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Abstract
We consider a quantum wire double junction system with each wire segment
described by a spinless Luttinger model, and study theoretically shot noise in
this system in the sequential tunnelling regime. We find that the non-equilibrium
plasmonic excitations in the central wire segment give rise to qualitatively
different behaviour compared to the case with equilibrium plasmons. In
particular, shot noise is greatly enhanced by them, and exceeds the Poisson
limit. We show that the enhancement can be explained by the emergence of
several current-carrying processes, and that the effect disappears if the channels
effectively collapse to one because of fast plasmon relaxation processes, for
example.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Shot noise (SN) in electronic devices occurs because of the discrete nature of the transported
charge, and manifests itself clearly in non-equilibrium situations [1, 2]. Unlike thermal
(equilibrium) noise, shot noise provides additional information of the system, which is not
accessible in an average current measurement [4, 5, 3]. For this reason, shot noise has been a
subject of a great number of theoretical and experimental works in recent years [6].

One of the fundamental issues of current interest has been the effect of coherence on the
shot noise [7]. Somewhat contrary to intuition, it has been shown that in most cases where
comparable theories are available, the semiclassical and quantum mechanical descriptions give
the same result; it seems that often the shot noise is not sensitive to the quantum coherence [6].
Another important issue related to the shot noise is electron–electron correlation effects, which
are the subject of the present work. Popular examples are the shot noise in a single-electron
transistor (SET) in the Coulomb blockade (CB) regime [3, 8] and in superconducting tunnel
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junctions [9–11]. The system of our interest in this work is a one-dimensional (1D) interacting
electron gas described by the Luttinger liquid (LL) model [12]. There has been a great
deal of experimental effort to demonstrate that certain low-dimensional systems (e.g., carbon
nanotubes) behave as Luttinger liquids [13–15]. Shot noise in Luttinger liquids has also been
the subject of many recent works. For example, the non-equilibrium shot noise of the edge
states was used to measure the fractional charge of the quasiparticles of the fractional quantum
Hall states [16–19].

Very recently, Braggio et al [20] investigated the shot noise in a double junction system
embedded in a Luttinger liquid. They found some features due to the interplay between
the CB, the LL behaviour, and size quantization. Apart from the peculiar quantitative
behaviour of the shot noise at higher bias voltages, its qualitative behaviour as a function
of bias voltage was similar to that in conventional SET devices. They assumed an equilibrium
distribution of charge-density excitations (in the following called plasmons) in all electrodes.
On the other hand, in a recent work by some of the present authors [21], plasmons in
the short central electrode in the absence of environment coupling were found to exhibit
a highly non-equilibrium distribution. Since shot noise is sensitive to non-equilibrium
fluctuations in the system, one can expect that the non-equilibrium plasmons may affect the
shot noise significantly. In this work, we show that the non-equilibrium plasmons lead to
qualitatively different behaviour of the shot noise even at relatively low bias voltages. We
also show that in the limit of fast plasmon relaxation, when the plasmon distribution reaches
equilibrium between successive tunnelling events, the results by Braggio and co-workers are
reproduced.

2. Model

We consider an LL/LL/LL double junction with each LL representing a segment of quantum
wire. We refer to the three segments as the left (L) and right (R) leads and the dot (D),
respectively. The two leads are adiabatically connected to reservoirs (contacts) and the dot
(the central short wire segment) is coupled to the two leads by tunnel junctions. The L and R
leads are described by semi-infinite (spinless) Luttinger models while the dot is described by
a finite-size (spinless) Luttinger model [20–22]. The low-energy transport properties through
the system are described by the master equation [21, 23] for the probability P(N, {n}, t) to find
N (excess) electrons and nm plasmons at mode m on the dot at time t . The eigenstates of an
isolated dot are denoted by |N, {n}〉. The finite length LD of the dot leads to a discrete energy
spectrum of plasmons {n} and the zero-mode energy associated with N . The equidistant
plasmon spectrum is characterized by the energy spacing εp ≡ π h̄vF/LDg, where g is the
Luttinger parameter and vF the Fermi velocity. The zero-mode energy, characterized by the
energy scale EC = εp/g, accounts for the charging effects on the dot [22]. In accordance with
the constructive bosonization rules [22], our description of the dot in terms of the Luttinger
model is justified for lengths long enough that εp(L) is sufficiently smaller than the Fermi
energy EF of the quantum wire and the linearization of the dispersion is valid. Our bosonization
also assumes short-range interaction and is valid for lengths larger than the screening length.
Electrons are transferred between different wire segments by tunnelling, and the transition
rates �L/R(N ± 1, {n′}; N, {n}) between states |N, {n}〉 caused by tunnelling across the two
junctions are obtained using the Fermi golden rule [21]. Following the notations of [21], we
consider that the LL-parameter g is the same for each wire segment; the capacitances across
L/R tunnelling junctions are taken to be the same (CL = CR), but the tunnelling amplitudes
may differ and their ratio is denoted by R = |tL|2/|tR|2. The explicit form of the transition
rates for a wire with a single branch of spinless fermions at applied voltage V = VL − VR is
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given by [21]

�L/R(N, {n} → N ′, {n′}) = 2π |tL/R|2/h̄γ (ED(N
′, {n′})− ED(N, {n}) ∓ (N ′ − N)eVL/R)

× |〈N ′, {n′}|ψ†
DδN ′,N+1 + ψDδN ′,N−1|N, {n}〉|2, (1)

where the contribution of the leads is
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and the contribution of overlap matrix elements in the central segment is
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where n(<)m = min(n′
m, nm) and n(>)m = max(n′

m, nm). Here Ln
m(z) is a Laguerre polynomial,�

a short-distance cutoff, and α = (g−1 −1) the appropriate exponent for tunnelling into the end
of a Luttinger liquid. Note that while the lead contribution depends only on the energies ED

of the involved states of the dot, the contribution arising from the dot depends on the detailed
nature of the participating states. Temperature enters the rates through β = 1/(kBT ); since
we are interested in shot noise rather than thermal noise, we from now on set kBT to a value
far below any relevant energy scale in the dot.

The plasmons in the two leads, being in contact with reservoirs with many low-energy
excitations, are assumed to be in equilibria separately. However, the plasmons in the dot
are driven far from the equilibrium distribution [21] by tunnelling electrons. This deviation
is already significant at relatively low bias voltages 2εp � eV � 2EC. In contrast to the
equilibrium plasmons [20] that produce qualitatively similar shot noise as in a usual SET [3],
the non-equilibrium distribution strongly affects the SN of the system.

The coupling of the system to the environment causes even the plasmon distribution in the
dot to relax towards an equilibrium. The precise form of the relaxation rate, �p, depends on
the specific relaxation mechanism, but the physical properties of our concern are not sensitive
to such details. We use a phenomenological model, obeying detailed balance, with

�p({n′}, {n}) = γp
Wp/εp

eβWp − 1
(4)

where Wp = εp
∑

m m(n′
m − nm) is the energy difference of the two many-body states with

{n′} and {n} = (n1, n2, . . . , nm, . . .) plasmon occupations, and β = 1/kBT is the inverse
temperature. While the plasmon relaxation rate in nanoscale structures is difficult to estimate,
recent computer simulations on carbon nanotubes indicate that plasmon excitations in them
have lifetimes of the order of a picosecond, much longer than those in three-dimensional
structures [24]. The total transition rate is hence given by a sum of rates associated with
tunnelling and plasmon relaxation, �(N ′, {n′}; N, {n}) = ∑

�=L,R ��(N
′, {n′}; N, {n}) +

δN ′,N �p({n′}, {n})where � labels the tunnel junctions. The only phenomenological parameter
is the timescale of the relaxation processes in the dot, γp; all other quantities are determined
by the geometry of the system and the properties of the tunnel junctions.

The master equation approach neglects phase coherence of electrons tunnelling across the
two junctions (sequential tunnelling regime). The effects of the coherence on the SN have
been hotly debated in recent years. However, for many mesoscopic systems (including low-
dimensional interacting systems), the master equation approach yields the same results as the
fully quantum mechanical description of the SN [6]. Furthermore, the sequential tunnelling
picture is known to provide a good approximation at temperatures above the inverse lifetime
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of the dot states (kBT > �). Therefore, we expect that our master equation approach yields
qualitatively correct results for the system at hand, which is weakly coupled to the leads.

We introduce a matrix notation for the transition rates � with matrix elements defined by

[�̂±
� (N)]{n′},{n} = ��(N ± 1, {n′}; N, {n}), (5)

[�̂0
� (N)]{n′},{n} = δ{n′},{n}

∑
{n′′}

[�̂+
� (N) + �̂−

� (N)]{n′′},{n}, (6)

and

[�̂p(N)]{n′},{n} = −�p({n′}, {n}) + δ{n′},{n}
∑
{n′′}

�p({n′′}, {n}). (7)

Using this notation, the master equation is

d

dt
|P(t)〉 = −�̂|P(t)〉 (8)

with �̂ = �̂p +
∑

�=L ,R(�̂
0
� − �̂+

� − �̂−
� ), where |P(t)〉 is the column vector (not to be confused

with the ‘ket’ in quantum mechanics) with elements given by 〈N, {n}|P(t)〉 ≡ P(N, {n}, t).

3. Shot noise

We investigate the shot noise power defined by

S(ω) = 2
∫ ∞

−∞
dτ e+iωτ [〈I (t + τ )I (t)〉 − 〈I (t)〉2] (9)

in the steady state (t → ∞). In terms of the tunnelling current IL/R across the junction L/R,
the total current I is conveniently written as I = ∑

�=L ,R(C/C�)I�, where C−1 = C−1
L + C−1

R .
The correlation functions K (τ ) = 〈I�(t + τ )I�′(t)〉 (t → ∞) can be deduced from the master
equation (8); in the matrix notation [3, 8] we have

K (τ ) = e2
∑
N,{n}

〈N, {n}|[�(+τ ) Î� exp(−�̂τ ) Î�′

+ �(−τ ) Î�′ exp(+�̂τ ) Î� + δ(τ )δ��′(�̂
+
� + �̂−

� )]|P(∞)〉, (10)

where �(x) is the unit step function, |P(∞)〉 is the steady-state solution to the master
equation (8), and ÎL/R are tunnelling current matrices ÎL/R = ∓e(�̂+

L/R − �̂−
L/R).

For bias voltages and temperatures when only a few levels are involved in the transport,
the Fano factor F ≡ S(0)/2e〈I 〉 can be evaluated analytically, but the general case requires
numerical integration of equation (8). Figure 1 shows a typical behaviour of the Fano factor
as a function of bias voltage for different values of the interaction parameter g. The dips at
eV = 2EC = 2εp/g for g = 0.7 and g = 0.5 in figure 1(a) are ascribed to the charging effect as
typically seen in SET devices [3, 8]. This dip structure was also observed by Braggio et al [20].

A remarkable feature that contrasts our model with a conventional SET [3, 8], and the
model in [20], is the enhancement of the shot noise in the bias range 2εp < eV < 2EC; see
figure 1(a). As the external bias voltage increases over the threshold value 2εp, it provides
an electron with enough energy to tunnel across the double junction through the plasmon
excitation level of mode m = 1, and hence the current sharply increases [21, 23]. Unlike
a usual resonance channel, however, this additional channel is very noisy in the sense that
the Fano factor exceeds the conventional Poisson limit (F = 1). Therefore, the statistics of
the tunnelling events across the double junction through the plasmon excitations are highly
non-Poissonian.
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Figure 1. Fano factor F ≡ S(0)/2e〈I 〉 as a function of bias voltage (a) for g = 0.3, 0.5, 0.7, 1,
with no plasmon relaxation on the dot, and (b) for g = 0.5 with different plasmon relaxation rates
(γp). Here R = 100 (highly asymmetric junctions), and T = 0.

We emphasize that the SN enhancement is due to the non-equilibrium distribution of the
plasmons on the dot. To see this, we turn on the plasmon relaxation, γp �= 0. For sufficiently
large relaxation rates, any plasmon excitations induced by electron tunnelling relax to an
equilibrium before a subsequent tunnelling event. Therefore, as the plasmon relaxation rate
increases, the Fano factor should recover the characteristic of the conventional SET or the
model of Braggio et al [20]. This is clearly seen in figure 1(b), where the Fano factor is
shown as a function of eV for relative plasmon relaxation rates γp/�0 = 0, 0.1, 1, 104, where
�0 = |t|2/h̄2vF LD with |t|−2 = |tL|−2 + |tR|−2.

A simple explanation of the enhanced noise may be obtained by considering a situation in
which only three states of the dot are energetically allowed. We denote the states |0〉, |1A〉 and
|1B〉, where the integer denotes the (excess) number of charges, and A and B label different
states with the same particle number4. The transition rates between these states, caused by
tunnelling events into and out of the dot,are given by�s

α, where s = ± indicates if the transition
is from charge state 0 to charge state 1 or vice versa, and the label α = A,B tells which of
the states |1A〉 and |1B〉 is involved in the transition. Hence, there are two current-carrying
processes involving transitions |0〉 → |1α〉 → |0〉, and, in a time sequence, the two processes
alternate randomly. This extra degree of freedom results in additional noise, and is reflected
in the Fano factor (which can be calculated as described above)
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2
(11)

that can exceed unity if the two processes correspond to very different current levels; in the case
studied above this happens when the interaction is sufficiently strong. With this consideration,
it is clear that the enhanced shot noise comes from the multiplicity of available transport
channels, which in our case are provided by the plasmon modes, contributing to the total
current with different amplitudes. The shot noise is enhanced because of fluctuations between
channels. The interpretation is consistent with similar findings in different systems [25, 26] as
well. If there is a fast internal relaxation process that allows the state |1B〉 to decay to |1A〉,

4 In the case studied above, this three-state model is reasonably accurate for 2εp � eV 	 2EC, when A corresponds
to the state with no plasmon excitations and B to the state with one plasmon at the mode m = 1 (n1 = 1).
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Figure 2. Finite frequency shot noise S(ω)/2eI as a function of the bias eV/EC and frequency
eω/I for R = 100 and g = 0.5, at NG = 1/2 (T = 0), (a) with no plasmon relaxation (γp = 0)
and (b) with fast plasmon relaxation (γp = 104). In (c), the longest relaxation time with γp = 0 as
a function of the applied voltage for strong and weak interactions (g = 0.5 and 0.7, respectively)
is plotted. The relaxation time is given in units of �0 = |t|2/h̄2vF LD with |t|−2 = |tL|−2 + |tR |−2.

the two channels effectively collapse into one, and the Fano factor is given by

F = [�−
A ]2 + [�+

A + �+
B]2

[�−
A + �+

A + �+
B]2

∈
[

1

2
, 1

]
(12)

which is the result for a single channel system with transition rates�− = �−
A and�+ = �+

A+�+
B.

Hence, the presence of charge-conserving internal relaxation processes reduces the effective
number of transport processes, and the noise associated with the random alternation between
them.

The shot noise enhancement persists to quite high frequencies as shown in figure 2, where
the shot noise power S(ω)/(2eI ) is shown as a function of the bias and frequency for a strong
interaction (g = 1/2) and asymmetric tunnel barriers (R = 100) without plasmon relaxation
(a) and with fast plasmon relaxations (b).

The frequency dependence of noise reveals two additional consequences of non-
equilibrium plasmons. First, the asymptotic high-frequency value of S(ω) is increased by
the non-equilibrium distribution, and second, the characteristic frequency scale of the noise is
seen to depend quite sensitively on the applied voltage.
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In the high-frequency limit, ω → ∞, the correlation effects are lost in the noise power
except the δ(τ )-term in (10) that reflects the Pauli exclusion [8], and the asymptotic value of
the noise spectrum reduces to

S(iω → ∞) = 2e

(
C2

R AL

(CL + CR)2
+

C2
L AR

(CL + CR)2

)
= e

2
(AL + AR), (13)

where AL/R in the steady state is given by

A� = e
∑
N,{n}

〈N, {n}|Γ̂+
� + Γ̂−

� |P(∞)〉. (14)

The quantity A� counts the total number of tunnelling events across the junction �, without
regard to direction. In the absence of tunnelling events against the voltage, which is the case
for example in the limit of fast plasmon relaxation and low temperatures, the limiting value
of S(ω) is simply proportional to the current. In the non-equilibrium case, however, some
plasmon modes with sufficiently high energy are occupied, so tunnelling against the voltage
is not negligible, which results in the enhanced high-frequency noise above the customary
limiting value S(ω → ∞) = eI .

The frequency dependence of S(ω) comes from terms of the form λ j/(ω
2 + λ2

j ) (see
equation (10)), where λ j are the non-zero eigenvalues of the transition matrix �, that is, the
characteristic relaxation rates of the system. The longest relaxation time, shown in figure 2(c)
for g = 0.5 and 0.7, exhibits maxima at threshold voltages when more states (either charge
states or additional plasmon excitations) become involved in the transport. The long relaxation
time reflects the slow transition rates to, or from, these states near the energy threshold. For
strong interactions (g = 0.5 in the figure), clear maxima are seen both at thresholds for
additional plasmon states (eV = (2g)EC) and for new charge states (eV = 2EC), while for
weaker interactions, the structure at plasmon excitations is almost washed away. This is because
for weak interactions, the transition rates are roughly given by step functions, in contrast to
the strong interaction case when they increase like a power law with a larger exponent.

4. Conclusions

We have investigated the shot noise of a Luttinger liquid double-barrier structure. The non-
equilibrium plasmons on the central segment strongly affect current fluctuations even at
low bias voltages 2εp � eV < 2EC. The shot noise is enhanced beyond the Poissonian
limit because of the emergence of competing transport processes; the enhancement is more
pronounced for stronger interactions, and persists to unexpectedly high frequencies.
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