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Abstract
Geometric quantum computation is a scheme to use non-Abelian holonomic
operations rather than the conventional dynamic operations to manipulate
quantum states for quantum information processing. Here we propose a
geometric quantum computation scheme which can be realized with current
technology on nanoscale Josephson junction networks, known as a promising
candidate for solid-state quantum computers.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The elementary units of quantum information processing are quantum two-state systems,
called quantum bits or ‘qubits’. Unlike a classical bit, a qubit can be in any superposition
α|0̄〉 + β|1̄〉 (with α and β arbitrary complex numbers satisfying the normalization condition
|α|2 + |β|2 = 1) of the computational basis states |0̄〉 and |1̄〉. A qubit needs not only to
preserve quantum coherence for a sufficiently long time but also to allow an adequate degree
of controllability. Among a number of ideas proposed so far to realize qubits, the ones based
on solid-state devices have attracted interest due to the scalability for massive information
processing, which could make a quantum computer of practical value [1].

Another crucial element in quantum information processing is the ability to perform
quantum operations on qubits in a controllable way and with sufficient accuracy. In most
proposed schemes such quantum operations are unitary,and have conventionally been achieved
based on quantum dynamics governed by the Schrödinger equation.

Recently, it has been proposed that controllable quantum operations can be achieved
by a novel geometric principle as well [2, 3]. When a quantum system undergoes an
adiabatic cyclic evolution, it acquires a nontrivial geometric operation called a holonomy.
Holonomy is determined entirely by the geometry of the cyclic path in the parameter space,
independent of any detail of the dynamics. If the eigenspace of the Hamiltonian in question
is nondegenerate, the holonomy reduces to a simple phase factor, a Berry phase, otherwise it
becomes a non-Abelian unitary operation, i.e. a nontrivial rotation in the eigenspace. It has
been shown that universal quantum computation is possible by means of holonomies only [2, 3].
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Figure 1. A schematic of a ‘Josephson charge qubit’. The cross denotes a tunable Josephson
junction, which consists of two parallel tunnel junctions (upper panel). The strength of the effective
Josephson coupling is tuned by flux threading the loop. The gate voltage Vg controls the induced
charge on the box.

Further, holonomic quantum computation schemes have intrinsic tolerance to certain types of
computational errors [4, 5].

A critical requirement for holonomies is that the eigenspace should be preserved
throughout the adiabatic change of parameters, which is typically fulfilled by symmetry [6].
It is nontrivial to devise a physical system with a proper eigenspace which will serve as a
computational space. Recently a scheme for geometric quantum computation with nuclear
magnetic resonance was proposed and demonstrated experimentally [7]. A similar scheme
was proposed on superconducting nanocircuits [8]. In these schemes, however, only the
Abelian Berry phase was geometrically available, and additional dynamic manipulations were
required for universal quantum computation. A scheme based solely on holonomies has been
proposed for quantum optical systems [9]. However, it relies on nonlinear optics, which may
make this scheme less practical. More recently, another holonomic quantum computation
scheme has been proposed for trapped ions [10]. Supposedly, it is the only experimentally
feasible scheme proposed so far for holonomic computation. Here we propose a scheme for
holonomic quantum computation on nanoscale Josephson networks, known to be a promising
candidate for solid-state quantum computers [11–13]. It relies on tunable Josephson junctions
and capacitive coupling, which are already viable with current technology.

2. Josephson charge qubits

A ‘Josephson (charge) qubit’ [11, 12] can be realized by a small superconducting grain (a
Cooper pair box) of size ∼100 nm, coupled to a large superconducting charge reservoir or
another Cooper pair box via a Josephson junction (see figure 1). The computational bases are
encoded in two consecutive charge states |0̄〉 → |0〉 and |1̄〉 → |1〉 with |n〉 denoting a state with
n excess Cooper pairs on the box. States with more (or fewer) Cooper pairs are suppressed due
to the strong Coulomb repulsion (the gate-induced charge 2eng is tuned close to 1/2 mod 1),
characterized by the charging energy EC = (2e)2/2C (with C the total capacitance of the
box). Excitation of quasiparticles is also ignored assuming a sufficiently low temperature.
The tunnelling of Cooper pairs across the junction, characterized by the Josephson coupling
energy EJ (�EC), allows coherent superposition of the charge states |0〉 and |1〉. A tunable
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junction is attained by two parallel junctions making up a SQUID (superconducting quantum
interference device) with a magnetic flux � threading through the loop (see upper panel of
figure 1) [14]. Namely, in the two-state approximation, the Hamiltonian is written in terms of
the Pauli matrices σ z and σ± = 1

2 (σ
x ± iσ y) as [8, 11]

H = − 1
2 h(ng)σ

z − 1
2 [J (φ)σ + + J ∗(φ)σ−] (1)

where h(ng) = EC(2ng − 1), J (φ) is the effective Josephson coupling of the tunable
junction (i.e. SQUID), and φ = π�/�0 (we assume that |φ| � π/2) with �0 = hc/2e
the superconducting flux quantum. Given Josephson energies EJ and γ EJ (γ > 0) of the two
parallel junctions on a SQUID loop, the magnetic flux gives rise to a phase shift α(φ) as well as
an amplitude modulation A(φ) of the effective Josephson coupling J (φ) = 2EJ A(φ)e−iα(φ).
A(φ) and α(φ) are given by [8]

A(φ) =
√
(1 − γ )2/4 + γ cos2 φ (2)

and

tan α(φ) = 1 − γ

1 + γ
tan φ (3)

respectively. It is worth noticing that for identical junctions (γ = 1), (i) there is no phase
modulation [α(φ) = 0] and (ii) the effective Josephson coupling can be turned off completely
[J (φ) = 0] at φ = π/2. In what follows, some tunable junctions have γ = 1 and others
γ �= 1 depending on their roles in the system.

Below we will demonstrate that one can obtain the three unitary operations UZ (ϕ) =
exp(iϕ|1̄〉〈1̄|) (phase shift), UX (ϕ) = exp(iϕσ x ) (rotation around x axis) and UCZ (ϕ) =
exp(+iϕ|1̄0̄〉〈1̄0̄|) (controlled phase shift) on an arbitrary qubit or pair of qubits,using geometric
manipulations only. It is known that these unitary operations form a universal set of gate
operations for quantum computation [10, 15]. Since the charge degrees of freedom is used
in the present scheme, the state preparation and the state readout, which are other important
procedures required for quantum computation, can be achieved using the same methods used
in dynamical schemes [11].

3. Elementary gates

Before demonstrating the geometric implementation of elementary gates, we suggest a
prototype Hamiltonian which reveals the proper symmetry for the geometric manipulations in
question. All the Hamiltonians considered in this paper share the following common structure:

H = ε|0̂〉〈0̂| − 1
2

N∑
i=1

(
i |î〉〈0̂| +
∗
i |0̂〉〈î |). (4)

Here 
i is the transition amplitude from the state |0̂〉 to |î〉 and ε is the energy of the
state |0̂〉 measured from the degenerate energy of the states |î〉 (i = 1, . . . , N). For our
consideration below, one may regard the state vector |î〉 (i = 0, 1, . . . , N) as representing, for
example, an excess Cooper pair on the i th superconducting box (see figure 2(a)). |î〉 may also
represent electronic levels in atoms, as discussed in [10].

As one changes the parameters
i , the Hamiltonian in equation (4) preserves the (N−1)-
dimensional degenerate subspace. This can be clearly seen by defining |
̂〉 ≡ 
−1 ∑N

i=1 
i |î〉
with 
 ≡ √|
1|2 + · · · + |
N |2, and rewriting H as

H = ε|0̂〉〈0̂| − 1
2
(|
̂〉〈0̂| + |0̂〉〈
̂|). (5)
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Figure 2. (a) A schematic representation of the prototype model, equation (4), which has a proper
degenerate eigenspace for geometric quantum computation. (b) The degenerate level structure of
the model. (c) The structure of the corresponding Hilbert space, in which the degenerate subspace
is always perpendicular to |
〉.

The Hamiltonian in equation (5) corresponds to a particle in a (biased) double-well potential in
the tight-binding approximation. Therefore, it has two eigenstates |λ±〉 = 1√

2
(|
̂〉 ∓ |0̂〉) with

energiesλ± = 1
2 (ε±

√

2 + ε2). The other N−1 levels out of N +1 form a degenerate subspace

EN−1 with energy 0, which we will use later for a computational subspace (see figure 2(b)).
Notice that the degenerate eigenspace EN−1 is always perpendicular both to |0̂〉 and |
̂〉; as the
parameters 
i change, |
̂〉 rotates in the Hilbert space, and the eigenspace EN−1 is attached
rigidly, perpendicular to |
̂〉 (see figure 2(c)).

We first show how to get the unitary operation UZ geometrically. We consider three
Cooper pair boxes coupled in series as shown in figure 3. The first (solid) box encodes
the computational bases while the second and third (empty) boxes serve as ‘ancilla’ qubits.
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Figure 3. Configuration for the phase shift operation UZ . Throughout the work, computational
bases are encoded in the solid boxes and empty boxes serve as ancilla qubits.

The Hamiltonian is given by (see equation (1))

H = − 1
2

2∑
n=1

(Jnσ
+
n σ

−
0 + h.c.)− 1

2 hσ z
0 (6)

with h.c. meaning the Hermitian conjugate. Comparing equation (6) with the prototype
Hamiltonian in (4), the following correspondences are noticed: |0̂〉 → |100〉012 (|100〉123 is
short for |1〉0|0〉1|0〉2), |1̂〉 → |010〉012, |2̂〉 → |001〉012, |3̂〉 → |000〉012, 
1 → J1, 
2 → J2,
and 
3 = 0. From this (or direct diagonalization of the Hamiltonian equation (6), of course),
one can see that the two states

|λ1〉 = J ∗
2 |010〉012 − J ∗

1 |001〉012 (7)

(not normalized) and

|λ2〉 = |000〉012 (8)

form a degenerate subspace with energy −h/2, which is preserved during the change of J1

and J2 (equivalently φ1 and φ2). Since the computational basis is only encoded in the ‘true’
qubit (box 1), the total wavefunction |�〉 of the logical block should be initially prepared in
a separable state with respect to the true qubit and the ancilla qubits, |�〉 = |ψ〉1 ⊗ |ψ ′〉02.
In other words, one should be able to turn off at will the tunable junction 1, which should
therefore be made of identical parallel junctions (γ1 = 1) (see equations (2) and (3)). After
a cyclic evolution of the parameters φ1 and φ2 along a closed loop starting and ending at the
point with φ1 = π/2 (i.e. J1 = 0), the state |λ1〉 acquires the Berry phase [16]. For example,
along the loop depicted in figure 3(b), the Berry phase is given by

ϕB = 1 − γ 2
2

4

∫ φ∗
2

0
dφ2

(
1

cos2 φ∗
1 + A2

2(φ2)
− 1

A2
2(φ2)

)
. (9)

(The Berry phase vanishes if γ2 = 1 as expected [16].) The state |λ2〉 remains unchanged.
Therefore, the cyclic evolution amounts to UZ (ϕB).

Here it should be emphasized that although the Abelian Berry phase is used, the degenerate
structure is crucial. The dynamic phases acquired by |λ1〉 and |λ2〉 are the same and result in a
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Figure 4. (a) Configuration for the two-qubit gate UC Z . (b) Effective ‘joint tunnel’ coupling
(crossed wiggly lines) resulting from the capacitive coupling in (a).

trivial global phase. In recently proposed schemes [7, 8], which have no degenerate structure,
at least one dynamic manipulation was unavoidable to remove the dynamically accumulated
phases. Another point to be stressed is that the phase shift α2(φ2) in the effective Josephson
coupling J2(φ2) is indispensable for the Berry phase.

The two-qubit gate operation UCZ can be realized geometrically using capacitive coupling.
As shown in figure 4(a), the ancilla qubits on different three-box systems are coupled in parallel
via capacitors with capacitance Cc. It is known [17–20] that for Cc sufficiently larger than
the self-capacitance C of each box, the states |01〉00′ and |10〉00′ are strongly favoured over
the states |00〉00′ and |11〉00′ , and the same for boxes 2 and 2′ (recall that ng ≈ 1/2 for each
box). This effectively leads to ‘joint tunnelling’ (see figure 4(b)): tunnelling of a charge from
box 1 to 0 should be accompanied by tunnelling of another charge from 0′ to 1′. The joint-
tunnelling amplitudes are given by Ja ≈ 4J1 J ∗

1′/EC and Jb ≈ 4J2 J ∗
2′/EC [17]. Then the total

Hamiltonian has the form

H = − 1
2 [Ja(σ

+
1 σ

−
0 )(σ

−
1′ σ

+
0′) + h.c.] − 1

2 [Jb(σ
+
2 σ

−
0 )(σ

−
2′ σ

+
0′ ) + h.c.] − 1

2 h[σ z
0 − σ z

0′ ]. (10)

In analogy with equations (4) and (6), the above Hamiltonian has an eigenspace containing
the four degenerate states

|λ00〉 = |00〉11′ ⊗ |0101〉00′22′ , (11)

|λ01〉 = |01〉11′ ⊗ |0101〉00′22′ , (12)

|λ11〉 = |11〉11′ ⊗ |0101〉00′22′ , (13)

and

|λ10〉 = J ∗
b |10〉11′ ⊗ |0101〉00′22′ − J ∗

a |01〉11′ ⊗ |0110〉00′22′ (14)

(not normalized) with energy −h. As in the previous case (see discussions below equation (8)),
it is assumed that the tunable junctions J1 and J1′ are composed of identical parallel junctions
(γ1 = γ1′ = 1), while γ2 �= 1 and γ2′ �= 1. One can fixφ1′ = φ2′ = 0 and change the parameters
φ1 and φ2 along a closed loop starting from the point with φ1 = π/2 (J1 = Ja = 0). Upon this
cyclic evolution, the state |λ10〉 acquires the Berry phase in equation (9) while the other three
states remain unchanged, leading to the two-qubit gate operation UCZ (ϕB). We mention that in
this implementation of UCZ , the capacitive coupling is merely an example and can be replaced
by any other coupling that effectively results in a sufficiently strong Ising-type interaction of
the form Ji jσ

z
i σ

z
j .

In the demonstrations of implementing UZ and UCZ above, we have encoded the bases
|0̄〉 and |1̄〉 in a single Cooper pair box for simplicity. To realize UX , we need to encode the
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Figure 5. (a) Configuration for a rotation around the x-axis, UX . The computational basis is
encoded over the two (solid) boxes, not in a single box. (b) An adiabatic path in the parameter
space to achieve UX (φ3 is kept constant all along the path).

basis states over two Cooper pair boxes, e.g. box 1 and 2 in figure 5(a): |0̄〉 → |01〉12 and
|1̄〉 → |10〉12. It is straightforward to generalize the above implementations of UZ and UCZ

in this two-box encoding scheme. Now we turn to the remaining single-qubit gate operation
UX . The Hamiltonian is given by

H = − 1
2

∑
n=1,2,3

(Jnσ
+
n σ

−
0 + h.c.)− 1

2 hσ z
0 . (15)

The degenerate subspace is defined by the two eigenstates

|λ1〉 = (J ∗
2 |10〉12 − J ∗

1 |01〉12)⊗ |00〉03 (16)

(not normalized) and

|λ2〉 = J ∗
3

|J1|2 + |J2|2 (J1|10〉12 + J2|01〉12)⊗ |00〉03 − |00〉12 ⊗ |01〉03 (17)

(not normalized) both with energy −h/2. In this case, it is required that γ1 = γ2 = 1 but
γ3 �= 1 (see discussions below equation (8)). As an example, we take a closed loop shown in
figure 5(b) (one may choose any path starting and ending at φ1 = φ2 = π/2, i.e., J1 = J2 = 0)
with φ3 fixed. The adiabatic theory of holonomies [6] ensures that from this adiabatic cycle,
a state |ψ〉 initially belonging to the eigenspace undergoes a change to |ψ ′〉 = U |ψ〉. The
unitary operator U is given by U = U †

Z (ϕ
′)UX (ϕ)UZ (ϕ

′) with ϕ′ = α3(φ3)/2 − π/4 and

ϕ = 2
∫ 1

cosφ∗

dx cosφ∗

(x2 + cos2 φ∗)
√

1 + (x2 + cos2 φ∗)/A2
3(φ3)

. (18)

Removing the first and last factors of UZ (if necessary) with additional phase shift operations,
one can achieve UX .
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Figure 6. A computational network for universal holonomic quantum computation.

Finally, a quantum network can be constructed as in figure 6 to perform all the unitary
operations discussed above (and hence universal quantum computation) geometrically. It is
noted that the coupling capacitance Cc is not tunable, but it suffices to have a control over each
tunable junction (i.e. SQUID) and gate voltage.

4. Discussion

So far we have discussed fundamental requirements for geometric manipulations in idealized
systems. In this section, we discuss several situations one may come up with when attempting
an experimental realization of the present scheme.

First of all, the present scheme is based on the adiabatic theorem [21]. Ideally the change
in the control parameters should be infinitely slow. At a finite rate of change, there can be a
transition out of the computational subspace. However, typically such a Landau–Zener-type
transition occurs with an exponentially small probability P ∼ exp(−π�/η), where h̄� is
the smallest energy gap between the computational subspace and the nearby energy levels
and η is the adiabaticity parameter (i.e. ∂

∂ t H (t) ∼ ηh̄�) [22–26]. In Josephson networks the
level distance is of the order of the Josephson coupling energy, � ∼ EJ/h̄ ∼ (80 ps)−1. For
an operation time τop = 1/η � 3/�, P � 10−4. (For comparison, in a recent experiment
concerning dynamic quantum computation on Josephson qubits [12], the switching time was
no shorter than 0.25h̄/EJ ∼ 20 ps.)

In the previous section, on each superconducting box we neglected higher charge states
other than the two lowest. In dynamic quantum computation schemes, the existence of those
higher levels may cause the quantum leakage errors, i.e. it leads to a nonzero probability
of leakage out of the computational space, and more severely to renormalization of the
energy levels in the computational space (which therefore reduces the gate fidelity) [27].
In Josephson qubits, however, the coupling to the higher charge states is only through the
Josephson tunnelling of Cooper pairs, which can easily be included in our considerations (see
equations (4), (6), (10), and (15)). Those higher charge states form well-separated energy
levels, and do not alter the degenerate structure of the subspace in question, at least up to
the order of (EJ/EC)

2 (in the dynamic scheme the quantum leakage error occurs already
at the order of (EJ/EC)

2, see [27]). The leakage to the higher charge states out of the
computational subspace can therefore be considered within the framework of Landau–Zener



Geometric quantum computation on solid-state qubits 7831

tunnelling, which has already been discussed above. The renormalization of (degenerate)
energy of the computational space is irrelevant in our geometric scheme since it does not rely
on the dynamical time-evolution operator but only on the purely geometric means.

In reality there are fluctuations of the (reduced) flux φ (tuning the junctions) and the gate-
induced charge 2eng (resulting from the fluctuations of random charges in the substrate or gate
voltage itself). One consequence of these fluctuations is the Landau–Zener-type transitions
out of the computational subspace. A recent experiment on Josephson charge qubits [30]
suggests that fluctuations of ng as well as φ are dominated by low-frequency fluctuations.
Therefore, the Landau–Zener-type transitions might be small. The fluctuations of ng can cause
another type of error: while the eigenspace is by construction robust against the low-frequency
fluctuations of φ, the random charge fluctuations lift the degeneracy of the computational
subspace. The wavefunction of the system then acquires dynamically accumulated phase
factors exp(−iδEτop/h̄), where δE is the small level spacing caused by the fluctuations of
ng. Such dynamical phases can be ignored for sufficiently small fluctuations and sufficiently
short—yet long enough for adiabaticity—operation times (1/� � τop � 1/δE).

Another common source of decoherence in Josephson charge qubits is the quasi-particle
tunnelling [28]. In particular, since the computational eigenspace is not the lowest energy
state (equation (4) and figure 2(b)), it gives rise to the relaxation out of the eigenspace to
lower energy states (this effect cannot be described by Landau–Zener-type transitions). At
sufficiently low temperatures compared with the superconducting gap �S, the quasi-particle
tunnelling rate �qp is exponentially small [28], �qp ∼ exp[−(2�S + EC)/kBT ]. For example,
in the experiment on a Cooper pair box [12], �qp ∼ (6 ns)−1 ∼ 10−2 EJ/h̄ at temperature
30 mK even through the probe junction was biased by a voltage eV ∼ 2�S + EC (without the
voltage bias �qp should be even smaller). In such a situation, one can therefore conclude that
the effect of quasi-particles is negligible.

For a brief comparison of the present scheme with the conventional Josephson charge
qubit [11, 12], we estimate the fidelity for a single phase shift operation UZ . The fidelity in
this case is given by

fidelity �
√
(1 − P)[1 − sin4(δφ/2)], (19)

where P is the probability of Lanau–Zener-type transitions or quasiparticle tunnellings
occurring and δφ is the error in phase shift due to the background charge fluctuations,
i.e. δφ = δEτop/h̄ (see above). Taking � = (80 ps)−1, τop = 3/�, �S = 5�, kBT = �/10
and δE/h̄ = �/10 (see [12]), one estimates fidelity �0.998. In the dynamic scheme the
fidelity is also given by the same form as equation (19). The differences are that P is mainly
responsible for the quasiparticle tunnellings and that the phase error δφ comes from the finite
ramping time of the gate pulse. Taking the parameters from a recent experiment [12], we see
that the fidelity takes the same value (to three decimal places).

Lastly, in the ideal case some tunable junctions (e.g. J1 in equation (6), see discussions
below equation (8)) need to be turned off completely. In reality, the Josephson energies of the
two parallel junctions on a SQUID loop (figure 1) may not be identical (i.e.γ �= 1 in equation (1)
and figure 1). Then, a tunable junction (i.e. a SQUID) cannot be turned off completely [8].
This makes it nontrivial to prepare an initial state which should be a product state of the ‘true’
qubit and the ancilla qubits in a logical block (see, for example, |λ1〉 below equation (6)). In
practice, such a difficulty can be overcome by means of fast relaxation processes with the gate
voltages of the ancilla qubits adjusted far off the resonance in the initial state preparation stage.
This process also allows for preparation of the ‘true’ qubit in a definite initial state [11].
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5. Conclusion

We have proposed a scheme based on geometric means to implement quantum computation on
solid-state devices. The main advantage of a geometric computation scheme is its intrinsically
fault-tolerant feature [4, 5]. However, it is usually nontrivial to find a physical system whose
Hamiltonian has a particular degenerate structure for geometric computation. The scheme
discussed in this work provides a generic way to construct such a system from arbitrary
quantum two-state systems as long as couplings satisfy certain requirements specified above.
Such requirements are rather easy to fulfil on solid-state devices. A drawback of this scheme is
that it requires more resources (four Cooper pair boxes for each qubit). Considering quantum
error-correcting codes, however, it may not be a major disadvantage. Moreover, since the
current scheme is based on adiabatic evolution, it does not require sharp pulses of flux and gate
voltage. With current technology, it is still challenging to obtain sufficiently sharp pulses of
flux and gate voltages (in [12], the rising and falling times were of the order of h̄/EJ). Finite
rising and falling times of pulses can result in a significant error in dynamic computation
schemes [29].
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