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LIE-TROTTER FORMULA AND CIRCUIT
TROTTERIZATION

To simulate time-evolving process such as adiabatic quantum process, we approximate continuous
process with discrete steps.
We call the discretized approximation as Trotter formula.

exp(—iHt) ~ N} exp <—i7—[,-,t7>

where, nis a trotter steps.
As we increase the step number n, we get more precise unitary trnasformation.

23



LIE-TROTTER FORMULA AND CIRCUIT

TROTTERIZATION

Practically, each terms of Hamiltonian are described with Pauli string. A single Pauli string, for example
XZIlY, Hamiltonian has a well known corresponding circuit.
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OPTIMIZATION OF HAMILTONIAN

Optimization of evolution circuit is a combination of two parts.
> Mutually Commuting Partition
» Pauli-Frame
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OPTIMIZATION OF HAMILTONIAN
MUTUALLY COMMUTING PARTITION

Pauli strings are always anti-commute or commute each other.
For given two Pauli strings, P;, P},

either [P;, P = 0or {P;, P;} = 0 3)

where, [] is a commutator, and { } is an anti-commutator.
If all Pauli-terms of Hamiltonain are mutually commute each other, Eq(1) becomes an unitary operator of

total Hamiltonain evolution of time t.

exp(—iHt) = N exp (—iH;t) (4)
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OPTIMIZATION OF HAMILTONIAN
MUTUALLY COMMUTING PARTITION

1. We must know all commuting relation of the given Pauli-stirng set.
2. How to make a mutually partitions of the given set?
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OPTIMIZATION OF HAMILTONIAN
MUTUALLY COMMUTING PARTITION

To make a mutually commuting partition, we have to know all commuting relationships of the given
Pauli-terms of Hamiltonian. We can check the commutation with General commutativity(GC),

<empty citation>

If a system is n qubits system and there are m number of Pauli-terms, total operation would be, roughly,

(Z) xn= 0O(m?n) (5)

Unfortunately, max(m) = 2" for n-qubit system Hamiltonian, it could be expoentially growth.

23



OPTIMIZATION OF HAMILTONIAN
MUTUALLY COMMUTING PARTITION

Chapuis et al., 2018 suggested acceleration of commuting term determination.
They decompose single Pauli-string into X and Z families.

> X-family: [IX, XIXI, IIXI, XXII, IXXX, . ..
> Z-family: 1z, ZIZI, 1ZI, ZZII, 1ZZZ, . ..

YZIX = XIIX - ZZIl = X; - z

0 if[z1, Xm] = [Xk, Zn]

P‘;P‘:XZ’X7ZZ
[Pi, Pl = [Xkz1, Xim, Zn] {_QP,Pj otherwise
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OPTIMIZATION OF HAMILTONIAN
MUTUALLY COMMUTING PARTITION

Now, if we have compatible grpah of Pauli-set, we can extract mutually commuting partition by solving a
sequential Max-Clique problem of the commute graph.

It is well known NP-complete problem, from 21-complete problems. See Karp, 1972.

Kurita et al., 2023 suggested Ising formulation for finding Max-clique finding problem of compatible graph.

H=—poy Zi+my hzZz t:)
where, h;j = 0 if Z; — Z; edge weight is 0 otherwise 1, ;1o = 1, 14 = 2 in Kurita et al..
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OPTIMIZATION OF HAMILTONIAN
PAuLlI FRAME
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H = tXZIY + 01 X1l + 021211 + 031111
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OPTIMIZATION OF HAMILTONIAN

PAuLlI FRAME
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OPTIMIZATION OF HAMILTONIAN
PAuLlI FRAME

Schmitz et al., 2023 analyzed and Pauli-Frame method and optimized circuit with minimum cost of
CNOT, H, S operations to

Z1 Xq X1 Z Xi 24 Xy Zi
Zo Xo Zo 2o X112 Z1 Xo X112 Z1 Xo
Zs X — Hy, Hy— S, Z X —CNOTH 2 Z X — CNOT2,4 Z X3 9
Zy Xy Yo Z4 Ya X4 X12oYs Z1XoZy
o ) o
&5 Rz(62) D
Rz(03)
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H = tXZIY + 01 XIIl + 02 XZI1 + 031111
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DEGENERATE REDUCING OF MUTUALLY HAMILTONIAN

If there are two max clique on graph, sharing same number of nodes, the next Hamiltonian pick one of
them randomly.

H=—noy Zi+my hzZz (10)

Eventhough, they are same in commutation graph, frame change cost can be different.
In this project, we only consider H, S costs. The weight of each Pauli-terms would be calculated with

function w(, ), such that
> w(,)=0:(X,X),(Y,Y),(Z,2),(Z]
> w(,)=1:(X,2),(X, Y)(X,])
> w(,)=2:(Y,),(Y,2)
For N-qubit system, extended weight function W(, ) is defined as,

w((Si)k, (Sj)«) (11)

Mz

Sh Sj) -
k:
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DEGENERATE REDUCING OF MUTUALLY HAMILTONIAN

Figure. Compatible and basis transform weight graph example. Left graph is a compatible graph of 5 Pauli basis of
2 qubits system and edges are indicating commutation relationship. Right graph is a basis transform weight graph
of the same Pauli-basis set of the left.
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DEGENERATE REDUCING OF MUTUALLY HAMILTONIAN

We can redefine a Hamiltonian for optimization,
H=—mo Y Zi+mY WZZ+pd wiZZ (12)
i<j i<j
To avoid the degeneration of energy and to conserve max and commuting condition, the coefficients,

1o, 141, 2 have next relationship.
For N qubits system,

1
Il > Nllpoll lloll > ZN(N — 1)zl (13)
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DEGENERATE REDUCING OF MUTUALLY HAMILTONIAN

Full procedure of algorithm.
1. Find a compatible graph of the given Hamiltonian

2. Calculate weigtht between Pauli-strings with Eq(11)

3. Find a min-number of mutually commuting partition, p1, po, . . ., using adiabatic computer.

4. Find a shortest hamilton path of each local partition p;, <- reduced problem, you can use classic
algorithm.

5. Connecting p; in order to following 4 step result.
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OPTIMIZATION EXAMPLE
HEH+ MOLCULAR HAMILTONIAN

Pennylane HeH+ molcule Hamiltonian:

4 qubits are required and consist of 25 Pauli-terms.

ZXZX WYY ) ZYZY )\ ZIZ ) XZXZ ) XIXP Y ZYZ )Y, ZIZE, W2, Z2ZIv, 0 1izzr, zZINz, 1ZIv, iz, *zi, "nzz:,
JXZXI,YZY P, XXYY, YXXY, YY XX, XYY X, IYZY?, IXZX
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OPTIMIZATION EXAMPLE
HEH+ MOLCULAR HAMILTONIAN

D-Wave Clique Weighted Hamiltonian

Figure. Commuting Partition HeH+ Hamiltonian Pauli-terms. Left: Ising formula solution of D-Wave. Right: Basis
cost term weight added optimization.
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OPTIMIZATION EXAMPLE
HEH+ MOLCULAR HAMILTONIAN

The optimization result is 3 number of partition.

Po [ZXZX YY) ZYZY )| ZIZ ) XZXZ ) XIXI )Y ZY Z )Y IYT ) ZIZ1

pi1 [NZ,°ZZIV,"1ZZr,°ZIZ,’1ZIr, " NzZE, °ZIr, °11ZZ))

P2 [XZXI,'YZYT,"XXYY’, "YXXY’, "YYXX', XYY X', 'IYZY’, "IXZX’]
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OPTIMIZATION EXAMPLE
HEH+ MOLCULAR HAMILTONIAN
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OPTIMIZATION EXAMPLE
HEH+ MOLCULAR HAMILTONIAN

Compare to Pennylane ApproxTimeEvovle() circuit

gates: 270
depth: 169
shots: Shots(total=None)
gate_types:

gates: 137

depth: 107

shots: Shots(total=None)

gate_types:

{'Hadamard': 16, 'CNOT': 74, 'RZ': : 11, 'Adjoint(S)‘': 11}
gate_sizes:

{1: 63, 2: 74}

{'RZ': 106, 'CNOT': 84,
gate_sizes:
{1: 186, 2: 84}

Figure. Left: Pennylane ApproxTimeEvolve() trotter number =1 circuit. Right: Optimized evolve circuit.
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