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Abstract
We present a global optimization routine for the variational quantum algorithms, which utilizes
the dynamic tunneling flow. Originally designed to leverage information gathered by a
gradient-based optimizer around local minima, we adapt the conventional dynamic tunneling flow
to exploit the distance measure of quantum states, resolving issues of extrinsic degeneracy arising
from the parametrization of quantum states. Our global optimization algorithm is applied to the
variational quantum eigensolver for the transverse-field Ising model to demonstrate the
performance of our routine while comparing it with the conventional dynamic tunneling method,
which is based on the Euclidean distance measure on the parameter space.

1. Introduction

The variational quantum algorithm (VQA) is a hybrid quantum–classical algorithm that has attracted
significant attention in recent years owing to its potential to address complex problems in quantum
chemistry [1, 2], material science [3, 4], physics [5], computational science [6, 7], and many other areas. By
combining classical optimization techniques with quantum computation, the VQA leverages the variational
principle of quantum mechanics to find the minimum of the cost function [8, 9].

In mathematical terms, the VQA can be framed as an optimization problem, where the cost function is
defined as the expectation value of an observable with respect to a variational quantum state, referred to as
an ansatz state, implemented through a parametric quantum circuit. Classical optimization techniques are
then applied to iteratively update the parameters of the parametric quantum circuit until the expectation
value of the observable converges to the lowest value.

As an optimization problem, the choice of classical optimizer plays a critical role in efficiently solving the
VQA, along with the design of a suitable ansatz state. While well-established classical optimizers are directly
utilized, several optimizers have been developed specifically to enhance VQA’s performance, focusing on
gradient-based optimization routines due to their proven convergence properties and the ability of quantum
circuits to implement the gradient of VQA in parallel. Among the optimizers explored are the stochastic
gradient descent [10, 11], the Riemannian gradient flow [12], and the natural gradient method [13, 14].

However, gradient-based optimizers for VQA often encounter the challenge of local minima, which is
inherent both in gradient-based optimization and the variational method of quantum mechanics. Various
designs for ansatz have been proposed to mitigate such local convergence, notably including [15–18]. Among
other things, it has been suggested to over-parameterize quantum state [19], introducing more quantum
layers to transform local minima into saddle points, akin to strategies used in classical neural networks [20,
21]. However, over-parameterization presents practical challenges, including the limitations imposed by
noise in NISQ devices and their restricted coherence time. Moreover, increasing circuit depth can exacerbate
local minima issues, expanding the search space [22, 23] and potentially leading to barren plateaus [14, 24].

Consequently, global optimization routines have been proposed to complement the design of parametric
quantum states, with most methods being gradient-free to avoid the drawbacks of gradient-based
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optimization. Techniques like the Nelder–Mead method [25, 26], bound optimization by quadratic
approximation [27, 28], and the quantum kernel surrogate model-based method [29] have been explored,
though they may require a significant number of function evaluations to converge, raising scalability
concerns in the VQA context.

In this work, we propose a global optimization strategy specialized for VQA that incorporates a
gradient-based optimizer called the dynamic tunneling method [30]. Similar to the conventional dynamic
tunneling method, the optimizer uses the local minima detected by the optimizer to generate a dynamic flow
towards a global minimum. However, our modified dynamic tunneling method enhances efficiency by
addressing the limitations of the conventional method within the VQA framework.

This paper is organized as follows: in the next section, we first introduce the conventional dynamic
tunneling method and then propose its modification for VQA, incorporating a distance measure between
quantum states. In section 3, we demonstrate the global optimization of the transverse field Ising model
using the modified dynamic tunneling method, comparing its performance with the conventional dynamic
tunneling method applied to the same problem. Section 4 is devoted to the conclusion and outlook of our
work.

2. Dynamic tunneling method on VQA

2.1. Dynamic tunneling method
Dynamic tunneling method and its variants [30, 31] are global optimization algorithms implementing a
dynamic flow to escape from a valley around a stable point to a valley around another stable point having the
lower value of the cost function of an optimization problem. In its primitive form, this is achieved by
constructing a so-called energy function from the cost function by exploiting the information of local
minima of the cost function.

Explicitly, given an cost function f(x), the dynamic tunneling flow is constructed by promoting
optimization parameters x to be a flow x(t) generated by

ẋ=−∂E
∂x

(1)

where E= E(x; x̄,λ,k) is an enegy function given by [30]

E(x; x̄,λ,k) =
f(x)− f(x̄)

|x− x̄|2λ
+ k

ˆ f(x)−f(x̄)

0
FReLU (z)dz. (2)

In (2), λ and k are hyperparameters depending on the problem, and x̄ is a stable point (or a local minimum)
of the cost function. Also, FReLU(z) is the rectified linear unit which is zero only when the z⩽ 0. Together
with an appropriately chosen λ, the first term in (2) amounts to induce a pole of the energy function at x̄
while violating the Lipschitz condition at x̄, which enables the flow to converge to a point outside of the
valley around x̄ [30, 31]. On the other hand, the second term in (2) is a penalty term with weight k imposing
the tunneling to seek a point having a lower cost value than f(x̄). Instead of constructing an energy function
for a tunneling flow, one can introduce a dynamic flow directly via [30]

ẋ=−
(

1

|x− x̄|2λ
+ kFReLU ( f(x)− f(x̄))

)
∂f(x)

∂x
(3)

which is more convenient for a practical implementation. Clearly, the dynamic flow in (3) has the same pole
structure and penalty constraint as the energy function in (2).

Having a dynamic tunneling flow, the conventional dynamic tunneling method corresponds to a
gradient-based optimization algorithm followed by an implementation of the dynamic tunneling flow in (3)
for the stable point recognized by the optimization process. In turn, the dynamic tunneling method is a
successive application of the optimization-tunneling pair until the tunneling flow can find no lower valley.

To illustrate the dynamic tunneling method and point out our method more clearly below, let us consider
an optimization problem defined by the cost function

f(x) = cos

(
π

2

(
x− 1

2

))
− 1

2
cos

(
2π

(
x+

3

2

))
+ sin

(
π

(
x+

1

2

))
− 3

2
sin
(π
2
(x+ 1)

)
, (4)

which is periodic in x ∈ [0,4). The landscape of (4) is plotted in figure 1(a). We first employ the usual
gradient-descent optimizer with step size 0.005 and the initial parameter x0 = 2.2 indicated as the point x0 in
figure 1(a). The optimizer then ends up with a stable point x̄1 in figure 1(a). Given a local minimum x̄1,
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Figure 1. An illustration of the dynamic tunneling flow. (a) The landscape of a cost function. (b) The change of the cost function
as iteration proceeds. The blue dots in (b) represent the corresponding points on the landscape in (a). The sharp peaks in (b)
indicate the occurrence of dynamic tunneling.

which now becomes the initial point for the next optimization process, a dynamic tunneling flow (3) sets in
and the optimizer escapes from x̄1, leading to the next stable point x̄2 depicted in figure 1(a). By repeatedly
alternating the relaxation to a local stable point by gradient-descent and the subsequent escape from it by
dynamic tunneling, the whole dynamic tunneling routine traverses from the initial point x0 through local
stable points x̄1, x̄2, and x̄3, among which x̄3 is the global minimum of the problem, as illustrated in
figure 1(b). For the hyperparameters, in this particular example, we have chosen k= 50 and set λ to be 1.5
times the lowest power of gradient of convergence to each stable point. The lowest power is extracted from
the last two iterations reaching each local minimum.

2.2. Dynamic tunneling method with distance measure for quantum states
The VQA is a quantum algorithm that implements the variational principle of quantum mechanics by
combining a parametric quantum circuit and a classical optimization algorithm [1, 9, 32]. In its simplest
form, a VQA can be cast into the form of

f(x;O) = Tr (Oρ(x)) (5)

where O and ρ are a target observable and the density operator of a quantum state depending on a parameter
x, respectively. In practice, particularly for an N-qubit system, the quantum state in (5) is prepared by
applying the parametrized quantum circuit implementing a unitary operator U(x) to a fixed initial state ρ0
so that the parametric quantum state has the form of

ρ(x) = U(x)ρ0U(x)† , (6)

often called an ansatz state.
The quantum function f(x;O) corresponds to a parametrized quantum expectation on the observable O,

so an implementation of the variational method can be obtained by optimizing f(x;O) for x primarily by
employing a classical optimizer. Consequently, the VQA is an optimization problem whose cost function
corresponds to the quantum function of a parametric state,

By identifying a VQA as an optimization problem defined by a quantum function, we can apply the
dynamic tunneling method in section 2.1 by introducing a tunneling flow as in (1). However, apart from the
intrinsic degeneracy of the target observable, the quantum function is not extrinsically injective since
multiple parameters can induce the same quantum state due to the periodic feature of the unitary gates. In
turn, the dynamic flow starting from a local minimum, say x̄, may converge to another point x̄ ′ with
ρ(x̄ ′) = ρ(x̄) which makes the algorithm computationally redundant.

Such extrinsic degeneracy thus not only makes the algorithm computationally inefficient but also
prevents the termination criterion of the algorithm from working properly since we cannot exploit the
divergence of the tunneling flow to ensure the global minimum. Therefore, instead of using the
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parameter-space distance |x− x̄|, we employ a distance measure on the space of quantum states in the first
term of (1). Explicitly, the tunneling flow for VQA is given by

ẋ=−

(
1

D (ρ(x) ,ρ(x̄))2λ
+ kFReLU ( f(x)− f(x̄))

)
∂f

∂x
(7)

whereD(ρ,ρ ′) is a distance measure on states ρ and ρ ′.
By introducing the distance measure on quantum states, one can avoid all other local minima

corresponding to the same quantum state since the modified dynamic tunneling flow completely excludes
the quantum state itself due to the first term inside the parenthesis in (7). It is emphasized that the exclusion
globally occurs over the whole parameter space, enabling the flow to circumvent a whole set of local minima
corresponding to each quantum state.

There are several distance measures for quantum states [33], and most of them have a similar effect when
they are cast into the dynamic tunneling method. Here, we utilize the Hilbert–Schmidt (HS) distance as the
distance measure for the dynamic tunneling method. The Hilbert–Schmidt distanceDHS between two
density matrices ρ, σ is given by

DHS (ρ,σ) =

√
Tr
(
(ρ−σ)

†
(ρ−σ)

)
. (8)

If the two density matrices are of pure states, denoted by ρ≡ |ψ⟩⟨ψ| and σ ≡ |ϕ⟩⟨ϕ|, the Hilbert–Schmidt
distance between them can be expressed as

DHS (|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) =
√

2− 2|⟨ψ|ϕ⟩|2. (9)

Consequently, in most cases of the VQA, the distance can be readily obtained by measuring the fidelity
between the two states [34].

In addition to resolving the extrinsic degeneracy of the quantum function, the Hilbert–Schmidt distance
is practically appreciable since it is bounded by

√
2, regardless of the size of the parameter space. In

particular, due to the upper bound, the denominator of the first term in (7) does not significantly affect the
gradient of the cost function, thereby ensuring the convergence of the tunneling process.

Moreover, local minima with different values of quantum function correspond to nearly orthogonal
quantum states, and hence one can expect that the distance at the end of the tunneling process is close to the
upper bound,

√
2. This facilitates the estimation of appropriate values for the hyperparameters of the

optimization, such as the learning rate, in contrast to the tunneling algorithm using the parameter-space
distance in which the distance between any two local minima is unpredictable.

3. Case study: transverse-field Ising model

We test the performance of the method with numerical simulation on the variational quantum eigensolver
(VQE), one of the main applications of the VQA that seeks the ground-state energy of the given
Hamiltonian. In this test, we simulate the VQE on the one-dimensional (1D) transverse-field Ising
model, using the PennyLane libary [35].

The transverse-field Ising model, consisting of spins arranged in a lattice, is a prototype model exhibiting
various correlation effects in many-body physics and has been extensively studied in condensed matter
physics [36–38]. Furthermore, the one-dimensional version allows for an exact solution [36]. This makes the
model an excellent benchmark for many quantum algorithms, including the VQE.

The transverse-field Ising model is described by the Hamiltonian

H= J
N−1∑
j=1

σz
j σ

z
j+1 +B

N∑
j=1

σx
j , (10)

where N is the number of spins (i.e. qubits), J> 0 is the coupling strength between the nearest-neighbor
spins and B is the strength of the external magnetic field in the transverse direction. We set J= 1, therefore all
the energy will be measured in units of J. In the tests below, we naturally choose the Hamiltonian as a target
observable.
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Figure 2. A parameterized quantum circuit corresponding to a variational ansatz for 5 qubits. Ry(ϕi) := e−iσyϕi/2 denotes the
single-qubit rotation around the y-axis.

Note that the model exhibits a quantum phase transition from the ordered (i.e. anti-ferromagnetic) to
disordered (i.e. paramagnetic) states. This phase transition may be understood in terms of spontaneous
breaking of Z2 symmetry: To see this, note that the Hamiltonian is invariant under the symmetry
transformation X≡

∏
jσ

x
j , that is, [H,X] = 0. In the B→ 0 limit (ordered phase), the ground states of the

model are two-fold degenerate and are related to each other by the symmetry transformation X. On the other
hand, in the B→∞ limit (disordered phase), the ground state is non-degenerate; the symmetry
transformation X maps the ground state to itself. In this work, we focus on the disordered (paramagnetic)
phase to avoid unnecessary complications due to the ground-state degeneracy.

Here, we consider the case of N = 10 and B= 5, in which the system is in the nondegenerate,
paramagnetic phase. The ground-state energy is about−50.45. Note that the Hamiltonian is real-valued in
the computational basis. This implies that the wave function of any eigenstate of the Hamiltonian can be
chosen to be real in the same basis. We exploit this fact to reduce the variational ansatz subspace. Figure 2
shows the parameterized quantum circuit to generate our variational ansatz for N = 5; for larger systems, the
quantum circuit can be extended in a similar pattern. Each Ry involves the trainable parameter ϕi, while the
structure of the CNOT gates mirrors the nearest-neighbor connectivity of the system, thereby creating
entanglement.

Figure 3 summarizes our main results, comparing the performances of the simple gradient-descent
optimization algorithm (empty boxes with orange boundaries, in both (a) and (b)), (a) the conventional
dynamic tunneling algorithm based on the parameter-space distance and (b) the modified dynamic
tunneling algorithm based on the distance measure on quantum states.

We have set the hyperparameters for our simulation as follows: λ for each tunneling is chosen to be 1.5
times the lowest power of gradient of convergence to each stable point. k= 1.125, and the learning rate is
0.01, fixed over the whole process. For practical reasons, we limit the number of execution of the dynamic
tunneling algorithm to 6 times, with the iteration limit of 2000 for each run.

In figure 3(b), we can see that the modified dynamic tunneling method successfully escapes the local
minima and reaches the global minimum, while the conventional one fails to converge into the global
minimum as shown in figure 3(a). A few results that remained in local minima in figure 3(b) can also reach
the global minimum by increasing the iteration limit.

Figure 4 presents typical profiles of the cost function over the entire optimization process. It is interesting
to note that in figure 4(a), each optimization procedure stops even on a slope rather than at local minima on
the landscape of the cost function in the parameter space, indicating that the tunneling process does not
converge within the given iteration limit. This is the reason why the histograms in figure 3(a) are smoothly
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Figure 3. A comparison of the overall convergence of the (a) conventional and (b) modified dynamic tunneling methods. Each
histogram shows the final converged values of the cost function over 500 random samples. For a reference, we also show the
histogram with empty bars and orange boundaries from the simple gradient-descent method. The global minimum is
approximately−50.45 in this example.

Figure 4. Iteration profiles of the cost function (energy) over the entire optimization process in the (a) conventional and (b)
modified dynamic tunneling methods for 5 representative samples out of the whole in figure 3. Each sharp peak indicates the
occurrence of dynamic tunneling.

distributed over the global and local minima. On the other hand, the iterations for the modified dynamic
tunneling converge well first to local minima and eventually to the global minimum, as shown in figure 4(b).

Further details of the dynamical aspects of the conventional and modified dynamical tunneling
algorithms are compared in figure 5. As one can see from the blue curves in figure 5, the conventional
dynamic tunneling method often encounters local minima of the same quantum state. In our simulation,
this happened 57 times per 431 samples which start the tunneling process from local minima. Figure 5 shows
the worst-case scenario observed during the modified tunneling optimization over the 431 samples. One can
see that even when the flow converges into the local minimum of the same energy level again, the two
quantum states corresponding to the local minima are different. Such instances are rare and occur only when
there is intrinsic degeneracy of the local minimum.

Figure 6 highlights the worst-case examples that are not featured in figure 4 or 5. Recall that there are
multiple global minima corresponding to identical ground states but located at different points in the
parameter space. As shown in figure 6(a), the flow in the conventional tunneling method may jump between
these alternative global minima, never converging to a single minimum. In our simulation, this happened 23
times out of 300 samples starting from the global minimum. In these instances, the termination criterion
fails to determine the global minimum, even with an increase in the iteration limit. On the other hand, when
using the modified tunneling method, the flow cannot converge into other global minima, as shown in
figure 6(b). This ensures the termination criterion works well, allowing for the safe determination of the
global minimum.
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Figure 5. A detailed comparison of the iteration profiles of the conventional (blue dashed curves) and modified (red curves)
dynamic tunneling methods for selected worst-case samples. For the conventional method, we have put an ad-hoc bound 2λ on
the λ term to avoid the convergence problem. Even with such a recipe, the conventional method converges much slower (almost
twice as slow) than the modified method due to the extrinsic degeneracy.

Figure 6. The iteration profiles around the globalminimum of the (a) conventional and (b) modified dynamic tunneling
methods. The green dashed lines show the value of the parameter-space distance at the corresponding iteration steps, and we have
put an ad-hoc bound 2λ on the λ term for the conventional method. The conventional dynamic tunneling flow never converges
to a single global minimum, and the iteration must be terminated manually.

4. Conclusion and outlook

In this work, we have proposed a global optimization algorithm for VQA by employing the dynamic
tunneling flow generated by (7). In contrast to the conventional dynamic flow, our dynamic flow by (7)
exploits the distance measure of quantum states to resolve the extrinsic degeneracy on the quantum function
arising from the parametrization of the ansatz state.

The modified dynamic tunneling method has been applied to the VQE for the transverse-field Ising
model. Our simulation results demonstrate the enhanced performance of the modified dynamic tunneling
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method as a global optimization algorithm, in terms of the convergence to the global solution, the analytic
behavior of the method during the process, and the number of iterations to reach the global solution.

As indicated in (7), the dynamic tunneling flow for VQA heavily relies on a distance measure on
quantum states. Therefore, a further investigation of the distance measure concerning a practical
implementation of the flow is required in addition to the direct adoption of known efficient measures
computed by the quantum computation framework [34, 39, 40].

Finally, the success of the algorithm is also sensitive to an appropriate choice of the value of the
hyperparameters. While the hyperparameter λ in (7) can be determined from the history of gradients of the
quantum function, the tunneling penalty k of the flow remains to be suitably chosen to ensure that the flow
converges to the lower valley. If the target system is scalable, one can devise a strategy to estimate the
appropriate value of k based on the dimension of the space of variational parameters. During the simulation,
we extrapolate the value of k by gradually increasing the system size N, starting from a sufficiently small size,
N = 6. In general, the tunneling penalty term arises from the constraint imposing the feasible space of the
flow to be below the known local minima. Thus, one can regard the flow as constrained dynamics, where
optimization routines for constrained problems, such as the interior-point method [41], can be applied to
improve the convergence of the flow instead of delicately choosing k.
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Appendix A. Anti-ferromagnetic phase

In the main text, we mainly focused on the paramagnetic phase of the transverse-field Ising model to simplify
the discussion and make the main points clearer. In this appendix, for reference, we provide the simulation
results in the anti-ferromagnetic phase. Exhibiting an intrinsic ground-state degeneracy and long-range
correlations, the anti-ferromagnetic phase sets a further testing ground compared to the paramagnetic phase.

We set N = 10 and B= 0.5 in the model (10), and use the same ansatz as in the paramagnetic phase, as
described in figure 2. Due to the finite size, the ground states are nearly degenerate with energies around
−9.76, as explained in section 3.

Figure A1 shows the overall convergence of different methods. As in the paramagnetic phase (figure 3),
the modified dynamic tunneling method better escapes local minima and reaches the subspace of the nearly
degenerated ground states faster. Note that the few distinct bins near the global minimum are different linear
combinations of the nearly degenerate ground states, which are difficult to distinguish within the ansatz
subspace.

Technically, during the optimization process, we used FISTA [42] (a variant of gradient descent
optimizer) to accelerate the update of the parameters for both the conventional and modified dynamic
tunneling methods. This is necessary because in the anti-ferromagnetic phase, the gradient is significantly
smaller than in the paramagnetic case across the entire cost function landscape. On the other hand, we keep
the same hyperparameters except for the value of k, which is set to 16 in this case.

Figure A2 presents the profiles of the cost function of some representative samples throughout the entire
optimization process. As in the paramagnetic phase, the optimization process of the conventional dynamic
tunneling method in figure A2(a) stops on a slope, failing to converge into any minima. In contrast, as shown
in figure A2(b), the modified dynamic tunneling method successfully finds the global minimum within fewer
iteration steps, despite the intrinsic degeneracy causing the iterations to encounter local minima with the
same energy level multiple times.

8



New J. Phys. 26 (2024) 073053 S Park et al

Figure A1. A comparison of the overall convergence of the (a) conventional and (b) modified dynamic tunneling method. Each
histogram shows the final converged values of the cost function over 500 random samples. The histogram with empty bars and
orange boundaries from the simple gradient-descent method is included as a reference. The global minimum is approximately
−9.76 in this example.

Figure A2. Iteration profiles of the cost function (energy) over the entire optimization process in the (a) conventional and (b)
modified dynamic tunneling methods for 5 representative samples out of the whole in figure A1.

Appendix B. Higher-dimensional models

In the main text, we have discussed 1D transverse-field Ising model to compare the performances of the
conventional and modified dynamic tunneling methods. In this appendix, for completeness, we provide
some simulation results for the transverse-field Ising model on a two-dimensional square lattice. From the
results in the main text and below, we expect the same conclusion in three dimensions.

We consider a 3× 4 square lattice (N = 12) and set B= 5. The ansatz is slightly modified to the form
depicted in figure B1 [on a 2× 4 lattice (N = 8) for illustration] in order to account for the connectivity
between qubits on the lattice.

The hyperparameters for this simulation are set to be the same as those for the 1D cases, except for the
value of k, which is set to 0.35 now. We again use the accelerated gradient-descent method to enhance the
overall convergence rate for both the conventional and modified dynamic tunneling methods.

Figure B2 compares the performance of our method with the conventional dynamic tunneling method.
The modified dynamic tunneling method better escapes local minima and converges faster to the global
minimum than the conventional one. Through this example, we expect that our method can be applied to
higher-dimensional problems, which have an even more complicated landscape of the cost function.
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Figure B1. A parameterized quantum circuit corresponding to a variational ansatz for the transverse-field Ising model on a 2× 4
(N= 8) lattice. The ansatz may be constructed in a similar fashion for larger lattices. Ry(ϕi) := e−iσyϕi/2 denotes the single-qubit
rotation around the y-axis.

Figure B2. Overall convergence of the (a) conventional and (b) modified dynamic tunneling methods. Each histogram shows the
final converged values of the cost function over 300 random samples. For a reference, we also show the histogram with empty bars
and orange boundaries from the simple gradient-descent method. The global minimum is approximately−60.87 in this example.
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