Strong measurement of a superconducting qubit in superconducting circuit QED systems

Boris LAURENT

Supervisors : Mr.GRUZZA ; Pr.CHOI
Friday, September $6^{\text {th }}$

Summary

- Notions
- Charge Qubit
- Superconducting Qubit
- Hamiltonian of the circuit QED
- Qubit read-out

Superconducting wires

Notions

Charge Qubit
Superconducting
Qubit
Hamiltonian of
The circuit QED

Qubit read-out

Qubit

Notions

Charge Qubit
Superconducting
Qubit
Hamiltonian of
The circuit QED

Qubit read-out

$$
|\Psi>=\alpha| 0>+\beta \mid 1>
$$

Qubit

Notions

Charge Qubit

Notions Two-level system

Charge Qubit

Superconducting
Qubit

Hamiltonian of The circuit QED

Qubit read-out

(b) LC-circuit with Josephson junction

Harmonic oscillator \rightarrow Resonator
Two-level system \rightarrow Cooper-pair box

Charge Qubit

Notions

Resonator

Charge

 QubitSuperconducting Qubit

Hamiltonian of The circuit QED

Qubit read-out

$$
\hbar \omega\left(a^{+} a+\frac{1}{2}\right) \psi(x)=E \psi(x)
$$

Charge Qubit

Charge Qubit

Superconducting Qubit

Hamiltonian of The circuit QED

Qubit read-out

N Cooper pair in the Cooper pair box
=> Necessity of a Josephson Junction

Charge Qubit

Notions
Josephson Junction

Charge

 QubitSuperconducting
Qubit

Hamiltonian of The circuit QED

Qubit read-out

=> Tunelling though the insulator due to Josephson effect

Charge Qubit

Charge

 QubitSuperconducting
Qubit

Hamiltonian of
The circuit QED

Qubit read-out

$$
\begin{gathered}
\widehat{H}=\vec{E}, \widehat{N}-\widehat{E_{J}} \cdot \cos (\hat{\phi}) \\
\begin{array}{c}
\text { Cooper pair box } \\
\text { energy }
\end{array} \\
\text { Josephson junction } \\
\text { energy }
\end{gathered}
$$

Charge Qubit

Charge Qubit

Superconducting Qubit

Hamiltonian of The circuit QED

Qubit read-out

$$
\underbrace{}_{\widehat{H}=E C \cdot(\widehat{N}-N g)-E_{J} \cdot \cos (\widehat{\phi})} C g=
$$

Charge Qubit

Notions
Charge Qubit

Superconducting Qubit

Hamiltonian of The circuit QED

Qubit read-out

10

Charge Qubit

Charge Qubit

Superconducting Qubit

Hamiltonian of The circuit QED

Qubit read-out

$$
\widehat{H}=E c \cdot(\widehat{N}-N g)-E_{J} \cdot \cos (\widehat{\phi})
$$

$$
\text { Gate charge, } n_{g}
$$

Affected by random charges in the system

Superconducting Qubit

Notions

Charge Qubit
Super-
conducting Qubit

Hamiltonian of The circuit QED

Qubit read-out

Larger capacitor

\rightarrow Reduced sensitivity to charge noise

Superconducting circuit QED

Notions
Charge Qubit
Superconducting Qubit

Hamiltonian of The circuit QED

Qubit read-out

Resonator

Hamiltonian

Hamiltonian equation

Charge Qubit

Superconducting Qubit

Hamiltonian of
The circuit QED

Qubit read-out

$$
\boldsymbol{H}_{\boldsymbol{R a b i}}=\boldsymbol{\omega}\left(\boldsymbol{a}^{+} \boldsymbol{a}\right)+\frac{\mathbb{1}}{2} \Omega \sigma^{Z}+g\left(\boldsymbol{a}^{+}+\boldsymbol{a}\right)\left(\sigma^{+}+\sigma^{-}\right)+\underset{\text { Energy loss }}{\boldsymbol{H}_{\boldsymbol{\kappa}}+\boldsymbol{H}_{\boldsymbol{\gamma}}}
$$

Resonator

Two-level system (Qubit)
Resonator-Qubit coupling
ω : resonator frequency
Ω : two-level system frequency
g : resonator-qubit coupling strengh

Dispersive Hamiltonian

Notions
Charge Qubit
Superconducting Qubit

Hamiltonian of the circuit QED

Qubit read-out

Dispersive limit : $\mathrm{g} \ll|\Omega-\omega|$

 g>>k+ : Lifetime enhancement

$$
H_{D i s p}=\frac{1}{2} \Omega \sigma^{Z}+\frac{g^{2}}{2 \Delta} \sigma^{Z}+\left(\omega+\frac{g^{2}}{\Delta} \sigma^{Z}\right) a^{+} a
$$

Qubit read-out

Notions
Charge Qubit
Superconducting Qubit

Hamiltonian of The circuit QED

Qubit readout

16

Qubit-Readout

Superconducting Qubit

Hamiltonian of The circuit QED

Qubit readout

Fabry Perot Interferometer

Transmission $\propto \frac{1}{1-r^{2}\left(e^{i k l}\right)^{2}}$
=> Lorentzian

Qubit read-out

Notions
Charge Qubit
Superconducting Qubit

Hamiltonian of The circuit QED

Qubit readout

$$
H_{D i s p}=\frac{1}{2} \Omega \sigma^{Z}+\frac{g^{2}}{2 \Delta} \sigma^{Z}+(\omega+\underbrace{\left.\frac{g^{2}}{\Delta} \sigma^{Z}\right)}_{\text {Cavity frequency shift }}) a^{+} a
$$

=> state readout by measurement of transmission

Conclusions and Perspectives

What has been achieved:

- Understanding QED Systems
- Searching the Hamiltonian and use it to understand the qubit read-out

Possibility to continue this internship on:

- Multiple Qubit in the QED System
- Weak measurement

Do you have any questions ?

