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HELLO!

[ am Chang-Woo Lee

(@ Korea Institute for Advanced Study

If you can have any data unwieldy to handle,
I would be happy to help you to train a machine for it!
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“I visualize a time when we will be
to robots what dogs are to
humans, and I’'m rooting for the
machines.” — Claude Shannon



_Introduction to

Machine Learning

Sketchy overview



o DM vs. ML o

4 Data Mining (DM)

v Focus on discovering patterns, unknown properties & internal
relations of data (e.g. fraud detection)

d Machine Learning (ML)

v Focus on extracting prediction models based on learned (but
mostly hidden) properties using training data (e.g. e-mail spam
auto-classification)

 Often Overlapped
v' They employ each other as a tool.

v Clustering, anomaly detection, ...

ata,Mihinc' > '



e Two Paradigms of Al o

d Symbolism (Top-Down)
v’ represents information through symbols and their relationships

v well-suited for representing explicit knowledge that can be
appropriately formalized

d Connectionism (Bottom-Up)

v' Mental phenomena are emergent processes of interconnected
networks of simple units.

v Biological learning is mostly implicit—it is an adaptation
process based on uncertain information and reasoning.

d Hybrid model

v' Low-level tasks = connectionist model




» Background Theories e

1 Universal Approximation Theorem

v A feed-forward network with a single hidden layer containing a
finite number of neurons (i.e., a multilayer perceptron), can
approximate continuous functions on compact subsets of A"

1 Representer Theorem

v" A minimizer f* of a regularized empirical risk function can be
represented as a finite linear combination of kernel products
evaluated on the input points in the training set data.

1 (Naive) Bayesian Inference
v' Assuming joint probability (& independent features)
= #(training data) o< not exponentially but linearly to #(features)

1 No Free Lunch Theorem

v Do not expect too much from single ML since there is no one
model that works best for every problem.
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] Bias-Variance Tradeoff

» Background Theories e

v Bias: difference between a model's expected predictions and

the true values

v Variance: algorithm's sensitivity to specific sets of training data
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» Background Theories e

J Discriminative Models

v focus on (if any) P(y|x) (x: data, y: class)

v' yield a (hard or soft) boundary between classes (and probably a
more complex one)

v require fewer assumptions

v often perform better when #(data) is large and your generative
assumptions do not satisfy

d Generative Models
v try to learn on P(x|y) & P(y), equivalently P(x,y)
v" model the distribution of individual classes
v show good performance when #(data) is small or 3 (missing data)
v Generally, probabilistic graphical models offer rich representation.



e Timeline of Deep Learning e

Deep Neural Network

(Pretraining)
Multi-layered m A

XOR Perceptron A
ADALINE (Backpropagation)
A A
A
Perceptron
A Golden Age Dark Age (“Al Winter”)

<
<

v
v

Electronic Brain

1960 1970 1980

D. Rumelhart - G. Hinton - R. Wiliams V. Vapnik - C. Cortes

=

S. McCulloch - W. Pitts F. Rosenblatt B. Widrow - M. Hoff

XAND Y XORY NOT X

Foward Activity =——jp»

+1 +] -2 +1 +1 -] -1 . :
x/ ‘l( \” x/ |y \+| )l( <@—— Backward Error i

* Adjustable Weights » Learnable Weights and Threshold « XOR Problem + Solution to nonlinearly separable problems  * Limitations of learning prior knowledge * Hierarchical feature Learning
« Weights are not Learned » Big computation, local optima and overfitting « Kernel function: Human Intervention



o Perceptron & Adaline °

Biological neuron and Perceptrons

Error
/ \ /\:F » output
" Input \_/
o_,/ Weights Activation
7 — X function
\ A" : Perceptron rule.
Output: o(w-x + b)
e - i X
AAL » . Sigmoid function:
\ "3 . all)
ot oo Xq
A biological neuron An artificial neuron (Perceptron) output
- a linear classifier
ctivation izer
on

Adaline.

1 Adaline (Adaptive Linear Element)

v' Equivalent to perceptron except that Adaline uses delta/LMS
rule, i.e. cost function

v Delta rule — back propagation



o Multilayer Perceptron o

J XOR Problem Multilayer FFNN

“W“Of | Exclusive Clnss:(;s;\'nh Mm:;g::::’eml
v' Single-layer perceptron e | o | U o | Shape
Single-layer [
cannot solve XOR e Complex decision Gonied B2l
classification hypersurfaces for | /N,
. : classification ®
v The First Al Winter (1969) « Asymptotic Twolayer | D\@
: approximation of a Opa |
= Multilayer perceptron posterior class dod | ¥
probabilities regions) | (B

d Increasing Computation % 1“;“:;:::;, > ® @ Q@

= Back propagation, CNN ou ®[®

J Vanishing (or exploding) Gradient Problem
v The Second Al Winter (1990’s) T [
v SVM I B
v" Solution = LSTM, ReLU,
Batch Normaliztion, ...




e Resurgence of Deep Neural Net e

J Huge Computational Cost
v' Exponentially increasing # of weights

= Unsupervised pre-training: Autoencoder, DBN
= GPGPU (General-purpose GPU), mini-batch

CPU vs. GPU computing time
(Caffe framework MNIST example)

d Huge Number of Data Required e
= Era of big data 2

d Overfitting

= Cross-validation, dropout, regularization, ensembling
(bagging/boosting)



e Supervised Learninge.

1 Classification & Regression

v
v
v
v

Needs labeled data

Given {x;, y,}, learn y=f(x, 0)

Classification: y is categorical, e.g. digit recognition
Regression: y is continuous, e.g. temperature, stock price

What is the Dii_fferenee Between |

50 60 70 80 90 100

1 1 1 1 ! 30
-0.3 -0 0.1 0 01 0.2

Classification Regression

1
-0.5



MNIST Tra
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e Unsupervised Learning e

d Clustering, Anomaly Detection

v’ Unlabeled data = clustering, anomaly detection
v’ Given {x,}, learn y=f{x, 0)

Do you have
" < labeled data?
Unsupervised Learning Yes No

original unclustered dat . .
5 Original unclus er:e . ata ¢ Clustered daﬁau — SUprVlSed [ UnSUperVISEd ]
st i, B e B
2 o saeaded g 3 2l What do you want to predict?
i et "".‘ e | | A U "".‘ oo
J . ;. & s, T Category Quantity Yes No
A Classification Regression ] Cluster Dimensionality
- Analysis Reduction
0'
4l SVM Linear
Regression Hierarchical PCA
T o5 =1 1 i_ﬁ 5 4 5 ©& 283 22 =T @ 1 ‘2l 3 4 5 6 Clustering
o ‘ K-means ICA
l‘-.oiv:E Machine Learning Workshop | XCME 006

SVM: Support Vector Machine, KNN: k-Nearest Neighbors, CART: Classification and Regression Tree
LASSO: Least Absolute Shrinkage and Selection Operator, PCA: Principal Component Analysis, ICA:
Independent Component Analysis



“Science is the systematic
classification of experience.”
— George Henry Lewes



e Reinforcement Learning ¢

 Markov Decision Process (MDP)

v Extension of Markov chain (MC): If rewards are the same, MDP = MC
5-tuple (S, 4, P(s, s"), R(s, 5"), ¥)
Goal: find a policy m that will maximize sum of rewards ;7 Ra(st: 5141)

focuses on performance;try to balance between exploration (of
uncharted territory) and exploitation (of current knowledge)

— exploration-exploitation trade-off

NN

learns to maximise return

d O-Learning

| | AGENT
v' O(s, a): action-value function policy m(s)
h value function(s) V.(s) Q.(s a)
v' Qlearned = = (just follow max Q) environment model(s)
v" No explicit specification of the state s, |
transition probabilities reward r action @
v' Theorem:For any finite MDP, O -
learning eventually finds an optimal ENVIRONMENT
policy (i.e. maximum reward is state transitlon. (/5 2
achievable) . reward transition (s as’)

responds to action



NIPS Deep Learning Workshop 2013
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NEURAL NETWORK
4010

v A variety of types of
neural networks
available depending on

tasks

v Frequently used models
in physics:
DFF, RBM/DBN, CNN,
SVM, RBF, ...
(many other machines
are waiting to be used!)

@ Backfed Input Cell

: Input Cell

@ Noisy Input Cell

@ Hidden Cell

© Probablistic Hidden Cell
@ spiking Hidden Cell

. Output Cell

. Match Input Output Cell
. Recurrent Cell

. Memory Cell

. Different Memory Cell

" Kernel

6 Convolution or Pool

A mostly complete chart of

Neural Networks ...

©2016 Fjodor van Veen - asimovinstitute.org .
A

\
Perceptron (P) Feed Forward (FF)  Radial Basis Network (RBF) \,"' WX
(XXX %

o o R
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Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
[ ) ) [ ) )

NN Y
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Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Y
'!‘/A\‘\v:l‘/
X/ X/
SR

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

Generative Adversarial Network (GAN)

Deep Residual Network (DRN)

OO0
RELOPRKE LR
\an\\/

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

Liquid State Machine (LSM) Extreme Learning Machine (ELM)

Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)




e FKeed-Forward NN o

Feed Forward (FF)
FEATURES + — 2 HIDDEN LAYERS OUTPUT
Test loss 0.511

Which properties do
you want to feed in? Training loss 0.527
+ - + - g
4 neurons 2 neurons
X' @ ’
b . .
B ey ° s
r w’e e o
4 o ':_6%-..‘ 0y
X s ST T
A The outputs are e o O
e05%e, "
mixed with varying LA y 5 C
L]
welghts, shown ..‘i .' % °
by the thickness =

Deep Feed Forward (DFF)

larger.

http://playground.tensorflow.org

d One of Basic NNs
v' Fully connected layers
v' Layers: Input + hidden + output
v' Mostly good choice when #(labeled data) is large



o Autoencoder o

Decoder
i?‘

Input patches Input layer Output layer Reco;str ucted
(34x34) 1156 units) - patches
e S (1196 tnlks)| 5 (PSS | (1156 units) (34x34)

1 Compressed Representation of Input Data
v Unsupervised generative learning of f(x) = x
v denoising/sparse/variational AE



e Convolutional Neural Network e

4 Specialized for Image Conrdemortclpoomologecxiowr e (03
AR with a weighted sum of itself and nearby pixels.
Recognition 0 )
. . } Source pixel 0
v Inspired by biological process of

visual cortex

v Convolution = filtering

v' Shift-invariant

v' Good for feature extraction |

v' Layers: convolution, pooling, oo
fu11y— conne Cted New pixel value (destination pixel)

A<z

EE ; CAR v

= ~
ju)
' = e —=——t :S»,
’ 4 /7 O [] — BicYCLE a TRUCK X
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN COLUJEETED SOFTMAX ] ] o o : Rk
. i k&
BICYCLE X

FEATURE LEARNING CLASSIFICATION



e Restricted Boltzmann Machine e

[ Bipartite-graph connections st VJT:::? .
v Probabilistic model images ® Ht;dn?g"
v' Usually trained with ®

contrastive divergence (CD)
instead of backpropagation

 Representational Power of

RBM

@
@
‘ ®
Any distribution {0,1}” can be approximated @
arbitrarily well with an RBM with £ +
hidden units [k = #(input vectors)] @

Plugh) = %e‘E(“’h) E(v,h) = —a ' v—b"h—v ' Wh arg max H P(v)



 Implementation -
d Dependent on Task & Data

scikit-learn
algorithm cheat-sheet

classification

regression

gel
more
data
YES
predicting a
category

NO
samples

YES

YES

clustering T

NO

U
WORKING

dimensionality
reduction




« Implementation

d Many Tricks and Details

Which machine to use?
How to initialize weights; random or pre-training?
How many layers, nodes, feature maps?

How to tune parameters (e.g. learning rate)?

Which optimization, cost/activation function, pooling?
How many epochs; how large ratio of mini-batch size?
How to visualize?

Which software/hardware?

1 To prevent overfitting W<® Q@

v' Early stopping, cross-validation, , / i
regularization (L.1/L2, dropout) \ / | \
il L2

N e A RN NN

W2 A w2 A




 Implementation -

] Libraries
e

Caftte , torch




LEARNING ABOUT
NEURAL NETWORK

How can we interpret what a machine
learns?



« Explainable AI (XAI)«

d Interpretability Problem & Ethics Issue
v" technical challenge of explaining Al decisions

D DARPA pl‘Oi ect https://www.darpa.mil/program/explainable-artificial-intelligence

v' Al whose actions can be easily understood by humans.
v Contrasted with "black box" Als

Machine Learning System Patient medical record
e L ° ] @ Cat Consider when
“o_. deciding on
< : : : :/// Db care program / /{
\\0 7 > Y o e Doctor
WAV, o e
@ Q > Generate risk prediction Patient

algorithm by patient readmission risk  Reason for risk

This is a cat: . s
« It has fur, whiskers, and claws. Medical guideline
¢ |t has this feature:

Current Explanation XAIEpranation




e Generating Data from NN e

d Dreaming
v Generative Adversarial Network (GAN)

v' Generation of images that produce desired activations in a
trained deep network (What does NN really see?)

v' Reverse running of a trained NN
(weights are held fixed and the input is adjusted)
v' Google’s DeepDream

The same image before (left) and after (right)
applying ten iterations of DeepDream (Wikipedia)




“Torture the data, and it will
confess to anything.”
— Ronald Coase



* Application to Physics

Based on talks in 2017 Beijing conference



* 2017 Beijing Conference °

I\/Iachlne Learmng and I\/Iany Body PhySJcs ‘

- chERE A ERREO R

Kavli Institute for Theoretical Sciences at- UCAS

2017-06-28=-2017-07-07 Beijing

 Topics

v Conceptual connections of machine learning and many-body physics

v" Machine learning techniques for solving many-body physics/chemistry
problems

v’ Statistical and quantum physics perspectives on machine learning

v" Quantum algorithms and quantum hardwares for machine learning



e Using ML for Physics Problemse

(1 ML as a Classifier

v A neural network perspective on the Ising gauge theory and the
toric code

Learning Phase Transitions with/without Confusion

Quantum Loop Topography for Machine learning on topological
phase, phase transitions, and beyond

Machine learning phases of strongly-correlated fermions
Magnetic Phase Transitions and Unsupervised Machine Learning
Machine Learning for Frustrated Classical Spin Models

A Separability-Entanglement Classifier via Machine Learning

Transforming Bell's Inequalities into State Classifiers with Machine
Learning

A

NN




e Using ML for Physics Problemse

d ML as a Recommender System

v Self-Learning Monte Carlo Method
v Accelerated Monte Carlo simulations with restricted Boltzmann

machines

v Self-Learning quantum Monte Carlo method in interacting fermion
systems

v’ Self-learning Monte Carlo Method: Continuous Time Algorithm

(] ML for Feature Extraction

v" Neural-Network Quantum State Tomography for Many-Body
Systems
v' Bayesian spectral deconvolution: How many peaks are there in

this spectrum?




e Using ML for Physics Problemse

d ML as a Many-Body Numerical Ansatz

v
v

v

BN

ENEANERN

Neural-network Quantum States

Simulating quantum many body problems of fermions and
guantum spins

Efficient Representation of Quantum Many-body States with Deep

Neural Networks

Machine-learning density functionals

Unified Representation for Machine Learning of Molecules and
Crystals

Machine learning quantum states and entanglement

Neural network representation of tensor network and chiral states

On the Equivalence of Restricted Boltzmann Machines and Tensor

Network States




THANKS!

Any questions?

“People worry that computers will
get too smart and take over the
world, but the real problem is that
they're too stupid and they've
already taken over the world.”
— Pedro Domingos



