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Solving Differential Equation in Multiphysics Application

with DQC(Differentiable Quantum Circuit)




Introduction Multiphysics

Multiphysics
- 02 7tK| St A (g,
- CHst A/ &2 A (temporal/spatial scales) 7t SAI0 A

—

- CIYSt 01 285™AN(DE: Differential Equations) | Zgte

Potential use-cases for multiphysics simulations
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Metrology & Climate Biomedical
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Wireless networks

Traffic & Logistics

Powergrids

Batteries & Electronics
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Fuel cell design
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Problem Differential Equations

Oj24EAL: a0l T3 3 o
- Mechanics and Fluid Dynamics: describing the equation of motion of waves or a pendulum
- Medical science: the growth or spread of certain diseases in the human body
- Ecology: description of various exponential growths and decays
- Finance: market dynamics, calculation of optimum investment strategies to assist the economists
- Epidemiology: disease spreading, description of various exponential growths and decays

Examples
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Solution Classical Approach

VM OI2BEAe SR E0] 7Y
- Grid/Mesh7|Et 7]"H(Local Method): rely on discretization of the space of variables, with derivatives being approximated with numerical
differentiation techniques fine grid for multivariable functions require increasing computational cost
- Spectral 7|2 (Global Method): represent the solution in terms of a suitable basis set. Finding spectral solutions for complex problems require ever-
increasing basis sets to achieve high accuracy.

Spectral methods Fourier series
Use spectral basis functions for truncated series

expansion Chebyshev series

Macroscopic
Eulerian approach,
starting from the
equations of motion

Finite Element
Finite Volume

Finite Difference
Meshfree

Immersed Boundary

Grid-/mesh-based methods
Discretize the governing equations and solve on a grid
(mesh) or point-cloud (meshfree)

Molecular dynamics
_ _ Calculate motions of individual atoms acted upon by
Micro-/mesoscopic interatomic potentials

Lagrangian
approach, directly
modeling particle

motion and

collisions Lattice Boltzmann
Simulate fluid density on lattice with streaming with
collision/relaxation processeses

DSMC

Lattice Gas methods
Solve motion of particles with discretized momenta on
discretized positions (lattice)

LGCA

LB-BGK

Entropic LB
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Limitation Classical Approach

THZEOIZ0| 7|8 (Solver)2| $HA
- Grid/Mesh 7[2Fo| £X[5HA X (Numerical Method) 70| 71 Z0| 2H 5|11 Q= BEHO0|CY
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<1 minute ~50 hours Weeks Intractable
Thermal fatigue in T-junction Golf ball aerodynamics Nuclear fuel assembly Aerospace modeling
Example simulation Example simulation Example simulation Example simulation
- 3D k-epsilon model - DNS model - LES turbulence model - Turbulence model
- 2"d order in time/space - Supercritical flow - 2" order in time/space - LES: 1012 cells
- Eulerian approach - 3" order in time/space - Eulerian approach - DNS: 1020 cells
- Structured mesh - Eulerian approach - Unstructured mesh - DNS level accuracy is
- 10% cells - Structured mesh - 100 cells needed by the industry

- 10° cells within next 10 years

Classical runtime Classical runtime Classical runtime Classical runtime
- <1 minute - ~50 hours - Weeks - DNS: intractable
- 108 cores - 108 cores - 106 cores
-5 Gb memory - 25 Tb memory
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Solution New Approach(Classical/Quantum)

MEZ2 0124784 £0| 718(Solver)

- Deterministic Classical Solver: T&™AOl 2 X[SHAX HAL 7| H(RISAH QIHKIEH HHRAH S)
- Variational Classical Solvers(PINN): &2 0| basis &40 CHSE 50| 26t 0| 2 QIS AL EIE QL 21 SHEAIZH0| Q1E 4~ UL
c

i —|
- Variational Quantum Solvers: YAIAERI0| HAAALS 22610 PINNS| 2HAIQl ME2|7Hs basis& 4ol FV|E &

- Deterministic Quantum Solvers(Fault-tolerant QC): HHLY"Z 12|&

Deterministic Classic Solvers Variational Classical Solvers
(Spectral & Grid/Mesh-based methods) (Physics Informed Neural Networks)
- Examples include grid-based methods (finite elements) or discrete spectral methods - Nerual network(NN) solvers are variational in nature: NN nodes are used to represent basis functions
- Grid-based methods typically require a very large number of grid-points, while discrete spectral and are trained to represent a function that approximately satisfies a set of differential equations and
methods are more efficient, but struggle dealing with complex boundary conditions boundaries.
- One downside of all deterministic methods is that they are not variational in nature, which means one - These methods are slowly coming out of academia to industry, because they show good convergence for
may only hope to improve the result by increasing discretization resolution further. smooth functions, can deal with high degree of non-linearity and can handle sharp gradient

- However, they typically require a large number of basis functions which increases computational
complexity and their training time.

Deterministic Quantum Solvers Variational Quantum Solvers
(HHL kind of algorithms) (Differentiable Quantum Circuits)
- Many proposed quantum solvers typically employ some version the so-called HHL quantum - In 2019 a first proposal was made for a variational quantum algorithm for solving nonlinear DEs
subroutine, which can be used to solve linear systems efficiently - However, similar to the deterministic quantum solvers, this proposal requires the efficient conversion of a
- However, HHL type algorithms are often only suitable for long-term fault-tolerant quantum processors large classical dataset into the amplitudes of a quantum wave function, which is not(yet) possible
- Data is assumed to be encoded in amplitudes, posing a data input- and data output-problem - Additional downsides of this algorithm include inaccuracies due to numerical differentiation, and while in-
- HHL-type algorithms typically need to linearize any nonlinearity in the problem before solving it principle it is NISQ-compatible, the circuit coherence requirements are unfeasible for near-term hardware.

- Derivatives are estimated using finte difference

1) Harrow, Hassidim, and Lloyd, PRL 103.15 (2009) 6/14



New Approach(Classical) PINNs

Physics-informed Neural Networks
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<PINN with Resnet Block for solving Fluid Flow Problems®> <Navier-Stokes equation4)>

1) Sandor Beregi et al., Using scientific machine learning for experimental bifurcation analysis of dynamic systems, arXiv. 2110.11854, 2022

2) Hornik Kurt et al., Multilayer Feedforward Networks are Universal Approximators, Neural Networks, 2, 359-366

3) Christopher Rackauckas et al., Universal Differential Equations for Scientific Machine Learning, arXiv. 2001.04385, 2020

4) M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, Volume 378, 2019

5) Cheng, C.; Zhang, G.-T. Deep Learning Method Based on Physics Informed Neural Network with Resnet Block for Solving Fluid Flow Problems. Water 2021 7/14



New Approach(Quantum) DQC

Differentiable Quantum Circuits

- SRAFE S 230 PINNY|EHC| Ol2E A £0| 7| (Solver)
0] i [9) (@)

- Expressivity: ZFAFEERO| QI X|£XQl 3 7|9| YAt SEiS(state space)S &3t AMOZ 2 HRIQ| 2XIS0l Choll UFA*E ZHEE &~ ULt
- Differentiablity: X|~XQ1 37|9| LRt SEHSZIQ 2 CHEet HEHO| =g ot TH2t0[E Q| R0l CHol M DIE7ts 82 EEE +~ UL

* UFA(Universal Function Approximator) 7

Neural network based (classical) solvers Overview of DQC
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quantum feature variational quantum
map circuit circuit

df

— = f?+sin(f) +=x - =
Update NN weights _ dx Update variationgl - dx
parameters

v
f(0) =5 ' f(0) =5

f?+sin(f) +z

<PINN> <DQC>

1) Hornik Kurt et al., Multilayer Feedforward Networks are Universal Approximators, Neural Networks, 2, 359-366
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New Approach(Quantum) DQC

DQC workflow " (PASQAL)

- Choose the quantum circuit composition

1) quantum feature map 2) ansatz of variational quantum circuit 3) define cost function 4) define loss function 5) boundary handling strategy

PINN

DQC

-

‘ "
Automatic
> differentiation through =
backpropagation
7 .
L J
T
PINN'with comparable performance
as DQC would need O(2¥) nodes with v v
all-to-all connectivity
T f(x) pmemmmmmm———— E :II-
W l[.r
up to 2" basis functions 7 )

for fitting f(x) and df/dx
L

quintu= festuse VAriaz enal Suse e
90 On0 orut

e fix)

. 1)
¥ o dCdn)

A 4

Circuit differentiation

i

Varationally
update the NN
weights

Compare with loss-
function constructed
from diff.equ. and
boundary conditions

if ,

b fF=smlfl+urx
dz

flo 3

Update varational

parameters 8 of the
quantum circuit

_input_:

_initialize_DQC_struct_:

O choose varational
ansatz Ug

e hardware efficient
e alternating blocks

_optimize_DQC_:

o differential equations

© boundary conditions

o choose feature map (g
e product map
o Chebyshev map

© choose cost function

gubit magnetization
total magnetization
t-Ising Hamiltonian

L ]
[ ]
L ]
L ]
o set grid X= {xi}M,

< for nj = 1iNjger :
<& for xi inX :

o evaluate function circuits

fX)

many-body Hamiltonian

dwm/dx=21u2+ 22w
duz /dx ==)d2u2— i

ui(0) = o, U2(0) = uz0

® Chebyshev tower map
e evolution-enhanced map

O choose loss function ©

e MSE

® MAE

® Kullback-Leibner

e Jensen—-Shannon

O set exit condition o
o set regularization

df/dx|xinx

O evaluate loss function derivative

fx)

N A

& if NOT (exit condition):
/' O update angles 0 using classical optimizer

else: evaluate function and plot solution

1) Kyriienko, Oleksandr and Paine, Annie E. and Elfving, Vincent E, Solving nonlinear differential equations with differentiable quantum circuits, Phys. Rev. A 103, 052416 — Published 17 May 2021

choose boundary
handling

® pinned
e floating
e optimized

set angles 0

© evaluate derivative circuits
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Advantage Convergence

PINNs7|&2 S%f¢t AlLt2| 29| 2XI0 ~F0] 0l2=

- DQCE Eol ¥RHEEE-I0| 7tX| 1 = 0|- 2 28610 & (Convergence)2 7t (Boosting)® 4= QUL

Domain decomposition

= When the profile of the target solution to learn is hard, domain decomposition can lower
the required expressivity of the QNN used to parameterize it.

= |t decomposes the problem within different subdomains that are solved independently. —
The solutions are then combined together by appropriate interface conditions, so that a
solution in the full domain is available.

Boundary Pinning —V
= PINNSs can be greatly accelerated by incorporating in the architecture knowledge of “pinned”

(some of) the properties of the solution.

pinned” boundary

= Here, we applied this general principle by replacing the variational penalty against : . .
solutions that do not satisfy the boundary conditions, with a “pinning” strategy hence NN'(x,6)
avoiding expressivity to be wasted.

0T1-

. . . . . _ NN'(x,0) = ce ™) 4+ (1 — e KA )NN(x, §)
= |t replaces a simple universal function approximator NN(x, #) with a smooth function

| . | . o for a given boundary conditi = c.
designed to automatically satisfy a certain boundary condition. or a given boundary conditon £ (x)|xeaq = ¢

Here, d(x) is set to represent a certain distance from boundaries
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Benchmark PINNs vs DQC

Stability

When training the model with global optimizers,
QNNs appears typically more tolerant to high
learning rates (LR) than classical NNs, as can be
seen by smoother evolution of the loss

— QNN
107 - — NN

=)

s

[72}

8 10! 1

L

N

=

10—1_
LR=0.05
0 25 50
epoch

Trainability

In extreme, problem-specific cases, we can
observe the learning being disrupted for classical
architectures by LR values where QNN can still
be meaningfully trained

101_
— QNN

— — NN
>
55-/ 100_
2
%101
=

LR=0.08

0 100 200

epoch

Convergence rate

When compared with a more similar architecture
(a trainable spectral decomposition), QNNs can
use higher LR to converge faster to the correct
solution

101 _
— QNN
— — Spectral
= 1
m - -
o 10 LR=0.01
n
o
Ll
n
= 1073
1 LR=0.03
0 100 200
epoch

Caveats : These comparisons are exemplary behaviour, and one must bear in mind that the training instances shown adopt fundamentally different paradigms.

= The initialization procedure is different across NNs and QNNs, hence for the same instance we often observe different starting loss.
= The collocation strategy of points is typically optimized against the quality of the final solution, which is correlated with the loss shown here, yet not interchangeable with the latter.
= Equivalently, the number of free parameters leading to similar final solutions can differ between NNs and QNNs, impacting also the convergence in the two cases
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Application Micro-LED

Micro-LED
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£ 108
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Nature, DOI: https://doi.org/10.1038/s41586-023-06167-5
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Micro-LED particle motion simulation

Simulating particle motion

- YRRl 2AI(m), AR IRI(xy), &k, AU ETIE Soll LT AlZh 22| YRie| 2IXIE AlZ2046t0 HAL 22 =0 == HI0f.

Problem setting

Eey(x,y,6)
. . . . . . . ,y ) )
= Given a force field F,(x,y,0), a torque field 7(x,y,0), a particle mass m with moment of inertia I, (x,y,0)
initial positions and velocities corresponding to the X, y and angular dimensions (0,500, 6() = m X0 \
A YL Q) = m =g
= Computed the position and orientation of the particle at following times B, (x(t), y(0), 6 (8)) = mdzﬂ;‘)
. . ", ’ ’ dt
adopting 3 QNNs and domain decomposition approaches a2
ng _________________ P PP (), y(0),6(0)) = 1700
g red Dy ey @t | o Simulated particle motion
g ©ns B i Pxldr
| e o HD—fenbq = | [150°] [180°] [210°]
e —Fed] & | . | . . |
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g |l B e e = & ma <&
e HD—FfedD—@ | . . . .
gy o R L [ — 1207 N (o N 2407
2l e Reose] @ 60 g - , -
I b e b — : ii : .
________________________________ 1 -5 % 25 E 25 &
parameter - an an
update Loss optimization | -3 T . ; . ; -3 : . ; T ; -1
L(L\,L)‘,La;) il 20 -10 o 1m il x1 3o -0 10 o m o x1 3o 20 10 o n = x
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Summary QML/DQC

QMLO| 7|CHz 1t
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L
-

HArgE 5210k

- Quantum Neural NetworkOflA 22 &S 8t= FEIS s2|= 2192 Expressivity 7t KI&E O 2 S7t5H=210] 2H0IE4)
- Quantum Neural Network?| X|&& Expressivitydl 2loH S5t GeometryE at&ot=0 Bot 8! 27t 1 7H8

MerAlO 2 QS II2H0IE CHH| X|I&E O 2 B 32
- Quantum Probably Approximately Correct Learning® Z&0|A Worst case?l 22 EXE JHE [If sHE LR 20 FAH0|S0| SHEIXK| UUCLE 7HsH0| &2l
- Quantum Machine Learning® A S5} = R8T SIH0| [H2F ts 2o 27t MHEXOZ SIHE0| 2HolE
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Conclusion DQC

- DQC exploits NN based solvers by replacing the classical NN by a trainable quantum circuits

-In DQC, a quantum feature map is used to encode a trial function, then based on a bi-partite loss function that depends
of the expectation value of a cost function, the parameters of a variational form are updated so as to improve the solution

- DQC is suitable for application on current noisy intermediate scale noisy devices

- DQC is a very versatile tool as it comes with different strategies to initialize its structure

- DQC uses analytical differentiation rather than numerical differentiation

- DQC doesn't linearize the problem, but solves nonlinearity directly

- DQC is compatible with a wide variety of differential equation types

1) M. D. Kruskal, Maximal Extension of Schwarzschild Metric, Phys. Rev. 119, 1743, 1960

2) Takahiro Goto et al., Universal Approximation Property of Quantum Machine Learning Models in Quantum-Enhanced Feature Spaces, Phys. Rev. Lett. 127, 090506, 2021

3) James Park, The concept of transition in quantum mechanics, Foundations of Physics. 1, 23-33, 1970

4) Yadong Wu et al., Expressivity of Quantum Neural Networks, Phys. Rev. Research 3, L032049, 2021

5) Ryan Sweke et al., On the Quantum versus Classical Learnability of Discrete Distributions, Quantum 5, 417, 2021

6) Hsin-Yuan Huang et al., Information-theoretic bounds on quantum advantage in machine learning, Phys. Rev. Lett. 126, 190505, 2021 14/14



