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Quantum transport:

1. Transport of disordered boundary modes.
2. TI nanowire’s magneto-conductance.
3. Metal-to-Insulator transition via disorder.

Floquet quantum matter:

1. Photocurrent in surface Dirac fermion.
2. Weyl semimetal under strong E-field.
3. Floquet Nodal helix semimetal. 

Disordered Floquet quantum matter:

1. Anomalous Floquet Anderson insulator.
2. Quantum kicked rotor in 4D.
3. Quantum walk with chiral symmetry in !D.
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Floquet topological insulators
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Outline of this talk

1. The Stark effect and Bloch oscillation in solids: theory and experiments

2. Wannier-Stark ladders in topological semimetals:

- Weyl semimetal + E-field: KWK, WR Lee, YB Kim, K Park, Nat. comm. 7, 13489

- Nodal helix semimetal + E-field: KWK, HW Kwon, K Park, arXiv:1808.04079



The Stark effect

Consider a hydrogen atom. Due to the rotational symmetry of Coulomb interaction with proton, 
electronic energy levels are degenerated. 

The application of electric field breaks the inversion symmetry and energy level splitting increases with 
the field strength. (discovered in 1913, Nobel prize in 1919). 

Along with the Zeeman effect, the experimental observation of the Stark effect provided the 
confirmation of perturbation theory in quantum mechanics.

E-field along z-direction.



Wannier-Stark ladder from the Schrodinger equation

In 1960 G.H. Wannier predicted the Stark effect for a Bloch electron in a constant electric field. 

If “𝜖” is an eigenvalue of the Schrodinger equation with eigenfunction 𝜓 𝑥 , there is a series of ladder 
like eigenvalues “𝜖 + 𝑚𝑎𝑒𝐸” with eigenfunction 𝜓 𝑥 −𝑚𝑎 :

−
1

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉 𝑥 + 𝑒𝐸𝑥 𝜓 𝑥 = 𝜖𝜓(𝑥)

−
1

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉 𝑥 + 𝑒𝐸(𝑥 − 𝑚𝑎) 𝜓 𝑥 − 𝑚𝑎 = 𝜖𝜓(𝑥 − 𝑚𝑎)

Wannier, Phys. Rev. 117, 432 (1960)

𝑥

V 𝑥 + 𝑒𝐸𝑎𝑥

𝑥

V 𝑥 = 𝑉(𝑥 + 𝑎)



The Stark effect of electrons in lattice: Wannier-Stark ladder

Interestingly, Wannier’s solution from the abelian approximation naturally contains the Zak phase:

Considering 𝑖
𝜕

𝜕𝑘
= ො𝑥 as a position operator, the Zak phase is a measure of Bloch electron’s position 

within unit cell, or a polarization. It is then naturally translated to a potential energy under an external 
electric field. 

𝛾𝑍𝑎𝑘 = න
0

2𝜋/𝑎

𝑢𝑘 𝑖
𝜕
𝜕𝑘

𝑢𝑘 𝑑𝑘

𝜖 = 𝑚 +
1

2𝜋
𝛾𝑍𝑎𝑘 𝑎𝑒𝐸 +

𝑎

2𝜋
න
0

2𝜋/𝑎

𝜖 𝑘 𝑑𝑘
Integer m, lattice constant a, 
a dispersion relation 𝜖 𝑘 .  

Wannier, Phys. Rev. 117, 432 (1960)
Zak, Phys. Rev. Lett. 20, 1477 (1968)

E-field

Shifting of intra-cell position



The Stark effect : perspective in momentum space

Under an electric field, a free electron will be accelerated indefinitely.  ℏ
𝑑𝑘

𝑑𝑡
= 𝑒𝐸

On the other hand, electrons under a periodic potential will oscillate in momentum and real space 
following a dispersion relation, 𝜖 𝑘 ⟶ 𝜖 𝑘 − 𝑒𝐸𝑡/ℏ .

To travel across the Brillouin zone n-times: 𝑇 =
2𝜋𝑛

𝑎

ℏ

𝑒𝐸
.

A Bloch electron shouldn’t be scattered during the travel:  𝑇 < 𝜏𝑠

Experimental limitation: a lattice unit cell of 5Å, E-field 10 (kV/cm), 𝑣𝐹 = 105(𝑚/𝑠) yields the length 
of Bloch oscillation: ~1 (um), which is one order larger than a typical mean free path 100 (nm). 

𝜖(𝑘)

𝑘𝑘

𝜖 𝑘 ~𝑘2

𝑛
ℎ

𝜏𝑠
< 𝑒𝑎𝐸



Wannier-Stark ladder in experiments: semicondutor supperlattice

A semiconductor superlattice structure is used to simulate artificial semiconductor with much larger 

lattice spacing (~100Å). With electric field strength  (~10kV/cm), the Wannier-Stark ladder was 
observed.

Mendez et al. PRL 60, 2426 (1988);



Wannier-Stark ladder in experiments: semicondutor supperlattice

A semiconductor superlattice structure is used to simulate artificial semiconductor with much larger 

lattice spacing (~100Å). With electric field strength  (~10kV/cm), the Wannier-Stark ladder was 
observed.

For a given E-field strength, the number of ladder indicates the localization length of the Bloch 
oscillation.  The stronger the E-field, the more localized is the Bloch electron.

Mendez et al. PRL 60, 2426 (1988); 



Wannier-Stark ladder in experiments: cold atoms in optical lattice

Ԧ𝑔

Standing wave potential with gravity to realize the Stark Hamiltonian:    

V x = cos 𝑘𝑥 + 𝑚𝑔𝑥 .

Two counter propagating waves

The linearly increasing phase difference, ∆𝑤 = 𝑤2 − 𝑤1 = 𝑎𝑡ത𝑘, is simulating 
the gravity and it thus provides an external “electric” field.

𝑉 𝑥, 𝑡 = cos 𝑤1𝑡 + 𝑘1𝑥 + cos 𝑤2𝑡 − 𝑘2𝑥 ,

= 2 𝑐𝑜𝑠 ഥ𝑤𝑡 +
1

2
∆𝑘𝑥 cos

1

2
∆𝑤𝑡 + ത𝑘𝑥 ,

~ cos ത𝑘 𝑥 −
1

2
𝑎𝑡2 .

Wilkinson et al. PRL 76, 4512



Outline of this talk

1. The Stark effect and Bloch oscillation in solids: theory and experiments

2. Wannier-Stark ladders in topological semimetals:

- Weyl semimetal + E-field: KWK, WR Lee, YB Kim, K Park, Nat. comm. 7, 13489
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ℎ

𝜏𝑠
< 𝑒𝑎𝐸 < BandwidthOur working regime:



Weyl semimetal and the Zak phase

Weyl node is located in 3-dimensional space. We can think of the system as a collection of 1-

dimensional wires along z-axis in momentum space,  𝑘⊥ = 𝑘𝑥, 𝑘𝑦 . For each wire, we can compute the 

Zak phase  𝛾𝑍𝑎𝑘(𝑘⊥).

Bernevig, Nat. Phys. 11 698

𝑘𝑦 𝛾𝑍𝑎𝑘(𝑘⊥)

KWK et al., Nat. comm. 7, 13489

𝑘𝑥

𝛾𝑍𝑎𝑘 = න
0

2𝜋/𝑎

𝑢𝑘 𝑖
𝜕
𝜕𝑘𝑧

𝑢𝑘 𝑑𝑘𝑧



Wannier-Stark ladder in Weyl semimetal 

Momentum resolved energy spectrum is:

The zero energy cut of spectrum will contain a open line segment from the Zak phase winding.

𝜖(𝑘⊥) = 𝑚 +
1

2𝜋
𝛾𝑍𝑎𝑘(𝑘⊥) 𝑎𝑒𝐸 +

𝑎

2𝜋
න
0

2𝜋/𝑎

𝜖 𝑘𝑧, 𝑘⊥ 𝑑𝑘𝑧 with integer m.

KWK et al., Nat. comm. 7, 13489
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ℎ

𝜏𝑠
< 𝑒𝑎𝐸 < BandwidthOur working regime:



Nodal-line semimetal and nodal helix in time domain

Nodal-line semimetal is characterized by a Zak phase of a loop enclosing a nodal line. 

Consider a gapless 2D Dirac fermion under circularly polarized light. The trace of Dirac point will make a 
helix in momentum-time domain.

𝛾𝑍𝑎𝑘 = ර 𝑢𝑘 𝑖
𝜕

𝜕𝑘
𝑢𝑘 𝑑𝑘 = 𝜋

𝑘𝑦

𝑘𝑥

𝑘𝑧

loop

Nodal-line

𝐻 𝑘, 𝑡 = 𝑘𝑥 − 𝐴𝑐𝑜𝑠 Ω𝑡 𝜎𝑥 + 𝑘𝑦 − 𝐴𝑠𝑖𝑛 Ω𝑡 𝜎𝑦

𝑘𝑦

𝑘𝑥

Ω𝑡loop

Nodal-helix



From a Floquet Hamiltonian to a Stark Hamiltonian

Start with a continuum Dirac Hamiltonian: 

Because H(t)= H(t+T), eigenvectors assume the following form from the Bloch theorem: 

𝜓 𝑡 = 𝑒−𝑖𝜖𝑡𝜙(𝑡) with    𝜙(𝑡)= 𝜙 𝑡 + 𝑇 ,

where a time-periodic function can be Fourier decomposed:    𝜙 𝑡 = σ𝑛 𝑒
−𝑖𝑛Ω𝑡 ෨𝜙𝑛 .

Writing the Schrodinger equation in the Floquet basis, ෨𝜙𝑛:

Where ෩𝐻𝑛𝑚 =
1

𝑇
0
𝑇
𝐻(𝑡)𝑒−𝑖(𝑛−𝑚)Ω𝑡𝑑𝑡 . The Floquet operator can be thought of as a hopping between 

Floquet site n and m with a static electric field with strength Ω.

We ended up having 3-dimensional system with E-field from 2-dimensional time-periodic Hamiltonian. 

𝐻 𝑘, 𝑡 = 𝑘𝑥 − 𝐴𝑐𝑜𝑠 Ω𝑡 𝜎𝑥 + 𝑘𝑦 − 𝐴𝑠𝑖𝑛 Ω𝑡 𝜎𝑦

𝑖
𝜕

𝜕𝑡
𝜓 𝑡 = 𝐻(𝑘, 𝑡)𝜓 𝑡 

𝑚

෩𝐻𝑛𝑚 − 𝑛Ω𝛿𝑛𝑚 ෨𝜙𝑚 = 𝜖 ෨𝜙𝑛

Technical side



Nodal helix in graphene

With two gapless Dirac fermion in graphene, two nodal helices are generated. 

In the high driving frequency limit, this is well known Floquet quantum spin Hall system by Kitagawa et al. 
We work this problem in the low frequency limit to preserve the 3-dimensionality, and a strong intensity of 
light regime to induce a sizable ring of helix in momentum space.

KWK et al., arXiv:1808.04079



Nodal helix in graphene: Zak phase and LDOS at zero energy

A reminder of Wannier-Stark ladder:

a. Zak phase 𝛾𝑍𝑎𝑘(𝑘⊥)

b. Momentum resolved LDOS at E=0. 

c. LDOS(E=0) from the abelian approximation.

d. Magnified view of b. 

KWK et al., arXiv:1808.04079

𝜖(𝑘⊥) = 𝑚 +
1

2𝜋
𝛾𝑍𝑎𝑘(𝑘⊥) 𝑎𝑒𝐸 +

𝑎

2𝜋
න
0

2𝜋/𝑎

𝜖 𝑘∥, 𝑘⊥ 𝑑𝑘∥

K K’



Nodal helix in graphene: dispersion relation

Energy dispersion relation from the abelian approximation shows the Zak phase 𝜋 shift across the 
ring marked by yellow shade. By the inter-band tunneling, the discontinuity in spectrum is smoothly 
connected with energy gap opening. 

Here the color code indicates the fraction of eigenfunction belonging to the (conduction/valence) 
solution from the abelian approximation.

KWK et al., arXiv:1808.04079



Nodal helix in graphene: dispersion relation

The energy gap is exponentially suppressed with the reduction of driving frequency Ω. In this sense, 
we argue that the gapless nature is approximately preserved in the Wannier-Stark ladder with an 
external ‘electric’ field. Thus, the observation of nodal helix semimetal carrying Zak phase shift 𝜋
will be possible. 

KWK et al., arXiv:1808.04079

ℰ𝑔𝑎𝑝 ≅
Ω𝐴

2𝜋𝑘(𝐴 + 𝑘)
𝑒
−
2(𝐴−𝑘)4

𝑘(𝐴+𝑘)Ω2



Experiment: irradiated 2D Dirac surface state in 3D topological insulator

Wang et al. Science 342, 453 

Parameters in this experiment:

Driving frequency = 0.2 (eV)

E-field strength = 3.3x105(V/cm)

Size of ring 𝑘0 = 0.0165 (1/Å)

We want to point out that this experiment can 
be interpreted as a series of Wannier-Stark 
ladder with the Zak phase 𝜋 change reflected in 
the spectrum.



A single 2D gapless Dirac fermion: intermediate driving frequency regime

Even with moderate regime of driving frequency, we can see the Wanner-Stark ladder carries a significant 
amount of conduction(red)/valence(blue) band characters from the abelian approximation. 

1st column: Wannier-Stark ladder from the Abelian approximation.
2nd column: Wannier-Stark ladder without approximation.
3rd and 4th column: realistic situation. We limit the number of accessible Floquet bands.



Summary and Outlook

1. The Bloch oscillation and the Stark effect in lattice are reviewed. The Zak phase is 
picked up by the Bloch oscillation, and it appears in spectral property. 

2. Weyl semimetal shows the winding of the Zak phase around projected Weyl nodes. 
Thus, the Bulk spectrum shows a open Fermi arc. 

3. A time periodic 2-dimensional system can be mapped into a 3-dimensional system 
under a static external electric field. The circular motion of the Dirac node realizes a 
helix nodal semimetal. 

4. The time evolution of Bloch wave-packet in WSL semimetal through Landau-Zener
tunneling is something to look at. 

Thank you for your attention.



A few line of algebra can solve the problem: 

Rewrite the equation in the basis of Bloch wave function 𝜓 𝑥 = σ𝑛𝑘𝐵𝑛(𝑘)𝜓𝑛𝑘 𝑥 : 

Then, take an inner product by an Bloch wave function from the left: 

By taking one band only, We can obtain:

From the periodic condition, energy quantization:   

−
1

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉 𝑥 + 𝑒𝐸𝑥 𝜓 𝑥 = 𝜖𝜓(𝑥)

−
1

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉 𝑥 + 𝑒𝐸𝑥 

𝑛𝑘

𝐵𝑛(𝑘)𝜓𝑛𝑘 𝑥 = 𝜖

𝑛𝑘

𝐵𝑛 𝑘 𝜓𝑛𝑘 𝑥 ,

𝜖𝑛 𝑘 + 𝑒𝐸𝑖
𝜕

𝜕𝑘
+

𝑚

𝑒𝐸 𝑢𝑚𝑘 𝑖
𝜕
𝜕𝑘

𝑢𝑛𝑘 𝐵𝑛(𝑘) = 𝜖𝐵𝑛(𝑘)

𝐵𝑛 𝑘 = 𝑒𝑥𝑝 −
𝑖

𝑒𝐸
න
0

𝑘

𝜖 − 𝜖𝑛 𝑘′ − 𝑒𝐸 𝑢𝑛𝑘′ 𝑖
𝜕
𝜕𝑘′

𝑢𝑛𝑘′ 𝑑𝑘′

𝜖 = 𝑚𝑎𝑒𝐸 +
𝑎

2𝜋
න
0

2𝜋/𝑎

𝜖𝑛 𝑘′ + 𝑒𝐸 𝑢𝑛𝑘′ 𝑖
𝜕
𝜕𝑘′

𝑢𝑛𝑘′ 𝑑𝑘′

Technical slide



Weyl semimetal in experiments

1. Topological insulator multilayer proposal (Burkov and Balents, PRL 107, 127205)

(∆𝑆: coupling within TI.   ∆𝐷: coupling between TI’s. m: Zeeman coupling on TI surface.)

2. Cold atoms in optical lattice (Gross and Bloch, Science 357, 995)

ill-defined boundary and a limited transport measurement.  

Wannier-Stark ladder to characterize Weyl semimetallic phase.



From the Zak phase to the first Chern number

The Zak phase  𝛾𝑍𝑎𝑘 𝑘⊥ changes by 2𝜋 around projected Weyl node in momentum space 𝑘⊥ = 𝑘𝑥, 𝑘𝑦 .

This is because, the change of the Zak phase is the first Chern number: 

A Weyl semimetal can be viewed as a collection of 2D Chern insulators in momentum space. And the Fermi 
arc surface state is a collection of chiral edge states.

ර
𝜕

𝜕𝑘⊥
Υ𝑍𝑎𝑘 𝑘⊥ 𝑑𝑘⊥ = ර

𝜕

𝜕𝑘⊥
න
0

2𝜋/𝑎

𝑢𝑘 𝑖
𝜕
𝜕𝑘𝑧

𝑢𝑘 𝑑𝑘𝑧 𝑑𝑘⊥

= රන
0

2𝜋/𝑎
𝜕

𝜕𝑘⊥
𝑢𝑘 𝑖

𝜕
𝜕𝑘𝑧

𝑢𝑘 −
𝜕
𝜕𝑘𝑧

𝑢𝑘 𝑖
𝜕

𝜕𝑘⊥
𝑢𝑘 𝑑𝑘𝑧 𝑑𝑘⊥

= Winding number from a torus to a sphere. 


