis function |n(R)〉 varies smoothly and
is single-valued along the path C

» in some cases, a smooth and single-valued choice is not possible along a closed
path C

» at least, smooth and single-valued gauges can be found piecewise in finite
neighborhoods of the parameter space.
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

• adiabatic theorem→ a system starting in an eigenstate |n(R(0))〉 stays as an
instantaneous eigenstate of the Hamiltonian |n(R(t))〉 throughout the process. BUT
what is the phase?

• Berry phase: time evolution of a wavefunction |ψ(t)〉 of a system prepared in an
initial pure eigenstate |n(R(0))〉

|ψ(t)〉 = e−
i
~
∫ t

0 En(R(t′))dt′eiγn |n(R(t))〉 (2)

1. conventional dynamical phase:
1
~

∫ t

0
En(R(t ′))dt ′

2. Berry phase γn for the state n

γn = i
∫ t

0
〈n(R(t ′))| d

dt ′
|n(R(t ′))〉 dt ′ (3)

Note that the Berry phase comes from the fact that |n(R(t))〉 and |n(R(t + dt))〉
are not identical

TI-1: proof of Eq. (2)
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

TI-1: proof of Eq. (2)

Let θ(t) be the phase of the state |ψ(t)〉 during the adiabatic evolution of the system so that

|ψ(t)〉 = e−iθ(t) |n(R(t))〉 (a)

Note that θ(t) cannot be zero because it must at least contain the dynamical factor related to the energy of the
eigenstate. By inserting Eq. (a) into the Schrödinger equation,

i~
d
dt
|ψ(t)〉 = H(R(t)) |ψ(t)〉

one obtains the differential equation

~
d θ(t)

dt
e−iθ(t) |n(R(t))〉 + i~e−iθ(t) d

dt
|n(R(t))〉 = e−iθ(t)H(R(t)) |n(R(t))〉

~
d θ(t)

dt
|n(R(t))〉 + i~

d
dt
|n(R(t))〉 = En(R(t)) |n(R(t))〉

By taking the scalar product with 〈n(R(t))|,

~
d θ(t)

dt
+ i~ 〈n(R(t))|

d
dt
|n(R(t))〉 = En(R(t))

By integrating over time t , the solution for θ(t) is

θ(t) =
1
~

∫ t

0
En(R(t′))dt′︸ ︷︷ ︸

= dynamical phase

− i
∫ t

0
〈n(R(t′))|

d
dt′
|n(R(t′))〉︸ ︷︷ ︸

= γn

20



Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

• Berry connection or Berry vector potential An(R)

γn =

∫
C

dR · An(R) with An(R) ≡ i 〈n(R)|∇R|n(R)〉 (4)

TI-2: proof of Eq. (4)

• Berry phase γn is real

γn = − Im
∫
C

dR · 〈n(R)|∇R|n(R)〉 (5)

TI-3: proof of Eq. (5)
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

TI-2: proof of Eq. (4)

Since

d
dt′

∣∣n(R(t′))
〉

=
d

dt′
∣∣n(R1(t′),R2(t′), · · · )

〉
=
∑

i

∂

∂Ri
|n(R)〉

d Ri

dt′
= ∇ |n(R)〉 ·

d R
dt′

the time can be removed explicitly from the equation

γn = i
∫ t

0
〈n(R(t′))|

d
dt′
|n(R(t′))〉 dt′ = i

∫ t

0
〈n(R)|∇R|n(R)〉 ·

d R
dt′

dt′

= i
∫
C
〈n(R)|∇R|n(R)〉 · dR
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

TI-3: proof of Eq. (5)

Since 〈n(R)|n(R)〉 = 1, by differentiating with respect to R,

0 = 〈∇Rn(R)|n(R)〉 + 〈n(R)|∇R|n(R)〉
〈n(R)|∇R|n(R)〉 = −〈∇Rn(R)|n(R)〉 = −〈n(R)|∇R|n(R)〉∗

Therefore, 〈n(R)|∇R|n(R)〉 is purely imaginary, or 〈n(R)|∇R|n(R)〉 = i Im 〈n(R)|∇R|n(R)〉. So,

γn = i
∫
C

dR · 〈n(R)|∇R|n(R)〉 = − Im
∫
C

dR · 〈n(R)|∇R|n(R)〉
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

• γn and An(R) are gauge-dependent!
Under gauge transformation, |n(R)〉 → eiζ(R) |n(R)〉 with ζ(R) a smooth,
single-valued function,

An(R)→ An(R)−∇Rζ(R)
γn → γn + ζ(R(0))− ζ(R(T ))

(6)

where T is the (long) time after which the path C has been completed.

TI-4: proof of Eq. (6)

(note that the gauge dependence of An is similar to that of the vector potential of the
“real” magnetic field)

• γn can be canceled by a smart choice of the gauge factor ζ(R)? No!
• for closed path C

ζ(R(0))− ζ(R(T )) = 2πm (for an integer m) (7)

→ the Berry phase cannot be canceled unless it is an integer itself.

TI-5: proof of Eq. (7)

For a closed path, the Berry phase is gauge-invariant quantity independent of the
specific form of how R varies in time.
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

TI-4: proof of Eq. (6)

Under the gauge transformation,

An → i
(

e−iζ(R) 〈n(R)|
)
∇R

(
eiζ(R) |n(R)〉

)
= i 〈n(R)|∇R|n(R)〉 + i 〈n(R)|(i∇Rζ(R))|n(R)〉
= An −∇Rζ(R)

and

γn →
∫
C

dR · (An(R)−∇Rζ(R))

= γn −
∫
C

dR ·∇Rζ(R)

= γn − (ζ(R(T ))− ζ(R(0)))
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

TI-5: proof of Eq. (7)

For closed path C, after a long time T (period), we return to the original parameters:

R(0) = R(T )

(if Ri is angle variable, Ri (0) = Ri (T ) up to 2πm with an integer m). Since we have chosen our eigenstate basis
to be single-valued,

|n(R(0))〉 = |n(R(T ))〉 (a)

Gauge transformation should maintain this property, so

eiζ(R(0)) |n(R(0))〉 = eiζ(R(T )) |n(R(T ))〉 (b)

From Eqs. (a) and (b), we have

eiζ(R(0)) = eiζ(R(T ))

or

ζ(R(0))− ζ(R(T )) = 2πm

for integer m.
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

• for three-dimensional parameter space R = (R1,R2,R3) = (Rx ,Ry ,Rz) and for a
closed path C

γn = − Im
∫
S

dS · 〈∇Rn(R)| × |∇Rn(R)〉 =

∫
S

dS · Fn(R) (8)

where S is an area enclosed by C and

Fjk (R) ≡ i (〈∇jn(R)|∇k n(R)〉 − 〈∇k n(R)|∇jn(R)〉) (9)

is defined to be Berry curvature which is the curl of the Berry vector potential, that is,
a magnetic field in parameter space.

TI-6: proof of Eq. (8)

Note that the Berry curvature is gauge-independent:

Fn(R)→∇R × (An(R)−∇Rζ(R)) = ∇R × An(R) = Fn(R)

• in this lecture, we consider only the case with closed path C and three-dimensional
parameter space, dim(R) = 3.
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

TI-6: proof of Eq. (7)

Let S be the area enclosed by the closed path C. Then, according to Stokes’ theorem,

γn = − Im
∫
C

dR · 〈n(R)|∇R|n(R)〉 = − Im
∫
S

dS ·∇× 〈n(R)|∇R|n(R)〉

= − Im
∫
S

dSiεijk∇j 〈n(R)|∇k |n(R)〉

= − Im
∫
S

dSiεijk
(
〈∇j n(R)|∇k |n(R)〉 + 〈n(R)|∇j∇k |n(R)〉

)
Since εijk∇j∇k = (∇×∇)i = 0, the second term vanishes. So,

γn = − Im
∫
S

dSiεijk 〈∇j n(R)|∇k n(R)〉 = − Im
∫
S

dS · 〈∇Rn(R)| × |∇Rn(R)〉

The curl of the Berry vector potential becomes

(∇× An)i = εijk∇j Ank = εijk∇j i 〈n(R)|∇k n(R)〉 = εijk i 〈∇j n(R)|∇k n(R)〉
= εijk i

(
〈∇j n(R)|∇k n(R)〉 − 〈∇k n(R)|∇j n(R)〉

)
where no summation over j and k in the last line
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Berry Phase Gauge-Independent Computation of the Berry Phase

Another Formula for Berry Phase

• the derivative of the eigenstates, ∇R |n(R)〉 in the expression of the Berry phase
requires the gauge-smoothened eigenstates as functions of R

• numerical diagonalization algorithm of H(R) usually outputs eigenstates with wildly
(and randomly) different phase factors for different R

→ a formula for the Berry phase that is gauge independent is demanded
• gauge-independent formula for the Berry phase

γn = −
∫
S

dS · Vn (10)

with

Vn ≡ Im
∑
m 6=n

〈n(R)|∇RH(R)|m(R)〉 × 〈m(R)|∇RH(R)|n(R)〉
[Em(R)− En(R)]2 (11)

Here |n(R)〉 is assumed to be nondegenerate.

TI-7: proof of Eq. (10)

Since the derivatives have been moved from the wavefunction to the Hamiltonian,
the Berry curvature (or the Berry phase) can be evaluated under any gauge choice:
it is no longer necessary to pick |n(R)〉 to be smooth and single-valued.
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Berry Phase Gauge-Independent Computation of the Berry Phase

Another Formula for Berry Phase (cont.)

TI-7: proof of Eq. (10)

By introducing a complete set of eigenstates
∑

m |m(R)〉 〈m(R)| = 1 at each R,

εijk 〈∇j n(R)|∇k n(R)〉 = εijk

∑
m

〈∇j n(R)|m(R)〉 〈m(R)|∇k n(R)〉

= εijk 〈∇j n(R)|n(R)〉 〈n(R)|∇k n(R)〉 + εijk

∑
m 6=n

〈∇j n(R)|m(R)〉 〈m(R)|∇k n(R)〉

Note that 〈∇j n(R)|n(R)〉 and 〈n(R)|∇k n(R)〉 are purely imaginary:

0 = ∇j 〈n(R)|n(R)〉 = 〈∇j n(R)|n(R)〉 + 〈n(R)|∇j n(R)〉
→ 〈∇j n(R)|n(R)〉 = −〈n(R)|∇j n(R)〉 = −〈∇j n(R)|n(R)〉∗

Therefore, the first term is real and gives no contribution to the Berry phase (remember γn = − Im[· · · ]).
Hence,

γn = − Im
∫
S

dSi

∑
m 6=n

εijk 〈∇j n(R)|m(R)〉 〈m(R)|∇k n(R)〉 (a)

The derivative on the eigenstates can be removed in the following way:

En 〈m|∇n〉 = 〈m|∇En|n〉 = 〈m|∇|Hn〉 = 〈m|(∇H)|n〉 + 〈m|H∇n〉 = 〈m|(∇H)|n〉 + Em 〈m|∇n〉

Hence, since En 6= Em for m 6= n,

〈m|∇n〉 =
〈m|(∇H)|n〉

En − Em
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Berry Phase Gauge-Independent Computation of the Berry Phase

Another Formula for Berry Phase (cont.)

Similarly,

〈∇n|m〉 =
〈n|(∇H)|m〉

En − Em

By inserting the above two equations into Eq. (a),

γn = −
∫
S

dSi Im
∑
m 6=n

εijk
〈n(R)|(∇jH)|m(R)〉 〈m(R)|(∇kH)|n(R)〉

[Em(R)− En(R)]2
= −

∫
S

dSi Vni
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Berry Phase Gauge-Independent Computation of the Berry Phase

Another Formula for Berry Phase (cont.)

• two different equations for γn

Eq. (8)→ γn = −
∫
S

dS · Im 〈∇Rn(R)| × |∇Rn(R)〉

Eq. (10)→ γn = −
∫
S

dS · Im
∑
m 6=n

〈n(R)|∇RH(R)|m(R)〉 × 〈m(R)|∇RH(R)|n(R)〉
[Em(R)− En(R)]2

» Eq. (8): involves only |n(R)〉 and its derivative
» Eq. (10): involves the interaction between |n(R)〉 and |m(R) 6= n〉 that have been

projected out by the adiabatic interaction
• vanishing sum of the Berry phase ∑

n

γn = 0 (12)

TI-8: proof of Eq. (12)

• d-degenerate levels
→ the Berry vector potential becomes a matrix of dimension d
→ non-Abelian
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Berry Phase Gauge-Independent Computation of the Berry Phase

Another Formula for Berry Phase (cont.)

TI-8: proof of Eq. (12)

Using Eq. (10)

∑
n

γn = −
∫
S

dS ·
n 6=m∑
n,m

Im
〈n(R)|∇RH(R)|m(R)〉 × 〈m(R)|∇RH(R)|n(R)〉

[Em(R)− En(R)]2

For any pair of (n,m),

Im
〈n(R)|∇RH(R)|m(R)〉 × 〈m(R)|∇RH(R)|n(R)〉 + (n↔ m)

[Em(R)− En(R)]2

= Im
〈n(R)|∇RH(R)|m(R)〉 × 〈m(R)|∇RH(R)|n(R)〉 + (complex conjugate)

[Em(R)− En(R)]2

= 0

Hence,
∑

n γn = 0.
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Berry Phase Degeneracies and Level Crossing

Level Crossing

• Berry phase→ classification of degeneracies
• at a degenerate point or level crossing (En(R) = Em(R)) at R = R∗, γn and γm

diverge→ R∗ = a monopole in the parameter space
• here, the value of the Berry curvature at the degenerate point is not of our interest,

but instead its global structure around the degenerate point is to be examined, which
determines the Berry phase.

• generic degeneracy point at the intersection (at R∗) of two levels as R is varies
→ two-level systems
» two states |±(R)〉 with energy E±(R)
» V+(R) = −V−(R) and γ+ = −γ−
• generic form of two-level (or two-band) Hamiltonian

H = ε(R)σ0 + d(R) · σ (13)

where σi are Pauli matrices (i = 1, 2, 3) and d(R) is a 3D vector depending on R
» E± = ε(R)± |d(R)|
» ε(R) is just an additive term in energy and does not affect the eigenstates, being

safely neglected.
» examples: graphene, spin-orbit coupled systems, Bogoliubov quasiparticles,

spin- 1
2 electron in a magnetic field
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature

• parameterization by spherical coordinates

d(R) = d(|d |, θ, φ) = |d |(sin θ cosφ, sin θ sinφ, cos θ) (14)

• eigenvalues: E± = ±|d |
• eigenstates: at a choice of gauge (gauge 1)

|−(R)〉 =

[
e−iφ sin θ

2

− cos θ
2

]
, |+(R)〉 =

[
e−iφ cos θ

2

sin θ
2

]
(15)

or, at a different choice of gauge (gauge 2) (by ×e+iφ)

|−(R)〉 =

[
sin θ

2

−e+iφ cos θ
2

]
, |+(R)〉 =

[
cos θ

2

e+iφ sin θ
2

]
(16)

TI-9: proof of Eq. (15)
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

TI-9: proof of Eq. (15)

H(R) = |d|
[

cos θ sin θ cosφ− i sin θ sinφ
sin θ cosφ + i sin θ sinφ − cos θ

]
= |d|

[
cos θ e−iφ sin θ

e+iφ sin θ − cos θ

]
The eigenvalues E are obtained from the secular equation

0 = (|d| cos θ − E)(−|d| cos θ − E)− |d|2 sin2
θ = E2 − |d|2 → E = ±|d|

For E = +|d|, the eigenstate satisfies

0 = (H− |d|)
[

v1

v2

]
= |d|

[
cos θ − 1 e−iφ sin θ
e+iφ sin θ − cos θ − 1

][
v1

v2

]

= 2|d|
[

− sin2 θ
2 e−iφ sin θ

2 cos θ2
e+iφ sin θ

2 cos θ2 − cos2 θ
2

][
v1

v2

]
→

[
v1

v2

]
=

[
e−iφ cos θ2

sin θ
2

]
For E = −|d|, the eigenstate satisfies

0 = (H + |d|)
[

v1

v2

]
= |d|

[
cos θ + 1 e−iφ sin θ
e+iφ sin θ − cos θ + 1

][
v1

v2

]

= 2|d|
[

cos2 θ
2 e−iφ sin θ

2 cos θ2
e+iφ sin θ

2 cos θ2 sin2 θ
2

][
v1

v2

]
→

[
v1

v2

]
=

[
e−iφ sin θ

2
− cos θ2

]
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

• Berry vector potentials Aθ and Aφ and Berry curvature Fθφ for level |−(R)〉
1. gauge 1

Aθ = 0, Aφ = + sin2 θ

2
, Fθφ = ∂θAφ − ∂φAθ =

sin θ
2

(17)

2. gauge 2

Aθ = 0, Aφ = − cos2 θ

2
, Fθφ = ∂θAφ − ∂φAθ =

sin θ
2

(18)

Note that while the Berry vector potential is gauge-dependent, the Berry curvature is
gauge-independent.

TI-10: proof of Eqs. (17) and (18)
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

TI-10: proof of Eqs. (17) and (18)

For gauge 1,

Aθ = i 〈−(R)|∂θ| − (R)〉 = i
[
e+iφ sin θ

2 − cos θ2
] 1

2

[
e−iφ cos θ2

sin θ
2

]
= 0

Aφ = i 〈−(R)|∂φ| − (R)〉 = i
[
e+iφ sin θ

2 − cos θ2
] [−ie−iφ sin θ

2
0

]
= sin2 θ

2

Fθφ = ∂θAφ − ∂φAθ =
1
2

2 sin
θ

2
cos

θ

2
=

sin θ
2

For gauge 2,

Aθ = i 〈−(R)|∂θ| − (R)〉 = i
[
sin θ

2 −e−iφ cos θ2
] 1

2

[
cos θ2

e+iφ sin θ
2

]
= 0

Aφ = i 〈−(R)|∂φ| − (R)〉 = i
[
sin θ

2 −e−iφ cos θ2
] [ 0
−ie+iφ cos θ2

]
= − cos2 θ

2

Fθφ = ∂θAφ − ∂φAθ = −
1
2

2 cos
θ

2

(
− sin

θ

2

)
=

sin θ
2
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

• the wavefunction |−(R)〉 is not well defined if the system reach, in its adiabatic
evolution,

1. gauge 1: the south pole (θ = π),

|−(R)〉 =

[
e−iφ sin θ

2

− cos θ
2

]
→

[
e−iφ

0

]

2. gauge 2: the north pole (θ = 0)

|−(R)〉 =

[
sin θ

2

−e+iφ cos θ
2

]
→

[
0

−e+iφ

]

note that φ cannot be defined at θ = 0 and π.

→ In nontrivial cases, one cannot pick a gauge that is everywhere well defined. It is
extremely important in the Chern insulator: if we are able to find a gauge in which all
wavefunctions are well defined, then the system cannot have nonzero Hall
conductance.
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

• For general d(R), (assuming |d | is fixed)

Fij = Fθφ
∂(θ, φ)

∂(Ri ,Rj )
=

1
2

sin θ
∂(θ, φ)

∂(Ri ,Rj )
= −1

2
∂(cos θ, φ)

∂(Ri ,Rj )
=

1
2
∂(φ, cos θ)

∂(Ri ,Rj )
(19)

where the Jacobian is defined as
∂(θ, φ)

∂(Ri ,Rj )
≡ det

 ∂θ
∂Ri

∂θ
∂Rj

∂φ
∂Ri

∂φ
∂Rj


• For d(R) = R,

V− = −1
2

R
R3 = −V+ (20)

TI-11: proof of Eq. (20)

» degenerate point at R = 0→ field generated by a monopole (in R parameter
space) of strength ±1/2 for band |±(R)〉

» degenerate point = sources and drains of the Berry curvature
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

» example: integration of the Berry curvature over a sphere S containing the
monopoles,

γn = −
∫
S

dS · V− =
1
2
× 4πn = 2πn (21)

where n is the number of monopoles inside the surface S → Chern number.
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

TI-11: proof of Eq. (20)

For d(R) = R,

|d|(sin θ cosφ, sin θ sinφ, cos θ) = (R1,R2,R3)

so

cos θ =
R3

R
=

R3√
R2

1 + R2
2 + R2

3

and φ = tan−1 R2

R1

Using

∂cos θ
∂R1

= −
R3R1

R3
,

∂cos θ
∂R2

= −
R3R2

R3
,

∂cos θ
∂R3

=
1
R
−

R2
3

R3
=

R2
1 + R2

2

R3

∂φ

∂R1
=

−R2/R2
1

1 + (R2/R1)2
= −

R2

R2
1 + R2

2

,
∂φ

∂R2
=

1/R1

1 + (R2/R1)2
=

R1

R2
1 + R2

2

,
∂φ

∂R3
= 0

one obtains

−V−1 = F23 =
1
2
∂(φ, cos θ)

∂(R2,R3)
=

1
2

det


R1

R2
1 +R2

2
0

− R3R2
R3

R2
1 +R2

2
R3

 =
1
2

R1

R3

−V−2 = F31 =
1
2
∂(φ, cos θ)

∂(R3,R1)
=

1
2

det

 0 − R2
R2

1 +R2
2

R2
1 +R2

2
R3 − R3R1

R3

 =
1
2

R2

R3

−V−3 = F12 =
1
2
∂(φ, cos θ)

∂(R1,R2)
=

1
2

det

− R2
R2

1 +R2
2

R1
R2

1 +R2
2

− R3R1
R3 − R3R2

R3

 =
1
2

R2
2 R3 + R2

1 R3

R3(R2
1 + R2

2 )
=

1
2

R3

R3
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Hamiltonian Approach

• gauge-invariant approach, Eq. (10)→∇RH is needed
• without loss of generality, by neglecting ε(R)

H(R) = d(R) · σ (22)

with the degeneracy point at R∗ = 0 (and d(R∗) = 0). Near the degenerate point,
under an extra rotation, the Hamiltonian is linearized so that

d(R) = R near R∗ → ∇RH = σ (23)

and the eigenvalues are E± = ±R.
• Berry curvature for |+(R)〉

V+(R) =
1
2

R
R3 (24)

TI-12: proof of Eq. (24)

• Berry phase

γ± = −
∫
S

dS · V±(R) → exp[iγ±(C)] = exp
[
∓1

2
iΩ(C)

]
(25)

where Ω(C) is the solid angle that the surface S subtends at the degeneracy points.
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Hamiltonian Approach (cont.)

TI-12: proof of Eq. (24)

For easier calculation, we rotate the axes so that the z-axis points along R. Then,

H(R) = Rσz

so that the eigenstates are |±〉 which are the eigenstates of σz : σz |±〉 = ± |±〉. Note that σx |±〉 = |∓〉 and
σy |±〉 = ±i |∓〉. In this basis, from Eq. (10)

Vn = Im
∑
m 6=n

〈n(R)|∇RH(R)|m(R)〉 × 〈m(R)|∇RH(R)|n(R)〉
[Em(R)− En(R)]2

one immediately knows that V+x = V+y = 0 because they involves the terms 〈−|σz |+〉 = 0. The remaining
term is then

V+z = Im
〈+|σx |−〉 〈−|σy |+〉 − 〈+|σy |−〉 〈−|σx |+〉

[E−(R)− E+(R)]2
= Im

i − (−i)
4R2

=
R

2R3

By rotating the system back in the original direction, the rotational invariance implies

V+(R) =
1
2

R
R3
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Hamiltonian Approach (cont.)

• example: Dirac fermion (and Weyl fermion as well)
» Hamiltonian

H = k · σ (26)

where k is the lattice momenta varying across the Brillouin zone.
» what happens to the wavefunction of a Dirac fermion as it is transported around a

path C in momentum space→ acquire the Berry phase ∓ 1
2 Ω(C).

» 2D Dirac fermion→ a closed path with kz = 0

Ω(C) =

{
2π, if the curve encircles the degeneracy
0, otherwise

→ eiγ±(C) =

{
−1
+1

(27)

The Berry phase of the eigenstate of a gapless Dirac fermion in two dimensions
have a Berry phase equal to π upon going around the Fermi surface.
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Hall Conductance and Chern Numbers

Berry Phase

• Berry phase/curvature in solid-state physics← dimension, band structure

• Berry phase = integral of the Berry potential over a closed curve→ 1D manifold
1. filled bands (insulators) in 1D — −πa ≤ k < π

a (= −πa ) (a lattice spacing)
2. Fermi surfaces of 2D metals

• Berry phase = surface integral of the Berry curvature (2-form)→ 2D manifold
1. filled bands (insulators) in 2D — full 2D Brillouin zone (BZ)
2. Fermi surfaces of 3D metals→ Chern number

• objective
» Hall conductance of the 2D insulator
= the integral of the Berry curvature over the full BZ
= Chern number

σxy =
e2

h
1

2π

∫
dk · F (28)

with

Fxy (k) =
∂Ay (k)

∂kx
− ∂Ax (k)

∂ky
and A(k) = −i

∑
α∈filled bands

〈αk|∇k|αk〉 (29)
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Continuum Model

• electrical current density in classical mechanics

Je(r) = en(r)v(r) (30)

where n(r) and v are number density and velocity of electrons.

• electrical current density operator in quantum mechanics

Je(r) =
e
2

∑
i

[viδ(r− ri ) + δ(r− ri )vi ] ≡ eJ(r) (31)

» ri and vi = dri/dt are position and velocity operators of particle i
» in quantum mechanics, position and velocity operators do not commute
→ symmetrization
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Continuum Model (cont.)

• current density operator in the presence of electromagnetic field

J(r) =
1

2m

∑
i

[(
pi −

e
c

A(ri , t)
)
δ(r− ri ) + δ(r− ri )

(
pi −

e
c

A(ri , t)
)]

= j(r)− e
mc

∑
i

A(ri , t)δ(r− ri )
(32)

where A(r, t) is the vector potential.

» paramagnetic contribution (proportional to external field)

j(r) ≡ 1
2m

∑
i

[piδ(r− ri ) + δ(r− ri )pi ] (33)

» diamagnetic contribution (proportional to external field)

− e
mc

n0A(r, t) → Je(r, t) =
in0e2

mω
E(r, t) (34)

where n0 is the uniform number density of charges.

TI-13: proof of Eq. (32)
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Continuum Model (cont.)

TI-13: proof of Eq. (32)

In the presence of electromagnetic field, the Hamiltonian reads

H =
∑

i

1
2m

(
pi −

e
c

A(ri , t)
)2

+
∑

i

eϕ(ri , t) +
∑
i<j

Vij (ri , rj )

where Vij is electron-electron the interaction between particles. Then the velocity operator is given by (for
s = x, y, z)

vis =
d ris

dt
=

i
~

[H, ris] =
1

2m
[

(
pis −

e
c

As(ri , t)
)2
, ris]

=
i
~

1
2m

(pis −
e
c

As(ri , t)
)

[pis, ris]︸ ︷︷ ︸
=−i~

+ [pis, ris]︸ ︷︷ ︸
=−i~

(
pis −

e
c

As(ri , t)
)

=
1
m

(
pis −

e
c

As(ri , t)
)
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Continuum Model (cont.)

• external time-dependent external electric field

E(r, t) = Eei(q·r−ωt) (35)

From

E = −∇ϕ− ∂A
∂t

and B = ∇× A (36)

and under the assumption that the electric field and vector potential are transverse,

ϕ(r, t) = 0 and A(r, t) =
E(r, t)

iω
(37)

• Hamiltonian in terms of current operator

H = H0 −
e
c

∫
d3r

∫
δA(r, t) · J(r) (38)

where H0 is the Hamiltonian in the absence of electromagnetic field.

TI-14: proof of Eq. (38)

• weak electromagnetic field: up to the linear order in A(r, t)

H = H0 −
e
c

∫
d3r A(r, t) · j(r) ≡ H0 +Hext (39)
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Continuum Model (cont.)

TI-14: proof of Eq. (38)

H = H0 +
1

2m

[
pi ·
(
−

e
c

A(ri , t)
)

+

(
−

e
c

A(ri , t)
)
· pi +

e2

c2
A2(ri , t)

]
= H0 −

e
c

∫
d3r

1
2m

∑
i

[
pi · A(r)δ(r− ri ) + A(r)δ(r− ri ) · pi −

e
c

A2(r, t)δ(r− ri )

]
= H0 −

e
c

∫
d3r
∫
δA(r, t) ·

1
2m

∑
i

[
piδ(r− ri ) + δ(r− ri )pi − 2

e
c

A(r, t)δ(r− ri )

]
= H0 −

e
c

∫
d3r
∫
δA(r, t) ·

1
2m

∑
i

[(
pi −

e
c

A(r, t)
)
δ(r− ri ) + δ(r− ri )

(
pi −

e
c

A(r, t)
)]

= H0 −
e
c

∫
d3r
∫
δA(r, t) · J(r)
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model

• non-interacting tight-binding Hamiltonian

H =
∑

ij

∑
αβ

c†iαhαβij cjβ (40)

» i, j (or ri ): lattice indices (sites) on arbitrary dimensional lattice — total N sites
» α, β: orbital/spin indices — total M orbitals→ M bands
» hαβij − µδijδαβ → hαβij : zero chemical potential
» translational symmetry

hαβij = hαβi−j (41)

• Fourier transform:

ckα =
1√
N

∑
i

e−ik·ri ciα and ciα =
1√
N

∑
k

eik·ri ckα (42)

→

H =
∑

k

∑
αβ

c†kαhαβk ckβ (43)

TI-15: proof of Eq. (43)
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

TI-15: proof of Eq. (43)

H =
∑

ij

∑
αβ

c†iαhαβij cjβ =
∑

ij

∑
αβ

1
√

N

∑
k

e−ik·ri c†kαhαβij
1
√

N

∑
q

eiq·rj cqβ

=
∑

k

∑
αβ

∑
q

c†kα

 1
N

∑
ij

ei(q·rj−k·ri )hαβi−j

 cqβ

=
∑

k

∑
αβ

∑
q

c†kα

(
1
N

∑
Rr

ei(q−k)·Re−i(q+k)·r/2hαβr

)
cqβ (ri = R +

r
2
, rj = R−

r
2

)

=
∑

k

∑
αβ

∑
q

c†kα

(
δkq
∑

r

e−ik·rhαβr

)
cqβ (∵

1
N

∑
R

eik·R = δk,0)

=
∑

k

∑
αβ

c†kα

(∑
r

e−ik·rhαβr

)
︸ ︷︷ ︸

= hαβk

ckβ
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

• density operator in tight-binding model

ρi (t) =
∑
α

c†iαciα → ρq(t) =
1√
N

∑
kα

c†kαck+qα (44)

TI-16: proof of Eq. (44)

• current operator from the continuity equation

q · jq = −1
~

1√
N

∑
k

∑
αβ

(hαβk−q/2 − hαβk+q/2)c†k−q/2αck+q/2β (45)

TI-17: proof of Eq. (45)

• small q limit
» low-energy and long-wavelength fields are more relevant in practical experiment
» this approximation is valid as long as the field variation is larger than several lattice

spacings
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

TI-16: proof of Eq. (44)

The Fourier transform of the density operator is (omitting the summation over the orbital indices)

ρq =
1
√

N

∑
i

e−iq·ri c†iαciα

=
1
√

N

∑
i

e−iq·ri
1
√

N

∑
k

e−ik·ri c†kα
1
√

N

∑
p

eip·ri cpα

=
1
√

N

∑
kp

c†kαcpα
1
N

∑
i

ei(p−k−q)·ri

=
1
√

N

∑
kp

c†kαcpαδp,k+q

=
1
√

N

∑
k

c†kαck+qα
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

TI-17: proof of Eq. (45)

The current satisfies
∂ρ(r, t)
∂t

+ ∇ · j(r, t) = 0.

By expressing the density and current in terms of their Fourier components,

0 =
∂

∂t
1
√

N

∑
q

eiq·r
ρq + ∇ ·

1
√

N

∑
q

eiq·rjq =
1
√

N

∑
q

eiq·r
(
∂ρq

∂t
+ iq · jq

)
→ q · jq = i

∂ρq

∂t

Now we compute the time derivative of the density operator

∂ρq

∂t
=

i
~

[H, ρq] =
i
~

[
∑

k

∑
αβ

c†kαhαβk ckβ ,
1
√

N

∑
k′

∑
α′

c†k′α′ck′+qα′ ]

Using [c†1 c2, c
†
3 c4] = c†1 [c2, c

†
3 c4] + [c†1 , c

†
3 c4]c2 = c†1 {c2, c

†
3 }c4 − c†3 {c

†
1 , c4}c2 = δ23c†1 c4 − δ14c†3 c2, one

obtains
∂ρq

∂t
=

1
√

N

i
~
∑
kk′

∑
αβα′

hαβk

(
δk,k′δβα′c

†
kαck′+qα′ − δk,k′+qδαα′c

†
k′α′ckβ

)
=

1
√

N

i
~
∑

k

∑
αβ

hαβk

(
c†kαck+qβ − c†k−qαckβ

)
=

1
√

N

i
~
∑

k

∑
αβ

(hαβk − hαβk+q)c†kαck+qβ
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

Therefore,

q · jq = −
1
~

1
√

N

∑
k

∑
αβ

(hαβk − hαβk+q)c†kαck+qβ = −
1
~

1
√

N

∑
k

∑
αβ

(hαβk−q/2 − hαβk+q/2)c†k−q/2αck+q/2β

where in the last step we have shifted k→ k− q/2.
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

• current operator in small q limit

jq =
1√
N

∑
kαβ

∂hαβk

∂~k
c†k−q/2αck+q/2β (46)

TI-18: proof of Eq. (46)
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

TI-18: proof of Eq. (46)

By expanding with respect to q,

hαβk−q/2 − hαβk+q/2 =
∞∑

n=0

1
n!

[(
−

q
2
·∇k

)n
hαβk −

(
q
2
·∇k

)n
hαβk

]

= −
∂hαβk

∂k
· q +O(q3)

Note that no even-power terms remain. Therefore,

q · jq =
1
√

N

∑
k

∑
αβ

1
~

q ·
∂hαβk

∂k
c†k−q/2αck+q/2β +O(q3)
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

• Peierls substitution: minimal coupling of the vector potential in the tight-binding
model
» hαβij : hopping strength coming from overlap integrals between the atomic orbitals

of neighboring atoms
» in the presence of electromagnetic field, p→ p− e

c A in the continuum Hamiltonian
» the minimal coupling changes the phase of every hopping matrix element in the

following way

hαβij → hαβij exp

[
ie
~c

∫ rj

ri

dr · A(r)

]
(47)

» taking the shortest path, that is, a straight line connecting two sites and assuming
that the vector potential does not vary wildly over a few lattice sites∫ rj

ri

dr · A(r) ≈ (rj − ri ) · A(
ri + rj

2
, t) (48)

TI-19: proof of Eq. (47)
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

TI-19: proof of Eq. (47)

First, we consider the continuum model with the Hamiltonian

H =
1

2m

(
p−

e
c

A(r)

)2
+ · · · =

1
2m

(
i~∇ +

e
c

A(r)

)2
+ · · ·

Now we introduce a gauge transformation for wavefunction ψ(r):

ψ(r) = ψ
′(r) exp

[
ie
~c

∫ r
dr′ · A(r′)

]
Since(

i~∇ +
e
c

A
)

exp
[

ie
~c

∫ r
dr′ · A(r′)

]
ψ
′(r) = exp

[
ie
~c

∫ r
dr′ · A(r′)

](
i~∇ + (i~)×

i
~

e
c

A +
e
c

A
)
ψ
′(r)

= exp
[

ie
~c

∫ r
dr′ · A(r′)

]
i~∇ψ

′(r)

one obtains

Hψ(r) =

[
1

2m

(
i~∇ +

e
c

A
)2

+ · · ·
]
ψ(r)

= exp
[

ie
~c

∫ r
dr′ · A(r′)

] [
−

~2

2m
∇2 + · · ·

]
ψ
′(r)

It implies that the effect of the vector potential can be moved into the additional phase of the wave function. After
the gauge transformation, the Hamiltonian turns back to that (H0) without the field.
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

Now we discretize the operators in order to construct the tight-binding Hamiltonian:

Hψi = exp
[

ie
~c

∫ ri
dr′ · A(r′)

]
H0ψ

′
i

= exp
[

ie
~c

∫ ri
dr′ · A(r′)

]∑
j

h(0)
ij ψ
′
j

= exp
[

ie
~c

∫ ri
dr′ · A(r′)

]∑
j

h(0)
ij exp

[
−

ie
~c

∫ rj
dr′ · A(r′)

]
ψj

=
∑

j

hijψj

where

hij = h(0)
ij exp

[
ie
~c

∫ ri

rj

dr′ · A(r′)

]
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

• weak electromagnetic field: up to the linear order in A(r, t)
» second order→ A2-term (diamagnetic term)
» the contribution from the diamagnetic term is diagonal in the spatial indices, which is

irrelevant to the Hall conductance

H = H0 +Hext (49)

with

Hext = −e
c

∑
q

j−q · Aq(t) (50)

Note that this expression is same as that for the continuum model, Eq. (39).

TI-20: proof of Eq. (49)
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Current Operator in Tight-Binding Model (cont.)

TI-20: proof of Eq. (49)

Up to the linear order in A(r, t),

hαβij → hαβij exp

[
ie
~c

∫ ri

rj

dr′ · A(r′)

]
≈ hαβij

(
1 +

ie
~c

∫ ri

rj

dr′ · A(r′)

)
= hαβij

(
1 +

ie
~c

A(
ri + rj

2
, t) · (ri − rj )

)
Then, the Hamiltonian change due to the field is then

Hext =
∑

ij

∑
αβ

c†iαhαβij
ie
~c

A(
ri + rj

2
, t) · (ri − rj )cjβ

Noting the translational invariance of the Hamiltonian, we have hij = hi−j = hr and ri − rj = r. So,

Hext =
∑

ij

∑
αβ

(
1
√

N

∑
k

e−ik·ri c†kα

)
hαβi−j

ie
~c

A(
ri + rj

2
, t) · (ri − rj )

 1
√

N

∑
p

eip·rj cpβ


=
∑

kp

∑
αβ

c†kαcpβ
1
N

∑
j,r

eip·rj e−ik·(rj +r)hαβr
ie
~c

A(rj +
r
2
, t) · r

=
∑

kp

∑
αβ

c†kαcpβ
1
N

∑
j,r

ei(p−k)·rj e−ik·rhαβr
ie
~c

1
√

N

∑
q

eiq·(rj +r/2)Aq(t) · r

=
e
c

∑
kpq

∑
αβ

c†kαcpβ

 1
N

∑
j

ei(p−k+q)·rj


︸ ︷︷ ︸

= δp,k−q

(
1
~

1
√

N

∑
r

irei(q/2−k)·rhαβr

)
· Aq(t)
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Current Operator in Tight-Binding Model (cont.)

=
e
c

∑
kq

∑
αβ

c†kαck−qβ

(
1
~

1
√

N

∑
r

irei(q/2−k)·rhαβr

)
· Aq(t)

By shifting k→ k + q/2,

Hext = −
e
c

1
√

N

∑
kq

∑
αβ

c†k+q/2αck−q/2β

(
1
~
∑

r

(−ir)e−ik·rhαβr

)
︸ ︷︷ ︸

=
∂hαβk

∂~k

·Aq(t)

= −
e
c

∑
q

 1
√

N

∑
kαβ

∂hαβk

∂~k
c†k+q/2αck−q/2β

 · Aq(t)

= −
e
c

∑
q

j−q · Aq(t)
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Linear Response Theory

• setup for linear response theory

H(t) = H0 +Hext(t) (51)

» unperturbed Hamiltonian H0

» weak time-dependent perturbation Hext(t) turned on at t = t0
» the perturbation is weak enough that the system is still in (local) equilibrium→

equilibrium statistical mechanics
→ density matrix operator

ρ(t) =
1
Z e−β(H(t)−µN ) (52)

here we set µ = 0.
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Linear Response Theory (cont.)

• perturbation to density matrix due to Hext, up to the linear order in Hext,

ρ(t) = ρ0 + δρ(t) (53)

where ρ0 is the unperturbed density matrix when H = H0. In the interaction picture
with respect to H or in the Heisenberg picture with respect to H0,

δρ(t) =
i
~

∫ t

t0

dt ′[ρ0,Hext,I(t ′ − t)] (54)

TI-21: proof of Eq. (54)

• change in 〈B(t)〉 due to the perturbation

δ 〈B(t)〉 =
i
~

∫ t

t0

dt ′ 〈[Hext(t ′),B(t)]〉0 (55)

where the Heisenberg picture with respect to the unperturbed Hamiltonian H0 is
used.

TI-22: proof of Eq. (55)
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Linear Response Theory (cont.)

TI-21: proof of Eq. (54)

Here we use the interaction picture:

ρI (t) = e
i
~H0 t

ρ(t)e−
i
~H0 t

(compare to the Heisenberg picture, OH (t) = e
i
~Ht Oe−

i
~Ht ). From the von Neumann equation,

∂ρ(t)
∂t

= −
i
~

[H, ρ(t)].

Then, the time derivative of the density matrix in the interaction picture is given by

∂ρI (t)
∂t

=
i
~

(
e

i
~H0 tH0ρ(t)e−

i
~H0 t − e

i
~H0 t

ρ(t)H0e−
i
~H0 t

)
+ e

i
~H0 t ∂ρ(t)

∂t
e−

i
~H0 t

=
i
~

e
i
~H0 t [H0, ρ(t)]e−

i
~H0 t −

i
~

e
i
~H0 t [H(t), ρ(t)]e−

i
~H0 t

= −
i
~

e
i
~H0 t [Hext(t), ρ(t)]e−

i
~H0 t

Since
∂ρ0

∂t
= −

i
~

[H0, ρ0] = 0 =
∂ρ0,I

∂t
,

the time derivative of the perturbation δρ(t) is, up to the linear order inHext,

∂δρI (t)
∂t

=
∂ρI (t)
∂t

= −
i
~

e
i
~H0 t [Hext(t), ρ0 + δρ(t)]e−

i
~H0 t

= −
i
~

e
i
~H0 t [Hext(t), ρ0]e−

i
~H0 t −

i
~

e
i
~H0 t [Hext(t), δρ(t)]︸ ︷︷ ︸

∼ O(H2
ext)

e−
i
~H0 t ≈ −

i
~

[Hext,I (t), ρ0]
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Linear Response Theory (cont.)

By integrating over time and using the fact thatHext is turned on at t = t0,

δρI (t) = −
i
~

∫ t

t0

dt′[Hext,I (t′), ρ0]

or

δρ(t) = e−
i
~H0 t

δρI (t)e
i
~H0 t = −

i
~

∫ t

t0

dt′e−
i
~H0 t [Hext,I (t′), ρ0]e

i
~H0 t

=
i
~

∫ t

t0

dt′[ρ0, e
− i

~H0 tHext,I (t′)e
i
~H0 t ]

=
i
~

∫ t

t0

dt′[ρ0,Hext,I (t′ − t)]

where we have used

e−
i
~H0 tHext,I (t′)e

i
~H0 t = e−

i
~H0 t e

i
~H0 t′Hexte

− i
~H0 t′e

i
~H0 t

= e
i
~H0(t′−t)Hexte

− i
~H0(t′−t)

= Hext,I (t′ − t)
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Linear Response Theory (cont.)

TI-22: proof of Eq. (55)

Let δ 〈B(t)〉 ≡ 〈B(t)〉 − 〈B〉0, where 〈B(t)〉 = Tr[ρ(t)B] and 〈B〉0 = Tr[ρ0B]. Then,

δ 〈B(t)〉 = 〈B(t)〉 − 〈B〉0 = Tr[(ρ(t)− ρ0)B] = Tr[δρ(t)B]

=
i
~

∫ t

t0

dt′ Tr
{

[ρ0,Hext,I (t′ − t)]B
}

Using

Tr{[A,B]C} = Tr[ABC − BAC] = Tr[ABC − ACB] = Tr{A[B, C]}

one obtains (using the fact ρ0 andH0 commute with each other and Tr[AB] = Tr[BA])

Tr
{

[ρ0,Hext,I (t′ − t)]B
}

= Tr
{
ρ0[Hext,I (t′ − t),B]

}
= Tr

{
ρ0[e−

i
~H0 tHext,I (t′)e

i
~H0 t

,B]

}
= Tr

{
ρ0

(
e−

i
~H0 tHext,I (t′)e

i
~H0 tB − Be−

i
~H0 tHext,I (t′)e

i
~H0 t

)}
= Tr

{
ρ0

(
Hext,I (t′)e

i
~H0 tBe−

i
~H0 t − e

i
~H0 tBe−

i
~H0 tHext,I (t′)

)}
= Tr

{
ρ0[Hext,I (t′),BI (t)]

}
Now we returns back to the Heisenberg picture with respect toH0. Then, AI (t) = AH (t) = A(t), so

δ 〈B(t)〉 =
i
~

∫ t

t0

dt′ Tr
{
ρ0[Hext(t′),B(t)]

}
=

i
~

∫ t

t0

dt′ 〈[Hext(t′),B(t)]〉0

where the subscript 0 means that the expectation value is calculated with respect to the density matrix for the
unperturbed HamiltonianH0.
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Linear Response Theory (cont.)

• linear response and retarded Green’s function: suppose that the perturbation is
coupled to the system by the operator A†(t)
» for Hext(t) = A†(t)h(t),

δ 〈B(t)〉 =
1
~

∫ ∞
−∞

dt ′ GR
BA(t , t ′)h(t ′) (56)

where GR
BA is the retarded Green’s function defined by

GR
BA(t , t ′) ≡ −iΘ(t − t ′)

〈
[B(t),A†(t ′)]

〉
0
. (57)

» for Hext(t) =
∫

d3r A†(r, t)h(r, t),

δ 〈B(r, t)〉 =
1
~

∫ ∞
−∞

dt ′
∫

d3r ′ GR
BA(rt , r′t ′)h(r′, t ′) (58)

with

GR
BA(rt , r′t ′) ≡ −iΘ(t − t ′)

〈
[B(r, t),A†(r′, t ′)]

〉
0
. (59)

TI-23: proof of Eq. (56)

76



Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Linear Response Theory (cont.)

TI-23: proof of Eq. (56)

SinceHext(t) = A†(t)h(t),

δ 〈B(t)〉 =
i
~

∫ t

t0

dt′ 〈[Hext(t′),B(t)]〉0 =
i
~

∫ t

t0

dt′ 〈[A†(t′)h(t′),B(t)]〉0

By taking the limit t0 → −∞,

δ 〈B(t)〉 = −
i
~

∫ t

−∞
dt′ 〈[B(t),A†(t′)]〉0 h(t′) =

1
~

∫ ∞
−∞

dt′Θ(t − t′)
(
−i 〈[B(t),A†(t′)]〉0

)
h(t′)

=
1
~

∫ ∞
−∞

dt′
(
−iΘ(t − t′) 〈[B(t),A†(t′)]〉0

)
︸ ︷︷ ︸

= GR
BA(t, t′)

h(t′)
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Current-current Correlation Function

• perturbation due to weak electromagnetic field

Hext = −e
c

∫
d3r A(r, t) · j(r, t) = −e

c

∑
q

Aq(t) · j−q (60)

In case of E(r, t) = Eei(q·r−ωt),

A(r, t) =
E(r, t)

iω
or Aq′(t) = δq′,q

Eq

iω
(61)

• current response with respect to the perturbation: with s, s′ = x , y , z,

〈js(r, t)〉 = − e
~c

∫ ∞
−∞

dt ′
∫

d3r ′DR
ss′(r− r′, t − t ′)As′(r

′, t ′) (62)

with the retarded Green’s function (or current-current correlation function)

DR
ss′(r− r′, t − t ′) = −iΘ(t) 〈[js(r, t), js′(r′, t ′)]〉0 (63)

where we have assumed that the system has translational symmetry and H0 is
time-independent so that DR depends only on the differences, r− r′ and t − t ′.

TI-24: proof of Eq. (62)
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Current-current Correlation Function (cont.)

TI-24: proof of Eq. (62)

According to the linear response theory

〈js(r, t)〉 =
1
~

∫ ∞
−∞

dt′
∫

d3r ′
(
−iΘ(t) 〈[js(r, t), js′ (r′, t′)

(
− e

c As′ (r′, t′)
)

]〉0
)

= −
e
~c

∫ ∞
−∞

dt′
∫

d3r ′
(
−iΘ(t) 〈[js(r, t), js′ (r′, t′)]〉0

)︸ ︷︷ ︸
= DR

ss′

As′ (r′, t′)
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Retarded and Time-Ordered Green’s Functions

• for simplicity, time translational symmetry is assumed
• retarded Green’s function

GR(t) = −iΘ(t) 〈[A(t),B(0)]±〉 (64)

• time-ordered Green’s function

G t (t) = −i 〈TtA(t)B(0)〉 = −i [Θ(t) 〈A(t)B(0)〉 ∓Θ(−t) 〈B(0)A(t)〉] (65)

where the upper/lower sign corresponds to fermionic/bosonic operators
• two correlation functions

J1(ω) =

∫ ∞
−∞

dt eiωt 〈A(t)B(0)〉 = 2π~
∑
nm

e−βEm

Z 〈n|B|m〉 〈m|A|n〉 δ(Em − En + ~ω)

J2(ω) =

∫ ∞
−∞

dt eiωt 〈B(0)A(t)〉 = 2π~
∑
nm

e−βEn

Z 〈n|B|m〉 〈m|A|n〉 δ(Em − En + ~ω)

= e−β~ωJ1(ω)

(66)

where |m〉, |n〉 are eigenstates of H0 so that H0 |n〉 = En |n〉.

TI-25: proof of Eq. (66)
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Retarded and Time-Ordered Green’s Functions (cont.)

TI-25: proof of Eq. (66)

Using the completeness
∑

m |m〉 〈m| = 1

J1(t) ≡ 〈A(t)B(0)〉

= Tr

[
e−βH0

Z
e

i
~H0 tAe−

i
~H0 tB

]
=
∑

n

〈n|B e−βH0
Z e

i
~H0 tAe−

i
~H0 t |n〉

=
∑
nm

〈n|B e−βH0
Z |m〉 〈m|e

i
~H0 tAe−

i
~H0 t |n〉

=
∑
nm

〈n|B|m〉
e−βEm

Z
e

i
~ (Em−En)t 〈m|A|n〉

Then, the Fourier transform over the time t is

J1(ω) =

∫ ∞
−∞

dt eiωt J1(t)

=
∑
nm

e−βEm

Z
〈n|B|m〉 〈m|A|n〉

∫ ∞
−∞

dt ei(ω+(Em−En)/~)t

= 2π~
∑
nm

e−βEm

Z
〈n|B|m〉 〈m|A|n〉 δ(Em − En + ~ω) [∵

∫ ∞
−∞

dt
2π

eiωt = δ(ω) ]
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Retarded and Time-Ordered Green’s Functions (cont.)

Similarly,

J2(t) ≡ 〈B(0)A(t)〉

=
∑
nm

〈n| e
−βH0
Z B|m〉 〈m|e

i
~H0 tAe−

i
~H0 t |n〉

=
∑
nm

e−βEn

Z
〈n|B|m〉 e

i
~ (Em−En)t 〈m|A|n〉

and

J2(ω) =

∫ ∞
−∞

dt eiωt J2(t)

= 2π~
∑
nm

e−βEn

Z
〈n|B|m〉 〈m|A|n〉 δ(Em − En + ~ω)

= 2π~
∑
nm

e−β(Em+~ω)

Z
〈n|B|m〉 〈m|A|n〉 δ(Em − En + ~ω)

= e−β~ωJ1(ω)
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Retarded and Time-Ordered Green’s Functions (cont.)

• at zero temperature, e−βEm/Z = δm,0 where E0 is the ground-state energy

J1(ω) = 2π~
∑

m

〈m|B|0〉 〈0|A|m〉 δ(E0 − Em + ~ω) → J1(ω < 0) = 0

J2(ω) = 2π~
∑

m

〈0|B|m〉 〈m|A|0〉 δ(Em − E0 + ~ω) → J2(ω > 0) = 0
(67)

• B = A† → J1/2(ω) are real: since 〈n|B|m〉 = 〈n|A†|m〉 = 〈m|A|n〉∗,

J1(ω) = 2π~
∑
nm

e−βEm

Z |〈m|A|n〉|2 δ(Em − En + ~ω) (68)

• GR(ω) and G t (ω) in terms of J1(ω)

GR(ω) =

∫ ∞
−∞

dω′

2π
1± e−β~ω

′

ω − ω′ + iη
J1(ω′) with η = 0+

G t (ω) =

∫ ∞
−∞

dω′

2π

(
1

ω − ω′ + iη
± e−β~ω

′

ω − ω′ − iη

)
J1(ω′)

(69)

TI-26: proof of Eq. (69)
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Retarded and Time-Ordered Green’s Functions (cont.)

TI-26: proof of Eq. (69)

GR(t) = −iΘ(t)(J1(t)− J2(t))

Gt (t) = −i [Θ(t)J1(t) + Θ(−t)J2(t)]

Using

Θ(t) = −
∫ ∞
−∞

dω
2πi

e−iωt

ω + iη

one can Fourier transform the Green’s function as

GR(ω) =

∫ ∞
−∞

dt eiωtGR(t) =

∫ ∞
−∞

dt eiωt

(∫ ∞
−∞

dω′′

2π
e−iω′′ t

ω′′ + iη

)∫ ∞
−∞

dω′

2π
e−iω′ t (J1(ω′)± J2(ω′)

)
=

∫ ∞
−∞

dω′

2π

∫ ∞
−∞

dω′′
1± e−β~ω

′

ω′′ + iη
J1(ω′)

∫ ∞
−∞

dt
2π

ei(ω−ω′−ω′′)t

︸ ︷︷ ︸
= δ(ω − ω′ − ω′′)

=

∫ ∞
−∞

dω′

2π
1± e−β~ω

′

ω − ω′ + iη
J1(ω′)
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Retarded and Time-Ordered Green’s Functions (cont.)

Similarly,

Gt (ω) =

∫ ∞
−∞

dt eiωtGt (t)

=

∫ ∞
−∞

dt eiωt
∫ ∞
−∞

dω′

2π
e−iω′ t

[(∫ ∞
−∞

dω′′

2π
e−iω′′ t

ω′′ + iη

)
J1(ω′)∓

(∫ ∞
−∞

dω′′

2π
eiω′′ t

ω′′ + iη

)
J2(ω′)

]

=

∫ ∞
−∞

dω′

2π

∫ ∞
−∞

dω′′


1

ω′′ + iη

∫ ∞
−∞

dt
2π

ei(ω−ω′−ω′′)t

︸ ︷︷ ︸
= δ(ω − ω′ − ω′′)

∓
e−β~ω

′

ω′′ + iη

∫ ∞
−∞

dt
2π

ei(ω−ω′+ω′′)t

︸ ︷︷ ︸
= δ(ω − ω′ + ω

′′)

 J1(ω′)

=

∫ ∞
−∞

dω′

2π

(
1

ω − ω′ + iη
±

e−β~ω
′

ω − ω′ − iη

)
J1(ω′)
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Retarded and Time-Ordered Green’s Functions (cont.)

• relation between GR and G t : when B = A†

Re[GR(ω)] = Re[G t (ω)] =

∫ ∞
−∞

dω′

2π
P 1± e−β~ω

′

ω − ω′ J1(ω′)

Im[GR(ω)] = −1± e−β~ω

2
J1(ω) and Im[G t (ω)] = −1∓ e−β~ω

2
J1(ω)

→ Im[GR(ω)] =

(
tanh

β~ω
2

)∓1

Im[G t (ω)]

(70)

TI-27: proof of Eq. (70)

• fluctuation-dissipation theorem
» conductivity

Je,s(ω) = σss′(ω)Es′(ω) = σss′(ω)iωAs′(ω) (71)

» linear response theory: J1(ω) = 〈js(t)js′(0)〉 and GR(ω) = DR(ω) from Eq. (62).
For s = s′,

iωσss(ω) = − e2

~c
DR

ss(ω) = − e2

~c
i Im[DR

ss(ω)] → σss(ω) =
e2

~c
1− e−β~ω

2
J1(ω)

(72)

which implies that the dissipation (σ(ω)) is related to the fluctuation (J1(ω)).
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Retarded and Time-Ordered Green’s Functions (cont.)

TI-27: proof of Eq. (70)

Using
1

ω ± iη
= P

1
ω
∓ πiδ(ω)

one gets

GR(ω) =

∫ ∞
−∞

dω′

2π
1± e−β~ω

′

ω − ω′ + iη
J1(ω′)

=

∫ ∞
−∞

dω′

2π

(
P

1± e−β~ω
′

ω − ω′
− iπ(1± e−β~ω

′
)δ(ω − ω′)

)
J1(ω′)

=

∫ ∞
−∞

dω′

2π
P

1± e−β~ω
′

ω − ω′
J1(ω′)︸ ︷︷ ︸

real part

+ (−i)
1± e−β~ω

2
J1(ω)︸ ︷︷ ︸

imaginary part

since J1(ω) is real, and

Gt (ω) =

∫ ∞
−∞

dω′

2π

(
1

ω − ω′ + iη
±

e−β~ω
′

ω − ω′ − iη

)
J1(ω′)

=

∫ ∞
−∞

dω′

2π

(
P

1
ω − ω′

− iπδ(ω − ω′)± P
e−β~ω

′

ω − ω′
± e−β~ω

′
iπδ(ω − ω′)

)
J1(ω′)

=

∫ ∞
−∞

dω′

2π
P

1± e−β~ω
′

ω − ω′
J1(ω′)︸ ︷︷ ︸

real part

+ (−i)
1∓ e−β~ω

2
J1(ω)︸ ︷︷ ︸

imaginary part
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Retarded and Finite-Temperature Green’s Functions

• finite-temperature Green’s function

Gτ (τ) = −〈TτA(τ)B(0)〉 = −Θ(τ) 〈A(τ)B(0)〉 ±Θ(−τ) 〈B(0)A(τ)〉 (73)

for −β < τ < β, where

A(τ) = eτHAe−τH (74)

and τ is the imaginary time variable or the inverse temperature.
• correlation functions

〈A(τ)B(0)〉 =
∑
nm

e−βEm

Z 〈n|B|m〉 〈m|A|n〉 eτ(Em−En)

〈B(0)A(τ)〉 =
∑
nm

e−βEn

Z 〈n|B|m〉 〈m|A|n〉 eτ(Em−En)

(75)

• periodicity of Gτ (τ): for 0 < τ < β,

Gτ (τ) = ∓Gτ (τ − β) (76)

where the upper/lower signs correspond to bosonic/fermionic operators.
→ due to the periodicity property, Gτ can be expanded in a Fourier series.

TI-28: proof of Eq. (76)
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Retarded and Finite-Temperature Green’s Functions (cont.)

TI-28: proof of Eq. (76)

We pick 0 < τ < β or equivalently −β < τ − β < 0,

Gτ (τ − β) = ±〈B(0)A(τ − β)〉 = ±
∑
nm

e−βEn

Z
〈n|B|m〉 〈m|A|n〉 e(τ−β)(Em−En)

= ±
∑
nm

e−βEn−β(Em−En)

Z
〈n|B|m〉 〈m|A|n〉 eτ(Em−En)

= ±
∑
nm

e−βEm

Z
〈n|B|m〉 〈m|A|n〉 eτ(Em−En)

= ±〈A(τ)B(0)〉 = ∓Gτ (τ)
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Retarded and Finite-Temperature Green’s Functions (cont.)

• Fourier transform

Gτ (iωn) =

∫ β

0
dτ eiωnτGτ (τ)

Gτ (τ) =
1
β

∑
n

e−iωnτGτ (iωn)
(77)

The periodicity put constraints on possible values of Matsubara frequencies

ωn =


(2n + 1)π

β
, fermions

2nπ
β
, bosons

(78)

• Gτ (iωn) in terms of J1(ω)

Gτ (iωn) =
1
~

∫ ∞
−∞

dω′

2π
1± e−β~ω

′

iωn/~− ω′
J1(ω′) (79)

TI-29: proof of Eq. (79)
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Retarded and Finite-Temperature Green’s Functions (cont.)

TI-29: proof of Eq. (79)

Gτ (iωn) =

∫ β

0
dτ eiωnτGτ (τ) = −

∫ β

0
dτ eiωnτ 〈A(τ)B(0)〉

= −
∫ β

0
dτ eiωnτ

∑
nm

e−βEm

Z
〈n|B|m〉 〈m|A|n〉 eτ(Em−En)

= −
∑
nm

e−βEm

Z
〈n|B|m〉 〈m|A|n〉

∫ β

0
dτ e(iωn+Em−En)τ

= −
∑
nm

e−βEm

Z
〈n|B|m〉 〈m|A|n〉

∓e(Em−En)β − 1
iωn + Em − En

since

eiωnβ =

{
ei(2n+1)π = −1, fermion
ei(2n)π = 1, boson

And

Gτ (iωn) =

∫ ∞
−∞

d(~ω′)
∑
nm

e−βEm

Z
〈n|B|m〉 〈m|A|n〉 δ(~ω′ + Em − En)

︸ ︷︷ ︸
= J1(ω)/2π~

1± e−β~ω
′

iωn − ~ω′

=
1
~

∫ ∞
−∞

dω′

2π
1± e−β~ω

′

iωn/~− ω′
J1(ω′)
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Retarded and Finite-Temperature Green’s Functions (cont.)

• analytical continuation

Gτ (iωn) =
1
~

∫ ∞
−∞

dω′

2π
1± e−β~ω

′

iωn/~− ω′
J1(ω′)

GR(ω) =

∫ ∞
−∞

dω′

2π
1± e−β~ω

′

ω − ω′ + iη
J1(ω′)

(80)

→ ~Gτ (iωn/~→ ω + iη) = GR(ω) (81)

» Gτ (iωn) is defined only at a discrete set of points (iωn) on the imaginary axis of
frequency

» GR(ω) is defined for all values of ω in the real axis
» it is easier to calculate the finite-temperature Green’s function compared to the

retarded Green’s function because the Wick’s theorem can be applied to the
finite-temperature Green’s function
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Electrical Conductivity

• our strategy: electrical conductivity σss′(q, ω)
← retarded Green’s function DR

ss′(q, ω) from Eq. (62)
← (analytical continuation) finite-temperature Green’s function Dss′(q, τ)

• remark on diamagnetic term
» current contains a diamagnetic part (which is very important in obtaining the

electromagnetic response of superconductors as well as the correct response of
metals)

Je(r, t) =
in0e2

mω
E(r, t) (82)

» the first-order expansion in A neglects the diamagnetic part
» it is diagonal in space indices and does not contribute to the Hall conductivity or

other topological invariants of insulators→ it is not taken into account in the
following calculations

• spatial translational symmetry→ Fourier transform over the position coordinates

DR
ss′(q, t − t ′) = −iΘ(t) 〈[js(q, t), js′(−q, t ′)]〉0 (83)

see Eq. (60).
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Electrical Conductivity (cont.)

• finite-temperature Green’s function

Dss′(q, τ − τ ′) = −〈Tτ js(q, τ)js′(−q, τ ′)〉0 (84)

for τ − τ ′ ≥ 0.
» currents being bilinear in fermionic operators→ bosonic operator
» Dss′(q, τ) = Dss′(q, τ + β)

» Matsubara frequency νn = 2nπ/β for integer n
» Dss′ depends only on τ − τ ′, so we put τ ′ = 0.

• imaginary-time-dependent current operator in the small q limit: from Eq. (46)

js(q, τ) =
1√
N

∑
kαβ

∂hαβk

∂~ks
c†k−q/2α(τ)ck+q/2β(τ) (85)

with c(τ) = eτHce−τH.
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Electrical Conductivity (cont.)

• Wick’s theorem← non-interacting Hamiltonian (quadratic in c)

Dss′(q, τ)

= − 1
N

∑
kk′

∑
αβα′β′

∂hαβk

∂~ks

∂hα
′β′

k′

∂~k ′s′
〈Tτc†k−q/2α(τ)ck+q/2β(τ)c†k′+q/2α′ck′−q/2β′〉0

= − 1
N

∑
kk′

∑
αβα′β′

∂hαβk

∂~ks

∂hα
′β′

k′

∂~k ′s′
〈Tτc†k−q/2α(τ)ck′−q/2β′〉0 〈Tτck+q/2β(τ)c†k′+q/2α′〉0

(86)

Here we keep only the connected parts.
• fermionic finite-temperature Green’s function

Gαβ(k, τ) = −〈Tτckα′(τ)c†kα〉0 → Gαβ(k, iωn) =

[
1

iωn − hk

]
αβ

(87)

here G(k, iωn) is a M ×M matrix.
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Electrical Conductivity (cont.)

• Fourier transform

Dss′(q, iνn) =
1
N

1
β

∑
k

∑
m

Tr
[
∂hk

∂~ks
G(k + q/2, iωm)

∂hk

∂~ks′
G(k− q/2, iωm − iνn)

]
(88)

where the trace is done over the orbital indices.

TI-30: proof of Eq. (88)

• summation over Matsubara frequencies ωm

• analytical continuation: iνn/~→ ω + iη
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Electrical Conductivity (cont.)

TI-30: proof of Eq. (88)

Dss′ (q, iνn)

=

∫ β

0
dτ eiνnτDss′ (q, τ)

= −
1
N

∫ β

0
dτ eiνnτ

∑
kk′

∑
αβα′β′

∂hαβk

∂~ks

∂hα
′β′

k′

∂~k ′
s′
〈Tτ c†k−q/2α(τ)ck′−q/2β′ 〉0 〈Tτ ck+q/2β(τ)c†

k′+q/2α′ 〉0

= −
1
N

∑
k

∑
αβα′β′

∂hαβk

∂~ks

∂hα
′β′

k

∂~ks′

∫ β

0
dτ eiνnτGβ′α(k− q/2,−τ)(−Gβα′ (k + q/2, τ))

=
1
N

∑
k

∑
αβα′β′

∂hαβk

∂~ks

∂hα
′β′

k

∂~ks′

∫ β

0
dτ eiνnτ

×
1
β

∑
m′

eiωm′τGβ′α(k− q/2, iωm′ )
1
β

∑
m

e−iωmτGβα′ (k + q/2, iωm)

=
1
N

1
β

∑
mm′

∑
k

∑
αβα′β′

∂hαβk

∂~ks
Gβα′ (k + q/2, iωm)

∂hα
′β′

k

∂~ks′
Gβ′α(k− q/2, iωm′ )

1
β

∫ β

0
dτ ei(νn+ωm′−ωm)τ

︸ ︷︷ ︸
= δωm′ ,ωm−νn

=
1
N

1
β

∑
k

∑
m

Tr
[
∂hk

∂~ks
G(k + q/2, iωm)

∂hk

∂~ks′
G(k− q/2, iωm − iνn)

]
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Diagonalization of Hamiltonian

• energy eigenstates and eigenvalues of M ×M matrix hαβk

hαβk uγβ(k) = εγ(k)uγα(k) (89)

» εγ(k): γ th energy eigenvalue (γ = 1, · · · ,M)
» uγα(k): α component of γ th orthonormal eigenstate
• unitary matrix U(k)

Uαβ(k) = uβα(k) → [U†U]αβ =
∑
γ

U∗γαUγβ =
∑
γ

uα∗γ uβγ = δαβ (90)

← βth column of U(k) is the column vector by uβ(k).
• diagonalization of hk

U†(k)hkU(k) = diag(ε1(k), · · · , εM (k)) ≡ ε(k) (91)

• unitary transformation and diagonalization of H(k)

H(k) =
∑
α

d†kαεα(k)dkα with dkα =
∑
β

U†αβ(k)ckβ (92)

TI-31: proof of Eq. (92)
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Diagonalization of Hamiltonian (cont.)

TI-31: proof of Eq. (92)

Using

U†(k)hkU(k) = ε(k) → hk = U(k)ε(k)U†(k)

one obtains

H =
∑
αβ

c†kαhαβk ckβ

=
∑
αβ

c†kα
∑
γ

Uαγ(k)εγ(k)U†γβ(k)ckβ

=
∑
γ

(∑
α

Uαγ(k)c†kα

)
εγ(k)

∑
β

U†γβ(k)ckβ


=
∑
γ

(∑
α

U†γα(k)ckα

)†
︸ ︷︷ ︸

= d†kγ

εγ(k)

∑
β

U†γβ(k)ckβ


︸ ︷︷ ︸

= dkγ

100



Hall Conductance and Chern Numbers Hall Conductance

Adiabatic Transformation and Topological Properties

• linear-response electrical conductivity depends on the band energies, εα(k) as well
as the eigenstates
← poles at εα(k) of Green’s functions→ residue at each pole

• small adiabatic change of Hamiltonian (no gap is closed, no level crossing)
→ change in band energies
→ change in Hall conductance ?

• topological properties, if any, should not depend on the energies of the filled bands
» if the (small) adiabatic change in the Hamiltonian affects the Hall conductance, it

would not be topological invariant.
» the immunity of the Hall conductance to the adiabatic change
→ a hint that it is a true topological quantity

» the Hall conductance can depend on eigenstates: note that the Berry phase is
determined by the adiabatic evolution of eigenstates.

• flat-band limit
» the energy of all the occupied states set to be a same value, say εG < 0 (note that

currently the chemical potential is set to be zero)
» the energy of all the unoccupied states set to be a same value, say εE > 0
→ makes it easier to calculate the conductivity while the topological nature is still

captured.
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Flat-Band Limit

• ordering of band energies: p filled bands and M − p empty bands

ε1(k) ≤ ε2(k) ≤ · · · ≤ εp(k) < 0(= µ) < εp+1(k) ≤ · · · ≤ εM (k) (93)

insulator→ we assume that all the empty bands are separated by a full gap at all k
from the filled (negative-energy) bands

• adiabatic transformation: for an adiabatic parameter t ∈ [0, 1]

Eα(k, t) =

{
εα(k)(1− t) + εGt , 1 ≤ α ≤ p
εα(k)(1− t) + εE t , p + 1 ≤ α ≤ M

(94)

» at t = 0, Eα(k, 0) = εα(k)
» at t = 1, Eα(k, t) = εG for α ≤ p and εE for α ≥ p + 1
» throughout the adiabatic evolution, the structure of the band energies remains

same: (1) the Hamiltonian remains gapped and (2) no band crossing at the Fermi
level

» BUT this transformation keeps the eigenstates from changing

hk(t) = U(k)diag(E1(k, t), · · · ,EM (k, t))U†(k) (95)

» we are interested in only the final transformation at t = 1
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Flat-Band Limit (cont.)

• Hamiltonian after the adiabatic transformation for k

hk(t = 1) = εG

p∑
α=1

|αk〉 〈αk|+ εE

M∑
α=p+1

|αk〉 〈αk| , where |αk〉 = d†kα |0〉 (96)

• projection operator to γ th eigenstate

Pγ(k) ≡ |γk〉 〈γk| → Pγαβ(k) = 〈α|γk〉 〈γk|β〉 = uγα(k)uγ
∗

β (k) (97)

satisfying

Pγ(k)
∑
γ′

aγ′
∣∣γ′k〉 =

∑
γ′

aγ′ |γk〉 〈γk|γ′k〉 = aγ |γk〉 (98)

• projection operators to filled and empty bands

PG(k) ≡
p∑
α=1

|αk〉 〈αk| and PE (k) ≡
M∑

α=p+1

|αk〉 〈αk| (99)

satisfying the following identities:

hk(1) = εGPG(k) + εEPE (k), PG + PE = 1, [PG/E ]2 = PG/E , PGPE = 0
(100)
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Flat-Band Limit (cont.)

• fermionic finite-temperature Green’s function

G(k, iωn) =
1

iωn − hk(1)
=
PG(k)

iωn − εG
+
PE (k)

iωn − εE
(101)

TI-32: proof of Eq. (101)

• current-current correlation function (finite-temperature Green’s function for current)
from Eq. (88) in the q→ 0 limit

Dss′(q→ 0, iνn) =
(εG − εE )2

Nβ

∑
k

∑
m

Tr
[
∂PG(k)

∂~ks

(
PG(k)

iωm − εG
+
PE (k)

iωm − εE

)
× ∂PG(k)

∂~ks′

(
PG(k)

iωm − iνn − εG
+

PE (k)

iωm − iνn − εE

)]
(102)

TI-33: proof of Eq. (102)
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Flat-Band Limit (cont.)

TI-32: proof of Eq. (101)

Since (omitting the argument k for PG/E for simplicity)(
PG

iωn − εG
+

PE

iωn − εE

)
(iωn − hk) =

(
PG

iωn − εG
+

PE

iωn − εE

)(
iωn − εGP

G − εEPE
)

=
PG iωn − PG2εG

iωn − εG
+
PE iωn − PE2εE

iωn − εE
(∵ PEPG = 0)

= PG + PE (∵ PG2 = PG
, PE2 = PE )

= 1,

one finds that

G(k, iωn) = (iωn − hk)−1 =
PG(k)

iωn − εG
+
PE (k)

iωn − εE
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Flat-Band Limit (cont.)

TI-33: proof of Eq. (102)

Since, at t = 1,

∂hk(1)

∂~ks
=

∂

∂~ks

(
εGP

G(k) + εEPE (k)
)

= εG
∂PG(k)

∂~ks
+ εE

∂

∂~ks
(1− PG(k)) = (εG − εE )

∂PG(k)

∂~ks

and using the fermionic finite-temperature Green’s function given by Eq. (101), the current-current correlation
function (in its Fourier transform) is simplified into

Dss′ (q→ 0, iνn) =
1

Nβ

∑
k

∑
m

Tr
[
∂hk

∂~ks
G(k, iωm)

∂hk

∂~ks′
G(k, iωm − iνn)

]

=
1

Nβ

∑
k

∑
m

Tr

[
(εG − εE )

∂PG(k)

∂~ks

(
PG(k)

iωm − εG
+
PE (k)

iωm − εE

)

× (εG − εE )
∂PG(k)

∂~ks′

(
PG(k)

iωm − iνn − εG
+

PE (k)

iωm − iνn − εE

)]

=
(εG − εE )2

Nβ

∑
k

∑
m

Tr

[
∂PG(k)

∂~ks

(
PG(k)

iωm − εG
+
PE (k)

iωm − εE

)

×
∂PG(k)

∂~ks′

(
PG(k)

iωm − iνn − εG
+

PE (k)

iωm − iνn − εE

)]
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Flat-Band Limit (cont.)

• projector algebra

(∂sPG)PG(∂s′PG)PG = (∂sPG)PE (∂s′PG)PE = 0 (103a)
(∂sPG)PG(∂s′PG)PE = −(∂sPG)(∂s′PE )PE (103b)
(∂sPG)PE (∂s′PG)PG = −(∂sPG)(∂s′PE )PG (103c)

TI-34: proof of Eq. (103)

• summation over Matsubara frequency ωm

Dss′(q→ 0, iνn) =
(εG − εE )2

N
(nF (εG)− nF (εE ))

×
∑

k

Tr
[
∂PG(k)
∂~ks

∂PE (k)
∂~ks′

PG(k)
]

iνn + εG − εE
−

Tr
[
∂PG(k)
∂~ks

∂PE (k)
∂~ks′

PE (k)
]

iνn + εE − εG


(104)

TI-35: proof of Eq. (104)

107



Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

TI-34: proof of Eq. (103)

For simplicity, we omit the argument k for PG/E .

First, we derive some nice identities:

1 = PG + PE → 0 = ∂s(PG + PE ) → ∂sPG = −∂sPE (a)
0 = PEPG → 0 = ∂s(PEPG) → (∂sPE )PG = −PE

∂sPG (b)
PG/E = [PG/E ]2 → ∂sPG/E = (∂sPG/E )PG/E + PG/E

∂sPG/E

→ PG/E
∂sPG/E = ∂sPG/E − (∂sPG/E )PG/E (c)

• (∂sPG)PG(∂s′P
G)PG

(∂sPG)PG(∂s′P
G)PG = (∂sPG)

(
∂s′P

G − (∂s′P
G)PG

)
PG (∵ Eq. (c))

= (∂sPG)
(

(∂s′P
G)PG − (∂s′P

G)PG
)

(∵ [PG]2 = PG)

= 0

• (∂sPG)PE (∂s′P
G)PE

(∂sPG)PE (∂s′P
G)PE = (∂sPG)

(
−(∂s′P

E )PG
)
PE (∵ Eq. (b))

= 0 (∵ PGPE = 0)
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Flat-Band Limit (cont.)

• (∂sPG)PG(∂s′P
G)PE

(∂sPG)PG(∂s′P
G)PE = (∂sPG)PG(−∂s′P

E )PE (∵ Eq. (a))
= (∂sPG)(∂s′P

G)PEPE (∵ Eq. (b))
= −(∂sPG)(∂s′P

E )PE (∵ Eq. (a) and [PE ]2 = PE )

• (∂sPG)PE (∂s′P
G)PG

(∂sPG)PE (∂s′P
G)PG = (∂sPG)(−(∂s′P

E )PG)PG (∵ Eq. (b))
= −(∂sPG)(∂s′P

E )PG (∵ [PG]2 = PG)
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

TI-35: proof of Eq. (104)

Noticing that the fermionic Matsubara frequencies iωm are the poles of the Fermi-
Dirac distribution function

nF (z) =
1

eβz + 1

since eβ(iωm) = ei(2m+1)π = −1 and near the poles

1
eβz + 1

≈
1

d eβz
dz

∣∣∣
z=iωn

(z − iωn)
= −

1
β

1
z − iωn

gives rise to a residue −1/β, a contour integral around one of the pole (iωm) for an
analytical function g(z) is then∮

dz
2πi

(−βnF (z))g(z) = g(iωm).

Consider a counterclockwise contour integral along the contour C1 surrounding the
imaginary axis (see two straight lines in the upper figure) whose upper and lower
segments should be vanishing due to infinitesimally small length of the corresponding
integral interval. Since all the poles of nF (z) are enclosed by this contour,∮

C1

dz
2πi

(−βnF (z))g(z) =
∑

m

g(iωm).

By adding the circular contour integrals (see the upper figure) whose contribution
should be zero, now we have two clockwise closed contour integrals which can be
deformed to the contour C2 going around the poles of g(z) (see the lower figure).
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Flat-Band Limit (cont.)

Therefore, the summation over the Matsubara frequencies can be accomplished by summing the residue of
(−βnF (z))g(z) over the poles of g(z) (say zm):∑

m

g(iωm) =

∮
C1

dz
2πi

(−βnF (z))g(z) =

∮
C2

dz
2πi

(−βnF (z))g(z) = −
∑

m

(−βnF (zm))Res[g(zm)]

where the minus sign comes from the fact that the contour C2 is clockwise.

In our calculations, we need g(z) = 1/(z − z1)(z − z2) where z1 and z1 6= z2 are complex constants. Then,

1
β

∑
m

g(iωm) =
1
β

∑
m

1
(iωm − z1)(iωm − z2)

=
1

z2 − z1

1
β

∑
m

(
1

iωm − z1
−

1
iωm − z2

)
=

nF (z1)− nF (z2)

z2 − z1
(a)

since the residue of 1/(z − z1/2) at z = z1/2 is one. Using Eq. (a) and the previous results in projector algebra,
one gets

Dss′ (q→ 0, iνn)

=
(εG − εE )2

Nβ

∑
k

∑
m

Tr

[
∂PG(k)

∂~ks

(
PG(k)

iωm − εG
+
PE (k)

iωm − εE

)

×
∂PG(k)

∂~ks′

(
PG(k)

iωm − iνn − εG
+

PE (k)

iωm − iνn − εE

)]

=
(εG − εE )2

Nβ

∑
k

∑
m

Tr

 ∂PG(k)
∂~ks

PE (k) ∂P
G(k)

∂~ks′
PG(k)

(iωm − εE )(iωm − iνn − εG)
+

∂PG(k)
∂~ks

PG(k) ∂P
G(k)

∂~ks′
PE (k)

(iωm − εG)(iωm − iνn − εE )
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

=
(εG − εE )2

N

∑
k

(
− Tr

[
∂PG(k)

∂~ks

∂PE (k)

∂~ks′
PG(k)

]
nF (εE )− nF (iνn + εG)

iνn + εG − εE

− Tr

[
∂PG(k)

∂~ks

∂PE (k)

∂~ks′
PE (k)

]
nF (εG)− nF (iνn + εE )

iνn + εE − εG

)

=
(εG − εE )2

N
(nF (εG)− nF (εE ))

∑
k

Tr
[
∂PG(k)
∂~ks

∂PE (k)
∂~ks′

PG(k)

]
iνn + εG − εE

−
Tr
[
∂PG(k)
∂~ks

∂PE (k)
∂~ks′

PE (k)

]
iνn + εE − εG


where in the last line we have used the fact that

nF (iνn + ε) =
1

eβ(iνn)eβε + 1
=

1
eβε + 1

= nF (ε)

since νn are the bosonic Matsubara frequencies satisfying eβ(iνn) = 1.
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Flat-Band Limit (cont.)

• analytical continuation, iνn → ω + iη

DR
ss′(q→ 0, ω) = ~Dss′(q→ 0, iνn/~→ ω + iη) (105)

• Hall conductivity or conductance
→ only antisymmetric part with respect to directional indices s, s′ is finite

DR
ss′(q→ 0, ω) = (nF (εG)− nF (εE ))

2ω(εG − εE )2

(εG − εE )2/~2 − (ω + iη)2

× 1
N

∑
k

Tr
[
∂PG(k)

∂~ks

∂PG(k)

∂~ks′
PG(k)

] (106)

Note that we have now obtained the correlation function purely in terms of projection
operators PG into the ground-state manifold of occupied bands. Numerically, this is
the way we compute the Hall conductance because projectors are manifestly gauge
invariant, thereby bypassing the need for the gauge smoothing.

TI-36: proof of Eq. (106)
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Flat-Band Limit (cont.)

TI-36: proof of Eq. (106)

Tr
[

(∂sPG)(∂s′P
E )PG

]
= Tr

[
(∂sPG)(−∂s′P

G)PG
]

= − Tr
[

(∂sPG)(∂s′P
G)PG

]
Tr
[

(∂sPG)(∂s′P
E )PE

]
= Tr

[
(∂sPG)(−∂s′P

G)(1− PG)
]

= Tr
[

(∂sPG)(∂s′P
G)PG

]
− Tr

[
(∂sPG)(∂s′P

G)
]

Note that the last term is symmetric in s and s′ due to the property of the trace operation:

Tr
[

(∂sPG)(∂s′P
G)
]

= Tr
[

(∂s′P
G)(∂sPG)

]
so it is neglected (it should vanish for s 6= s′). Therefore,

DR
ss′ (q→ 0, ω)

=
~
~

(εG − εE )2

N
(nF (εG)− nF (εE ))

∑
k

Tr
[
∂PG(k)
∂~ks

∂PE (k)
∂~ks′

PG(k)

]
ω + iη + (εG − εE )/~

−
Tr
[
∂PG(k)
∂~ks

∂PE (k)
∂~ks′

PE (k)

]
ω + iη + (εE − εG)/~


=

(εG − εE )2

N
(nF (εG)− nF (εE ))

(
−

1
ω + iη + (εG − εE )/~

−
1

ω + iη + (εE − εG)/~

)
×
∑

k

Tr

[
∂PG(k)

∂~ks

∂PG(k)

∂~ks′
PG(k)

]

= (nF (εG)− nF (εE ))
2ω(εG − εE )2

(εG − εE )2/~2 − (ω + iη)2

1
N

∑
k

Tr

[
∂PG(k)

∂~ks

∂PG(k)

∂~ks′
PG(k)

]
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Flat-Band Limit (cont.)

• Hall conductance: from Eqs. (62) and (71)

iωσss′(ω) = − e2

~c
DR

ss′(ω) → σss′(ω) =
e2

~c
i
ω
DR

ss′(ω) (107)

here the constant c (due to cgs unit system) can be dropped in the MKS unit system.

• dc limit, ω → 0 and zero temperature, T = 0
» nonzero frequency corrections contain terms related to excitation into the empty

bands
» finite-temperature corrections contain thermal fluctuations into the empty bands
⇒ only the zero-frequency and zero-temperature Hall conductivity has topological
meaning

σss′ ≡ σss′(ω → 0) = 2i
e2

~
1
N

∑
k

Tr
[
∂PG(k)

∂ks

∂PG(k)

∂ks′
PG(k)

]
(108)

TI-37: proof of Eq. (108)
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

TI-37: proof of Eq. (108)

At zero temperature, nF (εG < 0) = 1 and nF (εE > 0) = 0. Therefore, at zero temperature and in the ω → 0
limit,

σss′ (ω → 0) =
e2

~c
i
ω
DR

ss′ (ω)

=
e2

~c
i
ω

(nF (εG)− nF (εE ))
2ω(εG − εE )2

(εG − εE )2/~2 − (ω + iη)2

1
N

∑
k

Tr

[
∂PG(k)

∂~ks

∂PG(k)

∂~ks′
PG(k)

]

= 2i
e2

~
1
N

∑
k

Tr

[
∂PG(k)

∂ks

∂PG(k)

∂ks′
PG(k)

]
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Flat-Band Limit (cont.)

• Hall conductance

σxy =
e2

~
1
N

∑
k

p∑
α=1

[Fα(k)]xy (109)

in terms of the Berry curvature

[Fα(k)]xy = i (〈∂xαk|∂yαk〉 − 〈∂yαk|∂xαk〉) (110)

TI-38: proof of Eq. (109)

• redefinition of Fourier transform: infinite lattice→ Brillouin zone

σxy =
e2

h
1

2π

∫
BZ

dkx dky

p∑
α=1

Fxy (αk)︸ ︷︷ ︸
= Berry phase

(111)

TI-39: proof of Eq. (111)
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Flat-Band Limit (cont.)

TI-38: proof of Eq. (109)

Tr
[

(∂sPG(k))(∂s′P
G(k))PG(k)

]
=

M∑
α=1

〈αk|(∂sPG(k))(∂s′P
G(k))PG(k)|αk〉

=

p∑
α=1

〈αk|(∂sPG(k))(∂s′P
G(k))|αk〉

=

p∑
α=1

〈αk|
p∑
β=1

(
∂s |βk〉 〈βk| + |βk〉 〈∂sβk|

) p∑
γ=1

(
∂s′ |γk〉 〈γk| + |γk〉 〈∂s′γk|

)
|αk〉

=

p∑
α,β=1

[
〈αk|∂s|βk〉 〈βk|∂s′ |αk〉 + 〈αk|∂s|βk〉 〈∂s′βk|αk〉

]

+

p∑
α=1

〈∂sαk|∂s′ |αk〉 +

p∑
α,β=1

〈∂sαk|βk〉 〈∂s′βk|αk〉

=

p∑
α=1

〈∂sαk|∂s′ |αk〉 +

p∑
α,β=1

〈αk|∂s|βk〉 〈βk|∂s′ |αk〉 +

p∑
α,β=1

(∂s 〈αk|βk〉) 〈∂s′βk|αk〉

=

p∑
α=1

〈∂sαk|∂s′ |αk〉 +

p∑
α,β=1

〈αk|∂s|βk〉 〈βk|∂s′ |αk〉

where the second term is obviously symmetric in s and s′ so that it should vanish.
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Flat-Band Limit (cont.)

Since the Hall conductivity is antisymmetric, explicitly,

σss′ =
σss′ − σs′s

2

=
e2

~
1
N

∑
k

p∑
α=1

(i 〈∂sαk|∂s′ |αk〉 − i 〈∂s′αk|∂s|αk〉)

=
e2

~
1
N

∑
k

p∑
α=1

[Fα(k)]ss′
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Flat-Band Limit (cont.)

TI-39: proof of Eq. (111)

For simplicity, here we assume an infinite one-dimensional lattice system. Then, the Fourier transform is defined
as

ckx =
1
√

2π

∑
nx

e−ikx nx cnx and cnx =
1
√

2π

∫ π

−π
dkx eikx nx ckx

for −π < kx ≤ π. Note that ckx is periodic in kx by 2π:

ckx +2π =
∑
nx

e−i(kx +2π)nx cnx =
∑
nx

e−ikx nx e−2πinx cnx = ckx

With this Fourier transform, the previous calculations can be properly modified. For example, the Hamiltonian is
transformed into

H =
∑

ij

∑
αβ

c†iαhαβij cjβ =
∑

ij

∑
αβ

1
√

2π

∫
dkx e−ikx ni c†kxα

hαβij
1
√

2π

∫
dqx eiqx nj cqxβ

=

∫
dkx

∫
dqx
∑
αβ

c†kxα

 1
2π

∑
nX nx

ei(qx−kx )nX e−i(qx +kx )nx/2hαβx

 cqxβ (ni = nX +
nx

2
, nj = nX −

nx

2
)

=

∫
dkx

∫
dqx
∑
αβ

c†kxα

δ(kx − qx )
∑
nx

e−ikx nx hαβx

 cqxβ (∵
1

2π

∑
n

eikn = δ(k))

=

∫
dkx
∑
αβ

c†kxα

∑
nx

e−ikx nx hαβx


︸ ︷︷ ︸

= hαβkx

ckxβ
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Flat-Band Limit (cont.)

By comparing the old and new Fourier transforms, one can find that (with 1/
√

N → 1/
√

(2π)d )

1
N

∑
k

→
∫

dd k
(2π)d

One may want to introduce the lattice spacing as into wave number ks so that the integration over ks is changed
as ∫ π

−π

dks

2π
→
∫ π/as

−π/as

dks

2π/as

which will introduce an additional factor as . However, in our Hall conductivity formula, the integrand contains two
derivative with respect to ks . Hence, for d = 2, the additional factors from the lattice spacing are canceled out.
So, the integration interval is simply the Brillouin zone.

Finally, we have

σxy =
e2

~

∫
BZ

dkx

2π
dky

2π

p∑
α=1

[Fα(k)]xy =
e2

h
1

2π

∫
BZ

dkx dky

p∑
α=1

[Fα(k)]xy
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Chern Number and Quantization of Hall Conductance

• Chern number

1
2π

∫
BZ

dkx dky

p∑
α=1

Fxy (αk) = (integer) (112)

• Berry gauge field (Berry vector potential) A and Stokes’ theorem

1
2π

∫
BZ

dkx dky Fxy (αk) =
1

2π

∫
C

dk · Aα(k) (113)

if Aα(k) is well defined in the whole Brillioun zone
» Brillioun zone (2D) = a torus with no boundary∫

C
dk · Aα(k) = 0 (114)

» finite values of the Berry phase→ singularities of A(k) in the BZ
= no global gauge that is continuous and single-valued over the entire BZ

• nonzero Chern number = obstruction to Stokes’ theorem over the whole BZ

for comparison, Z2 invariant = obstruction to Stokes’ theorem in half the BZ
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Chern Number and Quantization of Hall Conductance (cont.)

• observable quantities is gauge invariant, but the wavefunction and the Berry
potential transform under the gauge transformation

|αk〉′ = eiζ(k) |αk〉 and A′α(k) = Aα(k)−∇kζ(k) (115)

• fix a smooth gauge defining a single-valued, smooth wavefunction, for example
» if the first component is nonzero, pick a phase to gauge-transform so that it is made real

|αk〉 =


a1(k)

a2(k)

...

 =


|a1(k)|e−iζ1(k)

a2(k)

...

→ eiζ1(k)


a1(k)

a2(k)

...

 =


|a1(k)|

eiζ1(k)a2(k)

...

 ≡ |ψ0〉

note that if this pick of a smooth gauge over the entire BZ is possible, the Hall conductance
vanishes.

» failure of picking a phase when a1(k) = 0 at k = ki (i = 1, · · · ,Ns)
→ we define small regions (circular or of any shape) around them

Rεi =
{

k ∈ T 2
BZ| |k− ki | < ε, |αki 〉1 = 0

}
(116)
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Chern Number and Quantization of Hall Conductance (cont.)

» inside Rεi , suppose that βth
i component never vanishes→ new choice of a gauge making

aβi (k) real

eiζβi
(k)


...

aβi (k)

...

 =


...

|aβi (k)|
...

 ≡ |ψi 〉

» gauge transformation between |ψ0〉 and |ψi 〉 at the boundary of Rεi : The gauge

χαi (k) ≡ ζ1(k)− ζβi (k) (117)

defines the gauge transformation

|ψi 〉 = ei(ζβi
(k)−ζ1(k)) |ψ0〉 = e−iχαi (k) |ψ0〉 and Ai (k) = A0(k) + ∇kχ

α
i (k) (118)

• Berry phase in terms of winding numbers

nα =
1

2π

∫
BZ

dkx dky Fxy (αk) =
1

2π

∑
i

∮
∂(Rεi )

dk ·∇χαi (k) (119)

TI-40: proof of Eq. (119)

TI-41: prove that nα is an integer.
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Chern Number and Quantization of Hall Conductance (cont.)

TI-40: proof of Eq. (119)

Each patch has defined its smooth gauge so that the wavefunction is smoothly differentiable in it. Noting that
Fxy is gauge-invariant, one can separate the integral into those over patches:

1
2π

∫
BZ

dkx dky Fxy (αk) =
1

2π

∫
T2

BZ−
∑

i Rεi

dkx dky Fxy (αk) +
∑

i

1
2π

∫
Rεi

dkx dky Fxy (αk)

=
1

2π

∫
T2

BZ−
∑

i Rεi

dk ·∇× A0(k) +
∑

i

1
2π

∫
Rεi

dk ·∇× Ai (k)

The Berry vector potentials are now well behaved in each of their respective patches, so we can apply Stokes’
theorem to obtain

1
2π

∫
BZ

dkx dky Fxy (αk) =
1

2π

∫
∂(T 2

BZ−
∑

i Rεi )

dk · A0(k) +
∑

i

1
2π

∫
∂Rεi

dk · Ai (k)

The torus does not have boundary, so we have ∂(T 2
BZ −

∑
i Rεi ) = −

∑
i ∂Rεi , where the minus sign means the

integration in the opposite direction. Then,

1
2π

∫
BZ

dkx dky Fxy (αk) =
∑

i

1
2π

∫
∂Rεi

dk · (Ai (k)− A0(k)) =
∑

i

1
2π

∫
∂Rεi

dk ·∇χ
α
i (k)
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Chern Number and Quantization of Hall Conductance (cont.)

TI-41: prove that nα is an integer.

Let the boundary of the Rεi region be a perfect circle so that ∂Rεi is parameterized by

k = ki + εeiθ with θ ∈ [0, 2π)

Here we have used the complex representation (z = x + iy ) for 2D wave number (kx , ky ). Then,

1
2π

∫
∂Rεi

dk ·∇χi (k) =
1

2π

∮
∂Rεi

d(εeiθ)
∂χi (k)

∂εeiθ
=

1
2π

∫ 2π

0
dθ

∂χi (ki + εeiθ)

∂θ

=
1

2π

(
χi (ki + εei(2π+0−))− χi (ki + ε)

)
Since we have the single-valuedness constraint on the wavefunction,

|ψi (ks + ε)〉 = |ψi (ks + εei(2π+0−))〉 and |ψ0(ks + ε)〉 = |ψ0(ks + εei(2π+0−))〉 .
Since these wavefunctions are related by the gauge transformation

|ψi (ks + ε)〉 = e−iχi (ks+ε) |ψ0(ks + ε)〉
and

|ψi (ks + εei(2π+0−))〉 = e−iχi (ks+εei(2π+0−)) |ψ0(ks + εei(2π+0−))〉 ,
we have

e−iχi (ks+ε) = e−iχi (ks+εei(2π+0−))

Hence, upon a full revolution around the point ki , we necessarily have

χi (ks + εei(2π+0−) − χi (ks + ε) = 2nπ

which proves that 1
2π

∫
∂Rεi

dk ·∇χi (k) is integer.
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Chern Number and Quantization of Hall Conductance (cont.)

• Hall conductance, Chern number, and winding numbers

σxy =
e2

h
n =

e2

h

∑
α

nα (120)

» the winding number nα for band α counts the total vorticity and is gauge-invariant
• the positions of the vorticities in the BZ can be changed, for example, by

picking different components of the Bloch state to gauge-smoothen
• the vorticities can be even separated, creating positive and negative vorticities
• but the total vorticities are conserved

» Chern number is the sum of all vorticities in the BZ
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